Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey

Size: px
Start display at page:

Download "Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey"

Transcription

1 Alignment of Long Sequences BMI/CS Spring 2012 Colin Dewey

2 Gols for Lecture the key concepts to understnd re the following how lrge-scle lignment differs from the simple cse the cnonicl three step pproch of lrge-scle ligners using suffix trees to find MUMs (lignment seeds) using tries nd threded tries to find lignment seeds constrined dynmic progrmming to lign between/ round nchors using sprse DP to find chin of locl lignments

3 Pirwise Lrge-Scle Alignment: Tsk Definition Given pir of lrge-scle sequences (e.g. chromosomes) method for scoring the lignment (e.g. substitution mtrices, insertion/deletion prmeters) Do construct globl lignment: identify ll mtching positions between the two sequences

4 Lrge Scle Alignment Exmple: Mouse Chr6 vs. Humn Chr12

5 Why the Problem is Chllenging sequences too big to mke O(n 2 ) dynmicprogrmming methods prcticl long sequences re less likely to be coliner becuse of rerrngements initilly we ll ssume colinerity we ll consider rerrngements in next lecture

6 Generl Strtegy Figure from: Brudno et l. Genome Reserch, perform pttern mtching to find seeds for globl lignment 2. find good chin of nchors 3. fill in reminder with stndrd but constrined lignment method

7 Comprison of Lrge-Scle Alignment Methods Method Pttern mtching Chining MUMmer suffix tree - MUMs LIS vrint AVID suffix tree - exct & wobble mtches Smith-Wtermn vrint LAGAN k-mer trie, inexct mtches sprse DP

8 The MUMmer System Delcher et l., Nucleic Acids Reserch, 1999 Given: genomes A nd B 1. find ll mximl, unique, mtching subsequences (MUMs) 2. extrct the longest possible set of mtches tht occur in the sme order in both genomes 3. close the gps

9 Step 1: Finding Seeds in MUMmer mximl unique mtch (MUM): occurs exctly once in both genomes A nd B not contined in ny longer MUM mismtches key insight: significntly long MUM is certin to be prt of the globl lignment

10 Suffix Trees substring problem: given text S of length m preprocess S in O(m) time such tht, given query string Q of length n, find occurrence (if ny) of Q in S in O(n) time suffix trees solve this problem, nd others

11 Suffix Tree Definition key property suffix tree T for string S of length m is tree with the following properties: rooted nd directed m leves, lbeled 1 to m ech edge lbeled by substring of S conctention of edge lbels on pth from root to lef i is suffix i of S (we will denote this by Si...m) ech internl non-root node hs t lest two children edges out of node must begin with different chrcters

12 Suffixes S = bnn$ suffixes of S $ $ n$ n$ nn$ nn$ bnn$

13 Suffix Tree Exmple S = bnn$ dd $ to end so tht suffix tree exists (no suffix is prefix of nother suffix) n $ $ n $ b n n $ n n $ $ $

14 Solving the Substring Problem ssume we hve suffix tree T FindMtch(Q, T): follow (unique) pth down from root of T ccording to chrcters in Q if ll of Q is found to be prefix of such pth return lbel of some lef below this pth else, return no mtch found

15 Solving the Substring Problem Q = nn Q = nb n $ $ n $ b n n $ n n $ $ $ 7 STOP n $ $ n $ b n n $ n n $ $ $ return return no mtch found

16 MUMs nd Generlized Suffix Trees build one suffix tree for both genomes A nd B lbel ech lef node with genome it represents Genome A: cccg# Genome B: cct$ cg# c g# t$ ech internl node represents repeted sequence A, 3 cg# c g# t$ A, 5 B, 3 A, 2 A, 4 B, 2 cg# t$ A, 1 B, 1 ech lef represents suffix nd its position in sequence

17 MUMs nd Suffix Trees unique mtch: internl node with 2 children, lef nodes from different genomes but these mtches re not necessrily mximl Genome A: cccg# Genome B: cct$ cg# c g# t$ A, 3 cg# c g# t$ A, 5 B, 3 A, 2 A, 4 B, 2 cg# t$ A, 1 B, 1 represents unique mtch

18 MUMs nd Suffix Trees to identify mximl mtches, cn compre suffixes following unique mtch nodes Genome A: ct# Genome B: c$ c t# A, 4 $ $ c t# t# $ B, 4 B, 3 A, 3 A, 2 B, 2 t# A, 1 $ B, 1 the suffixes following these two mtch nodes re the sme; the left one represents longer mtch (c)

19 Using Suffix Trees to Find MUMs O(n) time to construct suffix tree for both sequences (of lengths n) O(n) time to find MUMs - one scn of the tree (which is O(n) in size) O(n) possible MUMs in contrst to O(n 2 ) possible exct mtches min prmeter of pproch: length of shortest MUM tht should be identified (20 50 bses)

20 Step 2: Chining in MUMmer sort MUMs ccording to position in genome A solve vrition of Longest Incresing Subsequence (LIS) problem to find sequences in scending order in both genomes Figure from: Delcher et l., Nucleic Acids Reserch 27, 1999

21 Finding Longest Subsequence unlike ordinry LIS problems, MUMmer tkes into ccount lengths of sequences represented by MUMs overlps requires O( k log k) time where k is number of MUMs

22 Types of Gps in MUMmer Alignment Figure from: Delcher et l., Nucleic Acids Reserch 27, 1999

23 Step 3: Close the Gps SNPs: between MUMs: trivil to detect otherwise: hndle like repets inserts trnspositions (subsequences tht were deleted from one loction nd inserted elsewhere): look for out-of-sequence MUMs simple insertions: trivil to detect

24 Step 3: Close the Gps polymorphic regions short ones: lign them with dynmic progrmming method long ones: cll MUMmer recursively w/ reduced min MUM length repets detected by overlpping MUMs Figure from: Delcher et l. Nucleic Acids Reserch 27, 1999

25 The LAGAN Method Brudno et l., Genome Reserch, 2003 Given: genomes A nd B nchors = find_nchors(a, B) step 3: finish globl lignment with DP constrined by nchors find_nchors(a, B) step 1: find locl lignments by mtching, chining k-mer seeds step 2: nchors = highest-weight sequence of locl lignments for ech pir of djcent nchors 1, 2 in nchors if 1, 2 re more thn d bses prt A, B = sequences between 1, 2 sub-nchors = find_nchors( A, B ) insert sub-nchors between 1, 2 in nchors return nchors

26 Step 1: Finding Seeds in LAGAN degenerte k-mers: mtching k-long sequences with smll number of mismtches llowed by defult, LAGAN uses 10-mers nd llows 1 mismtch ccg cgcgctct cct ct cgcggtct cgt

27 Finding Seeds in LAGAN exmple: trie to represent ll 3-mers of the sequence gccgcct c g c c g c c g t 2 3, c one sequence is used to build the trie the other sequence (the query) is wlked through to find mtching k-mers

28 Allowing Degenerte Mtches suppose we re llowing 1 bse to mismtch in looking for mtches to the 3-mer cc; need to explore green nodes c g c c g c c g t 2 3, c

29 LAGAN Uses Threded Tries in threded trie, ech lef for word w 1...w p hs bck pointer to the node for w 2...w p c g c c g c c g t 2 3, c

30 Trversing Threded Trie consider trversing the trie to find 3-mer mtches for the query sequence: ccgt c g c c g c c g t 2 3, c usully requires following only two pointers to mtch ginst the next k-mer, insted of trversing tree from root for ech

31 Step 1b: Chining Seeds in LAGAN cn chin seeds s 1 nd s 2 if the indices of s 1 > indices of s 2 (for both sequences) s 1 nd s 2 re ner ech other keep trck of seeds in the serch box s the query sequence is processed Figure from: Brudno et l. BMC Bioinformtics, 2003

32 Step 2: Chining in LAGAN use sprse dynmic progrmming to chin locl lignments

33 The Problem: Find Chin of Locl Alignments (x,y) (x,y ) requires x < x y < y Ech locl lignment hs weight FIND the chin with highest totl weight Slide from Serfim Btzoglou, Stnford University

34 Sprse DP for rectngle chining 1,, N: rectngles h (h j, l j ): y-coordintes of rectngle j w(j): weight of rectngle j l V(j): optiml score of chin ending in j L: list of triplets (l j, V(j), j) y L is sorted by l j : smllest (North) to lrgest (South) vlue L is implemented s blnced binry tree Slide from Serfim Btzoglou, Stnford University

35 Sprse DP for rectngle chining Min ide: Sweep through x- coordintes To the right of b, nything chinble to is chinble to b Therefore, if V(b) > V(), rectngle is useless for subsequent chining In L, keep rectngles j sorted with incresing l j - coordintes sorted with incresing V(j) score V() V(b) Slide from Serfim Btzoglou, Stnford University

36 Sprse DP for rectngle chining Go through rectngle x-coordintes, from lowest to highest: 1. When on the leftmost end of rectngle i: j. j: rectngle in L, with lrgest l j < h i b. V(i) = w(i) + V(j) k i 2. When on the rightmost end of i:. k: rectngle in L, with lrgest l k l i b. If V(i) > V(k): i. INSERT (l i, V(i), i) in L ii. REMOVE ll (l j, V(j), j) with V(j) V(i) & l j l i Slide from Serfim Btzoglou, Stnford University

37 Exmple x : 5 V b c d e b: c: 3 d: 4 e: 2 L l i V(i) i c b d e y 1. When on the leftmost end of rectngle i:. j: rectngle in L, with lrgest l j < h i b. V(i) = w(i) + V(j) Slide from Serfim Btzoglou, Stnford University 2. When on the rightmost end of i:. k: rectngle in L, with lrgest l k l i b. If V(i) > V(k): i. INSERT (l i, V(i), i) in L ii. REMOVE ll (l j, V(j), j) with V(j) V(i) & l j l i

38 Time Anlysis 1. Sorting the x-coords tkes O(N log N) 2. Going through x-coords: N steps 3. Ech of N steps requires O(log N) time: Serching L tkes log N Inserting to L tkes log N All deletions re consecutive, so log N per deletion Ech element is deleted t most once: N log N for ll deletions Recll tht INSERT, DELETE, SUCCESSOR, tke O(log N) time in blnced binry serch tree Slide from Serfim Btzoglou, Stnford University

39 Constrined Dynmic Progrmming if we know tht the i th element in one sequence must lign with the j th element in the other, we cn ignore two rectngles in the DP mtrix j i

40 Step 3: Computing the Globl Alignment in LAGAN given n nchor tht strts t (i, j) nd ends t (i, j ), LAGAN limits the DP to the unshded regions thus nchors re somewht flexible Figure from: Brudno et l. Genome Reserch, 2003

41 Step 3: Computing the Globl Alignment in LAGAN Figures from: Brudno et l. Genome Reserch, 2003

42 Exmple Alignment: E. Coli O157:H7 vs. E. coli K-12 Figure from: Pern et l. Nture, 2001

COMBINATORIAL PATTERN MATCHING

COMBINATORIAL PATTERN MATCHING COMBINATORIAL PATTERN MATCHING Genomic Repets Exmple of repets: ATGGTCTAGGTCCTAGTGGTC Motivtion to find them: Genomic rerrngements re often ssocited with repets Trce evolutionry secrets Mny tumors re chrcterized

More information

CS481: Bioinformatics Algorithms

CS481: Bioinformatics Algorithms CS481: Bioinformtics Algorithms Cn Alkn EA509 clkn@cs.ilkent.edu.tr http://www.cs.ilkent.edu.tr/~clkn/teching/cs481/ EXACT STRING MATCHING Fingerprint ide Assume: We cn compute fingerprint f(p) of P in

More information

Alignment of Long Sequences

Alignment of Long Sequences Alignment of Long Sequences BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2009 Mark Craven craven@biostat.wisc.edu Pairwise Whole Genome Alignment: Task Definition Given a pair of genomes (or other large-scale

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Intermediate Information Structures

Intermediate Information Structures CPSC 335 Intermedite Informtion Structures LECTURE 13 Suffix Trees Jon Rokne Computer Science University of Clgry Cnd Modified from CMSC 423 - Todd Trengen UMD upd Preprocessing Strings We will look t

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 2. Ben Raphael January 26, hhp://cs.brown.edu/courses/csci1950 z/ Outline

CSCI1950 Z Computa4onal Methods for Biology Lecture 2. Ben Raphael January 26, hhp://cs.brown.edu/courses/csci1950 z/ Outline CSCI1950 Z Comput4onl Methods for Biology Lecture 2 Ben Rphel Jnury 26, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Outline Review of trees. Coun4ng fetures. Chrcter bsed phylogeny Mximum prsimony Mximum

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Orthogonal line segment intersection

Orthogonal line segment intersection Computtionl Geometry [csci 3250] Line segment intersection The prolem (wht) Computtionl Geometry [csci 3250] Orthogonl line segment intersection Applictions (why) Algorithms (how) A specil cse: Orthogonl

More information

Phylogeny and Molecular Evolution

Phylogeny and Molecular Evolution Phylogeny nd Moleculr Evolution Chrcter Bsed Phylogeny 1/50 Credit Ron Shmir s lecture notes Notes by Nir Friedmn Dn Geiger, Shlomo Morn, Sgi Snir nd Ron Shmir Durbin et l. Jones nd Pevzner s presenttion

More information

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup Regulr Expression Mtching with Multi-Strings nd Intervls Philip Bille Mikkel Thorup Outline Definition Applictions Previous work Two new problems: Multi-strings nd chrcter clss intervls Algorithms Thompson

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li 2nd Interntionl Conference on Electronic & Mechnicl Engineering nd Informtion Technology (EMEIT-212) Complete Coverge Pth Plnning of Mobile Robot Bsed on Dynmic Progrmming Algorithm Peng Zhou, Zhong-min

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

On String Matching in Chunked Texts

On String Matching in Chunked Texts On String Mtching in Chunked Texts Hnnu Peltol nd Jorm Trhio {hpeltol, trhio}@cs.hut.fi Deprtment of Computer Science nd Engineering Helsinki University of Technology P.O. Box 5400, FI-02015 HUT, Finlnd

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

2014 Haskell January Test Regular Expressions and Finite Automata

2014 Haskell January Test Regular Expressions and Finite Automata 0 Hskell Jnury Test Regulr Expressions nd Finite Automt This test comprises four prts nd the mximum mrk is 5. Prts I, II nd III re worth 3 of the 5 mrks vilble. The 0 Hskell Progrmming Prize will be wrded

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls Redings for Next Two Lectures Text CPSC 213 Switch Sttements, Understnding Pointers - 2nd ed: 3.6.7, 3.10-1st ed: 3.6.6, 3.11 Introduction to Computer Systems Unit 1f Dynmic Control Flow Polymorphism nd

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

CSE 549: Suffix Tries & Suffix Trees. All slides in this lecture not marked with * of Ben Langmead.

CSE 549: Suffix Tries & Suffix Trees. All slides in this lecture not marked with * of Ben Langmead. CSE 549: Suffix Tries & Suffix Trees All slides in this lecture not mrked with * of Ben Lngmed. KMP is gret, ut T = m P = n (note: m,n re opposite from previous lecture) Without preprocessing (KMP) Given

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata CS 432 Fll 2017 Mike Lm, Professor (c)* Regulr Expressions nd Finite Automt Compiltion Current focus "Bck end" Source code Tokens Syntx tree Mchine code chr dt[20]; int min() { flot x = 42.0; return 7;

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08 CS412/413 Introduction to Compilers Tim Teitelum Lecture 4: Lexicl Anlyzers 28 Jn 08 Outline DFA stte minimiztion Lexicl nlyzers Automting lexicl nlysis Jlex lexicl nlyzer genertor CS 412/413 Spring 2008

More information

Stack. A list whose end points are pointed by top and bottom

Stack. A list whose end points are pointed by top and bottom 4. Stck Stck A list whose end points re pointed by top nd bottom Insertion nd deletion tke plce t the top (cf: Wht is the difference between Stck nd Arry?) Bottom is constnt, but top grows nd shrinks!

More information

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search Uninformed Serch [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.] Tody Serch Problems Uninformed Serch Methods

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Applied Databases. Sebastian Maneth. Lecture 13 Online Pattern Matching on Strings. University of Edinburgh - February 29th, 2016

Applied Databases. Sebastian Maneth. Lecture 13 Online Pattern Matching on Strings. University of Edinburgh - February 29th, 2016 Applied Dtses Lecture 13 Online Pttern Mtching on Strings Sestin Mneth University of Edinurgh - Ferury 29th, 2016 2 Outline 1. Nive Method 2. Automton Method 3. Knuth-Morris-Prtt Algorithm 4. Boyer-Moore

More information

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation Alloctor Bsics Dynmic Memory Alloction in the Hep (mlloc nd free) Pges too corse-grined for llocting individul objects. Insted: flexible-sized, word-ligned blocks. Allocted block (4 words) Free block (3

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID:

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID: Fll term 2012 KAIST EE209 Progrmming Structures for EE Mid-term exm Thursdy Oct 25, 2012 Student's nme: Student ID: The exm is closed book nd notes. Red the questions crefully nd focus your nswers on wht

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

CS 430 Spring Mike Lam, Professor. Parsing

CS 430 Spring Mike Lam, Professor. Parsing CS 430 Spring 2015 Mike Lm, Professor Prsing Syntx Anlysis We cn now formlly descrie lnguge's syntx Using regulr expressions nd BNF grmmrs How does tht help us? Syntx Anlysis We cn now formlly descrie

More information

Text mining: bag of words representation and beyond it

Text mining: bag of words representation and beyond it Text mining: bg of words representtion nd beyond it Jsmink Dobš Fculty of Orgniztion nd Informtics University of Zgreb 1 Outline Definition of text mining Vector spce model or Bg of words representtion

More information

Lecture T4: Pattern Matching

Lecture T4: Pattern Matching Introduction to Theoreticl CS Lecture T4: Pttern Mtching Two fundmentl questions. Wht cn computer do? How fst cn it do it? Generl pproch. Don t tlk bout specific mchines or problems. Consider miniml bstrct

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

10/12/17. Motivating Example. Lexical and Syntax Analysis (2) Recursive-Descent Parsing. Recursive-Descent Parsing. Recursive-Descent Parsing

10/12/17. Motivating Example. Lexical and Syntax Analysis (2) Recursive-Descent Parsing. Recursive-Descent Parsing. Recursive-Descent Parsing Motivting Exmple Lexicl nd yntx Anlysis (2) In Text: Chpter 4 Consider the grmmr -> cad A -> b Input string: w = cd How to build prse tree top-down? 2 Initilly crete tree contining single node (the strt

More information

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an Scnner Termintion A scnner reds input chrcters nd prtitions them into tokens. Wht hppens when the end of the input file is reched? It my be useful to crete n Eof pseudo-chrcter when this occurs. In Jv,

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Reducing a DFA to a Minimal DFA

Reducing a DFA to a Minimal DFA Lexicl Anlysis - Prt 4 Reducing DFA to Miniml DFA Input: DFA IN Assume DFA IN never gets stuck (dd ded stte if necessry) Output: DFA MIN An equivlent DFA with the minimum numer of sttes. Hrry H. Porter,

More information

Lecture 10: Suffix Trees

Lecture 10: Suffix Trees Computtionl Genomics Prof. Ron Shmir, Prof. Him Wolfson, Dr. Irit Gt-Viks School of Computer Science, Tel Aviv University גנומיקה חישובית פרופ' רון שמיר, פרופ' חיים וולפסון, דר' עירית גת-ויקס ביה"ס למדעי

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

Topic 2: Lexing and Flexing

Topic 2: Lexing and Flexing Topic 2: Lexing nd Flexing COS 320 Compiling Techniques Princeton University Spring 2016 Lennrt Beringer 1 2 The Compiler Lexicl Anlysis Gol: rek strem of ASCII chrcters (source/input) into sequence of

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ CMOS transmission gate (TG) TG example

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ CMOS transmission gate (TG) TG example Introduction to Computer Engineering EECS 23 http://ziyng.eecs.northwestern.edu/ dickrp/eecs23/ CMOS trnsmission gte TG Instructor: Robert Dick Office: L477 Tech Emil: dickrp@northwestern.edu Phone: 847

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

CSE 401 Midterm Exam 11/5/10 Sample Solution

CSE 401 Midterm Exam 11/5/10 Sample Solution Question 1. egulr expressions (20 points) In the Ad Progrmming lnguge n integer constnt contins one or more digits, but it my lso contin embedded underscores. Any underscores must be preceded nd followed

More information

Position Heaps: A Simple and Dynamic Text Indexing Data Structure

Position Heaps: A Simple and Dynamic Text Indexing Data Structure Position Heps: A Simple nd Dynmic Text Indexing Dt Structure Andrzej Ehrenfeucht, Ross M. McConnell, Niss Osheim, Sung-Whn Woo Dept. of Computer Science, 40 UCB, University of Colordo t Boulder, Boulder,

More information

Suffix trees. December Computational Genomics

Suffix trees. December Computational Genomics Computtionl Genomics Prof Irit Gt-Viks, Prof. Ron Shmir, Prof. Roded Shrn School of Computer Science, Tel Aviv University גנומיקה חישובית פרופ' עירית גת-ויקס, פרופ' רון שמיר, פרופ' רודד שרן ביה"ס למדעי

More information

binary trees, expression trees

binary trees, expression trees COMP 250 Lecture 21 binry trees, expression trees Oct. 27, 2017 1 Binry tree: ech node hs t most two children. 2 Mximum number of nodes in binry tree? Height h (e.g. 3) 3 Mximum number of nodes in binry

More information

Assignment 4. Due 09/18/17

Assignment 4. Due 09/18/17 Assignment 4. ue 09/18/17 1. ). Write regulr expressions tht define the strings recognized by the following finite utomt: b d b b b c c b) Write FA tht recognizes the tokens defined by the following regulr

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST Suffi Trees Outline Introduction Suffi Trees (ST) Building STs in liner time: Ukkonen s lgorithm Applictions of ST 2 3 Introduction Sustrings String is ny sequence of chrcters. Sustring of string S is

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificil Intelligence Serch Instructor: Michele Vn Dyne [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.]

More information

Better Hill-Climbing Searches for Parsimony

Better Hill-Climbing Searches for Parsimony Better Hill-Climbing Serches for Prsimony Gneshkumr Gnpthy, Vijy Rmchndrn, nd Tndy Wrnow Deprtment of Computer Sciences, University of Texs, Austin, TX 78712; gsgk, vlr, tndy @cs.utexs.edu Abstrct. The

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

Scanner Termination. Multi Character Lookahead

Scanner Termination. Multi Character Lookahead If d.doublevlue() represents vlid integer, (int) d.doublevlue() will crete the pproprite integer vlue. If string representtion of n integer begins with ~ we cn strip the ~, convert to double nd then negte

More information

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam.

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam. 15-112 Spring 2018 Midterm Exm 1 Mrch 1, 2018 Nme: Andrew ID: Recittion Section: You my not use ny books, notes, or electronic devices during this exm. You my not sk questions bout the exm except for lnguge

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Algorithms in bioinformatics (CSI 5126) 1

Algorithms in bioinformatics (CSI 5126) 1 Algorithms in bioinformtics (CSI 5126) 1 Mrcel Turcotte (turcotte@site.uottw.c) School of Informtion Technology nd Engineering University of Ottw Cnd October 2, 2009 1 Plese don t print these lecture notes

More information

The Structure of Forward, Reverse, and Transverse Path Graphs in The Pattern Recognition Algorithms of Sellers

The Structure of Forward, Reverse, and Transverse Path Graphs in The Pattern Recognition Algorithms of Sellers The Structure of Forwrd, Reverse, nd Trnsverse Pth Grhs in The Pttern Recognition Algorithms of Sellers Lewis Lsser Dertment of Mthemtics nd Comuter Science York College/CUNY Jmic, New York 11451 llsser@york.cuny.edu

More information

The dictionary model allows several consecutive symbols, called phrases

The dictionary model allows several consecutive symbols, called phrases A dptive Huffmn nd rithmetic methods re universl in the sense tht the encoder cn dpt to the sttistics of the source. But, dpttion is computtionlly expensive, prticulrly when k-th order Mrkov pproximtion

More information

LECT-10, S-1 FP2P08, Javed I.

LECT-10, S-1 FP2P08, Javed I. A Course on Foundtions of Peer-to-Peer Systems & Applictions LECT-10, S-1 CS /799 Foundtion of Peer-to-Peer Applictions & Systems Kent Stte University Dept. of Computer Science www.cs.kent.edu/~jved/clss-p2p08

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

UNIT 11. Query Optimization

UNIT 11. Query Optimization UNIT Query Optimiztion Contents Introduction to Query Optimiztion 2 The Optimiztion Process: An Overview 3 Optimiztion in System R 4 Optimiztion in INGRES 5 Implementing the Join Opertors Wei-Png Yng,

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7.

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7. CS 241 Fll 2017 Midterm Review Solutions Octoer 24, 2017 Contents 1 Bits nd Bytes 1 2 MIPS Assemly Lnguge Progrmming 2 3 MIPS Assemler 6 4 Regulr Lnguges 7 5 Scnning 9 1 Bits nd Bytes 1. Give two s complement

More information

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms Prdigm. Dt Struture Known exmples: link tble, hep, Our leture: suffix tree Will involve mortize method tht will be stressed shortly in this ourse Suffix trees Wht is suffix tree? Simple pplitions History

More information

Geometric transformations

Geometric transformations Geometric trnsformtions Computer Grphics Some slides re bsed on Shy Shlom slides from TAU mn n n m m T A,,,,,, 2 1 2 22 12 1 21 11 Rows become columns nd columns become rows nm n n m m A,,,,,, 1 1 2 22

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE

CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE 3.1 Scheimpflug Configurtion nd Perspective Distortion Scheimpflug criterion were found out to be the best lyout configurtion for Stereoscopic PIV, becuse

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

Lecture T1: Pattern Matching

Lecture T1: Pattern Matching Introduction to Theoreticl CS Lecture T: Pttern Mtchin Two fundmentl questions. Wht cn computer do? Wht cn computer do with limited resources? Generl pproch. Don t tlk out specific mchines or prolems.

More information

Memory-Optimized Software Synthesis from Dataflow Program Graphs withlargesizedatasamples

Memory-Optimized Software Synthesis from Dataflow Program Graphs withlargesizedatasamples EURSIP Journl on pplied Signl Processing 2003:6, 54 529 c 2003 Hindwi Publishing orportion Memory-Optimized Softwre Synthesis from tflow Progrm Grphs withlrgesizetsmples Hyunok Oh The School of Electricl

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information