If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

Size: px
Start display at page:

Download "If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs."

Transcription

1 Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online vi SpringerLink. If you re t the university, either physiclly or vi the VPN, you cn downlod the chpters of this ook s PDFs. Severl of the exmples in the previous lectures for exmple two of the sugrphs in Figure 2.7 nd the grph in Figure 1.12 consist of two or more pieces. If one thinks out the definition of grph s pir of sets, these multiple pieces don t present ny mthemticl prolem, ut it proves useful to hve precise voculry to discuss them. 5.1 Wlks, trils nd pths The first definition we need involves sequence of edges Note tht some edges my pper more thn once. (e 1,e 2,...,e L ) (5.1) Definition 5.1. A sequence of edges such s the one in Eqn (5.1) is wlk if there exists corresponding sequence of vertices (v 0,v 1,...,v L ). (5.2) such tht e j =(v j 1,v j ): note tht the vertices don t hve to e distinct. A wlk for which v 0 = v L is closed wlk. This definition mkes sense in oth directed nd undirected grphs nd in the ltter cse corresponds to pth tht goes long the edges in the sense of the rrows tht represent them. 5.1

2 The wlk specified y the edge sequence (e 1,e 2,e 3,e 4 )=((1, 2), (2, 3), (3, 1), (1, 5)) hs corresponding vertex sequence (v 0,v 1,v 2,v 3,v 4 )=(1, 2, 3, 1, 5), while the vertex sequence (v 0,v 1,v 2,v 3 )=(1, 2, 3, 1) corresponds to closed wlk. Figure 5.1: Two exmples of wlks. Definition 5.2. The length of wlk is the numer of edges in the sequence. For the wlk in Eqn. 5.1 the length is thus L. It ll prove useful to define two more constrined sorts of wlk: Definition 5.3. A tril is wlk in which ll the edges e j re distinct nd closed tril is closed wlk tht is lso tril. Definition 5.4. A pth is tril in which ll the vertices in the sequence in Eqn (5.2) re distinct. Definition 5.5. A cycle is closed tril in which ll the vertices re distinct, except for the first nd lst, which re identicl. Remrk 5.6. In n undirected grph cycle is sugrph isomorphic to one of the cycle grphs C n nd must include t lest three edges, ut in directed grphs nd multigrphs it is possile to hve cycle with just two edges. Remrk 5.7. As the three terms wlk, tril nd pth men very similr things in ordinry speech, it cn e hrd to keep their grph-theoretic definitions stright, even though they mke useful distinctions. The following oservtions my help: All trils re wlks nd ll pths re trils. In set-theoretic nottion: Wlks Trils Pths There re trils tht ren t pths: see Figure Connectedness We wnt to e le to sy tht two vertices re connected if we cn get from one to the other y moving long the edges of the grph. Here s definition tht uilds on the terms defined in the previous section: 5.2

3 Definition 5.8. In grph G(V,E), two vertices nd re sid to e connected if there is wlk given y vertex sequence (v 0,...,v L ) where v 0 = nd v L =. Additionlly, we will sy tht vertex is connected to itself. Definition 5.9. A grph in which ech pir of vertices is connected is connected grph. See Figure 5.3 for n exmple of connected grph nd nother tht is not connected. Once we hve the definitions ove, it s possile to mke precise definition of the pieces of grph. It depends on the notion of n equivlence reltion, which you should hve met erlier your studies. Definition A reltion on set S is n equivlence reltion if it is: reflexive: for ll 2 S; symmetric: ) for ll, 2 S; trnsitive: nd c ) c for ll,, c 2 S. The min use of n equivlence reltion on S is tht it decomposes S into collection of disjoint equivlence clsses. Thtis,wecnwrite S = [ j S j where S j \ S k = ; if j 6= k nd if nd only if, 2 S j for some j Connectedness in undirected grphs The key ide is tht is-connected-to is n equivlence reltion on the vertex set of grph. To see this, we need only check the three properties: reflexive: This is true y definition, nd is the min reson why we sy tht vertex is lwys connected to itself. symmetric: If there is wlk from to then we cn simply reverse the corresponding sequence of edges to get wlk from to. c d f e Figure 5.2: The wlk specified y the vertex sequence (,, c, d, e,, f) is tril s ll the edges re distinct, ut it s not pth s the vertex is visited twice. 5.3

4 trnsitive: Suppose is connected to, so tht the grph contins wlk corresponding to some vertex sequence ( = u 0,u 1,...,u L1 1,u L1 = ) tht connects to. Ifthereislsowlkfrom to c given y some vertex sequence ( = v 0,v 1,...,v L2 1,v L2 = c) then we cn get wlk from to c y trcing over the two wlks listed ove, one fter the other. Tht is, there is wlk from to c given y the vertex sequence (, u 1,...,u L1 1,,v 1,...,v L2 1,c). We hve shown tht if is connected to nd is connected to c, then is connected to c nd this is precisely wht it mens for is-connected-to to e trnsitivereltion. The process of trversing one wlk fter nother, s we did in the proof of the trnsitive property, is sometimes clled conctention of wlks. Definition In n undirected grph G(V,E) connected component is n equivlence clss under the reltion is-connected-to on V. The disjointness of equivlence clsses mens tht ech vertex elongs to exctly one connected component nd so we will sometimes tlk out the connected component of vertex Connectedness in directed grphs In directed grphs is-connected-to isn t n equivlence reltion ecuse it s not symmetric. Tht is, even if we know tht there s wlk from some vertex to nother vertex, wehvenogurnteethtthere swlkfrom to : Figure 5.4 provides n exmple. None the less, there is n nlogue of connected component in directed grph tht s cptured y the following definitions: Definition In directed grph G(V,E) vertex is sid to e ccessile or rechle from nother vertex if G contins wlk from to. Additionlly, we ll sy tht ll vertices re ccessile (or rechle) from themselves. Figure 5.3: The grph t left is connected, ut the one t right is not, ecuse there is no wlk connecting the shded vertices lelled nd. 5.4

5 u v Figure 5.4: In directed grph it s possile to hve wlk from vertex to vertex without hving wlk from to, s in the digrph t left. In the digrph t right there re wlks from u to v nd from v to u so this pir is strongly connected. Definition Two vertices nd in directed grph re strongly connected if is ccessile from nd is ccessile from. Additionlly, we regrd vertex s strongly connected to itself. With these definitions it s esy to show (see the Prolem Sets) tht is-stronglyconnected-to is n equivlence reltion on the vertex set of directed grph nd so the vertex set decomposes into disjoint union of strongly connected components. This prompts the following definition: Definition A directed grph G(V,E) is strongly connected if every pir of its vertices is strongly connected. Equivlently, digrph is strongly connected if it contins exctly one strongly connected component. Finlly, there s one other notion of connectedness pplicle to directed grphs, wek connectedness: Definition A directed grph G(V,E) is wekly connected if, when one converts ll its edges to undirected ones, it ecomes connected, undirected grph. Figure 5.5 illustrtes the di erence etween strongly nd wekly connected grphs. Finlly, I d like to introduce piece of nottion for the grph tht one gets y ignoring the directedness of the edges in digrph: Definition If G(V,E) is directed multigrph then G is the undirected multigrph produced y ignoring the directedness of the edges. Note tht if oth the directed edges (, ) nd (, ) re present in digrph G(V,E), then two prllel copies of the undirected edge (, ) pper in G. 5.3 Afterword: useful proposition As with the Hndshking Lemm in Lecture 1, I d like to finish o long run of definitions y using them to formulte nd prove smll, useful result. Proposition 5.17 (Connected vertices re joined y pth). If two vertices nd re connected, so tht there is wlk from to, then there is lso pth from to. 5.5

6 convert directed edges to undirected ones Figure 5.5: The grph t the top is wekly connected, ut not strongly connected, while the one t the ottom is oth wekly nd strongly connected. Proof of Proposition 5.17 To sy tht two vertices nd in grph G(V,E) reconnectedmensthtthere is wlk given y vertex sequence where v 0 = nd v L =. Thereretwopossiilities: (i) ll the vertices in the sequence re distinct; (ii) some vertex or vertices pper more thn once. (v 0,...,v L ) (5.3) In the first cse the wlk is lso pth nd we re finished. In the second cse it is lwys possile to find pth from to y removing some edges from the wlk in Eqn. (5.3). This sort of pth surgery is outlined elow nd illustrted in Exmple We re free to ssume tht the set of repeted vertices doesn t include or s we cn esily mke this true y trimming some vertices o the two ends of the sequence. To e concrete, we cn define new wlk given y sequence ( = v 0 0,...,v 0 L 0 = ) =(v j,...,v k ) (5.4) where v j is the lst ppernce of in the originl sequence nd v k is the first ppernce of. To finish the proof we then need to del with the cse where the wlk in (5.4), which doesn t contin ny repets of or, still contins repets of one or more other vertices. Suppose tht c 2 V with c 6=, is such repeted vertex: we cn eliminte repeted visits to c y defining new wlk specified y the vertex sequence ( = u 0,...,u L 00 = ) =(v0,...,v 0 j,v 0 k+1, 0...,vL 0 0) (5.5) 5.6

7 q t w r s u v Figure 5.6: In the grph ove the shded vertices nd re connected y the pth (, r, s, u, v, ). where v 0 j is the first ppernce of c in the sequence t left in Eqn. (5.4) nd v 0 k is the lst. There cn only e finitely mny repeted vertices in the originl wlk (5.3) nd so, y using the pproch sketched ove repetedly, we cn eliminte them ll, leving pth from to. Exmple 5.18 (Connected vertices re connected y pth). Consider the grph is Figure 5.6. The vertices nd re connected y the wlk (v 0,...,v 15 )=(, q, r,, r, s, t, u, s, t, u, v,, w,v,) which contins mny repeted vertices. To trim it down to pth we strt y eliminting repets of nd using the pproch from Eqn. (5.4), which mounts to trimming o those vertices tht re underlined in the vertex sequence ove. To see how this works, notice tht the vertex ppers s v 0 nd v 3 in the originl wlk nd we wnt v0 0 = v j in (5.4) to e its lst ppernce, so we set v j = v 3. Similrly, ppers s v 12 nd v 15 in the originl wlk nd we wnt vl 0 = v 0 k to e s first ppernce, so we set v k = v 12. This leves us with (v 0 0,...,v 0 9)=(v 3,...,v 12 ) =(, r, s, t, u, s, t, u, v, ) (5.6) Finlly, we eliminte the remining repeted vertices y pplying the pproch from Eqn. (5.5) to the sequence (v0,...,v 0 9). 0 This mounts to chopping out the sequence of vertices underlined in Eqn. (5.6). To follow the detils, note tht ech of the vertices s, t nd u ppers twice in (5.6). To eliminte, sy, the repeted ppernces of s we should use (5.4) with u j = v2 0 s the first ppernce of s in Eqn. (5.6) nd u k = v5 0 s the lst. This leves us with the new wlk (u 0,...,u 6 ) = (v 0 0,v 0 1,v 0 2,v 0 6,v 0 7,v 0 8,v 0 9) = (, r, s, t, u, v, ) which is pth connecting to. 5.7

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Notes for Graph Theory

Notes for Graph Theory Notes for Grph Theory These re notes I wrote up for my grph theory clss in 06. They contin most of the topics typiclly found in grph theory course. There re proofs of lot of the results, ut not of everything.

More information

Typing with Weird Keyboards Notes

Typing with Weird Keyboards Notes Typing with Weird Keyords Notes Ykov Berchenko-Kogn August 25, 2012 Astrct Consider lnguge with n lphet consisting of just four letters,,,, nd. There is spelling rule tht sys tht whenever you see n next

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler CS5 Fll 04Leture (lmost there) /6 Seven Bridges of Königserg Grphs Prof. Tny Berger-Wolf Leonrd Euler 707-783 Is it possile to wlk with route tht rosses eh ridge e Seven Bridges of Königserg Forget unimportnt

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015 Finite Automt Lecture 4 Sections 3.6-3.7 Ro T. Koether Hmpden-Sydney College Wed, Jn 21, 2015 Ro T. Koether (Hmpden-Sydney College) Finite Automt Wed, Jn 21, 2015 1 / 23 1 Nondeterministic Finite Automt

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

LR Parsing, Part 2. Constructing Parse Tables. Need to Automatically Construct LR Parse Tables: Action and GOTO Table

LR Parsing, Part 2. Constructing Parse Tables. Need to Automatically Construct LR Parse Tables: Action and GOTO Table TDDD55 Compilers nd Interpreters TDDB44 Compiler Construction LR Prsing, Prt 2 Constructing Prse Tles Prse tle construction Grmmr conflict hndling Ctegories of LR Grmmrs nd Prsers Peter Fritzson, Christoph

More information

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22)

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22) Homework Context Free Lnguges III Prse Trees nd Homework #5 (due 10/22) From textbook 6.4,b 6.5b 6.9b,c 6.13 6.22 Pln for tody Context Free Lnguges Next clss of lnguges in our quest! Lnguges Recll. Wht

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy RecogniNon of Tokens if expressions nd relnonl opertors if è if then è then else è else relop è

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Lesson 4.4. Euler Circuits and Paths. Explore This

Lesson 4.4. Euler Circuits and Paths. Explore This Lesson 4.4 Euler Ciruits nd Pths Now tht you re fmilir with some of the onepts of grphs nd the wy grphs onvey onnetions nd reltionships, it s time to egin exploring how they n e used to model mny different

More information

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 80Q Multiply two frctions or frction nd whole numer. (QT N ) Excerpted from: The Mth Lerning Center PO Box 99, Slem, Oregon 9709 099 www.mthlerningcenter.org

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) *

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) * Pln for Tody nd Beginning Next week Interpreter nd Compiler Structure, or Softwre Architecture Overview of Progrmming Assignments The MeggyJv compiler we will e uilding. Regulr Expressions Finite Stte

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

An Expressive Hybrid Model for the Composition of Cardinal Directions

An Expressive Hybrid Model for the Composition of Cardinal Directions An Expressive Hyrid Model for the Composition of Crdinl Directions Ah Lin Kor nd Brndon Bennett School of Computing, University of Leeds, Leeds LS2 9JT, UK e-mil:{lin,brndon}@comp.leeds.c.uk Astrct In

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

The Complexity of Nonrepetitive Coloring

The Complexity of Nonrepetitive Coloring The Complexity of Nonrepetitive Coloring Dániel Mrx Institut für Informtik Humoldt-Universitt zu Berlin dmrx@informtik.hu-erlin.de Mrcus Schefer Deprtment of Computer Science DePul University mschefer@cs.depul.edu

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Example: 2:1 Multiplexer

Example: 2:1 Multiplexer Exmple: 2:1 Multiplexer Exmple #1 reg ; lwys @( or or s) egin if (s == 1') egin = ; else egin = ; 1 s B. Bs 114 Exmple: 2:1 Multiplexer Exmple #2 Normlly lwys include egin nd sttements even though they

More information

arxiv: v2 [cs.dm] 17 May 2014

arxiv: v2 [cs.dm] 17 May 2014 EXTENDING ARTIAL RERESENTATIONS OF INTERVAL GRAHS. KLAVÍK, J. KRATOCHVÍL, Y. OTACHI, T. SAITOH, AND T. VYSKOČIL rxiv:1306.2182v2 [cs.dm] 17 My 2014 Astrct. Intervl grphs re intersection grphs of closed

More information

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS COMPUTATION & LOGIC Sturdy st April 7 : to : INSTRUCTIONS TO CANDIDATES This is tke-home exercise. It will not

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

Some necessary and sufficient conditions for two variable orthogonal designs in order 44

Some necessary and sufficient conditions for two variable orthogonal designs in order 44 University of Wollongong Reserch Online Fculty of Informtics - Ppers (Archive) Fculty of Engineering n Informtion Sciences 1998 Some necessry n sufficient conitions for two vrile orthogonl esigns in orer

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

The Complexity of Nonrepetitive Coloring

The Complexity of Nonrepetitive Coloring The Complexity of Nonrepetitive Coloring Dániel Mrx Deprtment of Computer Science nd Informtion Theory Budpest University of Technology nd Econonomics Budpest H-1521, Hungry dmrx@cs.me.hu Mrcus Schefer

More information

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona Implementing utomt Sc 5 ompilers nd Systems Softwre : Lexicl nlysis II Deprtment of omputer Science University of rizon collerg@gmil.com opyright c 009 hristin ollerg NFs nd DFs cn e hrd-coded using this

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to djcent tht do not overlp shre n rm from the sme vertex point re clled djcent ngles. me the djcent cute ngles in this digrm rm is shred y + + me vertex point for + + + is djcent to + djcent simply mens

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08 CS412/413 Introduction to Compilers Tim Teitelum Lecture 4: Lexicl Anlyzers 28 Jn 08 Outline DFA stte minimiztion Lexicl nlyzers Automting lexicl nlysis Jlex lexicl nlyzer genertor CS 412/413 Spring 2008

More information

From Indexing Data Structures to de Bruijn Graphs

From Indexing Data Structures to de Bruijn Graphs From Indexing Dt Structures to de Bruijn Grphs Bstien Czux, Thierry Lecroq, Eric Rivls LIRMM & IBC, Montpellier - LITIS Rouen June 1, 201 Czux, Lecroq, Rivls (LIRMM) Generlized Suffix Tree & DBG June 1,

More information

Theory of Computation CSE 105

Theory of Computation CSE 105 $ $ $ Theory of Computtion CSE 105 Regulr Lnguges Study Guide nd Homework I Homework I: Solutions to the following problems should be turned in clss on July 1, 1999. Instructions: Write your nswers clerly

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv Compression Outline 15-853:Algorithms in the Rel World Dt Compression III Introduction: Lossy vs. Lossless, Benchmrks, Informtion Theory: Entropy, etc. Proility Coding: Huffmn + Arithmetic Coding Applictions

More information

OUTPUT DELIVERY SYSTEM

OUTPUT DELIVERY SYSTEM Differences in ODS formtting for HTML with Proc Print nd Proc Report Lur L. M. Thornton, USDA-ARS, Animl Improvement Progrms Lortory, Beltsville, MD ABSTRACT While Proc Print is terrific tool for dt checking

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

binary trees, expression trees

binary trees, expression trees COMP 250 Lecture 21 binry trees, expression trees Oct. 27, 2017 1 Binry tree: ech node hs t most two children. 2 Mximum number of nodes in binry tree? Height h (e.g. 3) 3 Mximum number of nodes in binry

More information

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example:

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example: Boxes nd Arrows There re two kinds of vriles in Jv: those tht store primitive vlues nd those tht store references. Primitive vlues re vlues of type long, int, short, chr, yte, oolen, doule, nd flot. References

More information

Intermediate Information Structures

Intermediate Information Structures CPSC 335 Intermedite Informtion Structures LECTURE 13 Suffix Trees Jon Rokne Computer Science University of Clgry Cnd Modified from CMSC 423 - Todd Trengen UMD upd Preprocessing Strings We will look t

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

Lecture T1: Pattern Matching

Lecture T1: Pattern Matching Introduction to Theoreticl CS Lecture T: Pttern Mtchin Two fundmentl questions. Wht cn computer do? Wht cn computer do with limited resources? Generl pproch. Don t tlk out specific mchines or prolems.

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

arxiv:math/ v2 [math.co] 28 Feb 2006

arxiv:math/ v2 [math.co] 28 Feb 2006 Chord Digrms nd Guss Codes for Grphs rxiv:mth/0508269v2 [mth.co] 28 Feb 2006 Thoms Fleming Deprtment of Mthemtics University of Cliforni, Sn Diego L Joll, C 92093-0112 tfleming@mth.ucsd.edu bstrct lke

More information