Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Size: px
Start display at page:

Download "Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search."

Transcription

1 CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke Prolem Serch prolem: Sttes (configurtions of the world) Successor function: function from sttes to lists of (stte, ction, cost) triples; drwn s grph Strt stte nd gol test Serch tree: Nodes: represent plns for reching sttes Plns hve costs (sum of ction costs) Serch Algorithm: Systemticlly uilds serch tree Chooses n ordering of the fringe (unexplored nodes) Cost: Numer of pnckes flipped Exmple: Pncke Prolem enerl Tree Serch Stte spce grph with costs s weights Action: flip top two Cost: Action: Pth flip to ll rech fourgol: Flip Cost: four, flip three Totl cost: 7

2 Uniform Cost Serch Strtegy: expnd lowest pth cost The good: UCS is complete nd optiml! The d: Explores options in every direction No informtion out gol loction Strt ol c c c [demo: countours UCS] Exmple: Heuristic Function Heuristic: the lrgest pncke tht is still out of plce h(x) 0 Best First (reedy) Exmple: Heuristic Function Strtegy: expnd node tht you think is closest to gol stte Heuristic: estimte of distnce to nerest gol for ech stte A common cse: Best-first tkes you stright to the (wrong) gol Worst-cse: like dlyguided DFS [demo: countours greedy] h(x) Comining UCS nd reedy Uniform-cost orders y pth cost, or ckwrd cost g(n) Best-first orders y gol proximity, or forwrd cost h(n) S d h=6 h=5 h= c h=7 h=6 A* Serch orders y the sum: f(n) = g(n) + h(n) 5 e h= h=0 When should A* terminte? Should we stop when we enqueue gol? A S h = h = B h = No: only stop when we dequeue gol h = 0 Exmple: Teg renger

3 Is A* Optiml? Admissile Heuristics A h = 6 A heuristic h is dmissile (optimistic) if: S h = 7 h = 0 where is the true cost to nerest gol 5 Wht went wrong? Actul d gol cost < estimted good gol cost We need estimtes to e less thn ctul costs! Exmples: 5 Coming up with dmissile heuristics is most of wht s involved in using A* in prctice. Optimlity of A*: Blocking Optimlity of A*: Blocking Nottion: g(n) = cost to node n h(n) = estimted cost from n to the nerest gol (heuristic) f(n) = g(n) + h(n) = estimted totl cost vi n *: lowest cost gol node : nother gol node Proof: Wht could go wrong? We d hve to hve to pop suoptiml gol off the fringe efore * This cn t hppen: Imgine suoptiml gol is on the queue Some node n which is supth of * must lso e on the fringe (why?) n will e popped efore Properties of A* UCS vs A* Contours Uniform-Cost A* Uniform-cost expnded in ll directions Strt ol A* expnds minly towrd the gol, ut does hedge its ets to ensure optimlity Strt ol [demo: countours UCS / A*]

4 Creting Admissile Heuristics Exmple: 8 Puzzle Most of the work in solving hrd serch prolems optimlly is in coming up with dmissile heuristics Often, dmissile heuristics re solutions to relxed prolems, where new ctions re ville 66 Indmissile heuristics re often useful too (why?) 5 Wht re the sttes? How mny sttes? Wht re the ctions? Wht sttes cn I rech from the strt stte? Wht should the costs e? Heuristic: Numer of tiles misplced Why is it dmissile? h(strt) = 8 This is relxedprolem heuristic 8 Puzzle I Averge nodes expnded when optiml pth hs length steps 8 steps steps UCS 6,00.6 x 0 6 TILES 9 7 Wht if we hd n esier 8-puzzle where ny tile could slide ny direction t ny time, ignoring other tiles? Totl Mnhttn distnce Why dmissile? h(strt) = = 8 8 Puzzle II Averge nodes expnded when optiml pth hs length steps 8 steps steps TILES 9 7 MANHATTAN Puzzle III How out using the ctul cost s heuristic? Would it e dmissile? Would we sve on nodes expnded? Wht s wrong with it? Trivil Heuristics, Dominnce Dominnce: h h c if Heuristics form semi-lttice: Mx of dmissile heuristics is dmissile With A*: trde-off etween qulity of estimte nd work per node! Trivil heuristics Bottom of lttice is the zero heuristic (wht does this give us?) Top of lttice is the exct heuristic

5 Other A* Applictions Pthing / routing prolems Resource plnning prolems Root motion plnning Lnguge nlysis Mchine trnsltion Speech recognition Tree Serch: Extr Work! Filure to detect repeted sttes cn cuse exponentilly more work. Why? [demo: pln tiny UCS / A*] rph Serch In BFS, for exmple, we shouldn t other expnding the circled nodes (why?) d c p h q e r q c f p S h q e r q c f p q rph Serch Ide: never expnd stte twice How to implement: Tree serch + list of expnded sttes ( closed set ) Expnd the serch tree node-y-node, ut Before expnding node, check to mke sure its stte is new Importnt: store the closed set s set, not list Cn grph serch wreck completeness? Why/why not? How out optimlity? Optimlity of A* rph Serch Proof: New possile prolem: some n on pth to * isn t in queue when we need it, ecuse some worse n for the sme stte dequeued nd expnded first (disster!) Tke the highest such n in tree Let p e the ncestor of n tht ws on the queue when n ws popped Assume f(p) < f(n) f(n) < f(n ) ecuse n is suoptiml p would hve een expnded efore n Contrdiction! Consistency Wit, how do we know prents hve etter f-vles thn their successors? Couldn t we pop some node n, nd find its child n to hve lower f vlue? YES: h = 0 h = 8 B g = 0 Wht cn we require to prevent these inversions? Consistency: A h = 0 Rel cost must lwys exceed reduction in heuristic Like dmissiility, ut etter! 5

6 Optimlity Tree serch: A* is optiml if heuristic is dmissile (nd non-negtive) UCS is specil cse (h = 0) rph serch: A* optiml if heuristic is consistent UCS optiml (h = 0 is consistent) Consistency implies dmissiility In generl, most nturl dmissile heuristics tend to e consistent, especilly if from relxed prolems Summry: A* A* uses oth ckwrd costs nd (estimtes of) forwrd costs A* is optiml with dmissile heuristics Heuristic design is key: often use relxed prolems Mzeworld Demos 6

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

CS 221: Artificial Intelligence Fall 2011

CS 221: Artificial Intelligence Fall 2011 CS 221: Artificil Intelligence Fll 2011 Lecture 2: Serch (Slides from Dn Klein, with help from Sturt Russell, Andrew Moore, Teg Grenger, Peter Norvig) Problem types! Fully observble, deterministic! single-belief-stte

More information

Search Gone Wrong? CS 188: Artificial Intelligence Fall Today. Announcements. General Tree Search. Recap: Search. Lecture 3: A* Search 9/3/2009

Search Gone Wrong? CS 188: Artificial Intelligence Fall Today. Announcements. General Tree Search. Recap: Search. Lecture 3: A* Search 9/3/2009 C 88: Artiicil Intelligence Fll 009 erch one Wrong? Lecture : A* erch 9//009 Pieter Aeel UC Berkeley Mny slides rom Dn Klein Announcements Assignments: Project 0 (Python tutoril): due Fridy /8 t 4:59m

More information

CS 188: Artificial Intelligence Fall Search Gone Wrong?

CS 188: Artificial Intelligence Fall Search Gone Wrong? CS 188: Artificial Intelligence Fall 2009 Lecture 3: A* Search 9/3/2009 Pieter Aeel UC Berkeley Many slides from Dan Klein Search Gone Wrong? 1 Announcements Assignments: Project 0 (Python tutorial): due

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search Uninformed Serch [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.] Tody Serch Problems Uninformed Serch Methods

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificil Intelligence Serch Instructor: Michele Vn Dyne [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.]

More information

CE 473: Artificial Intelligence. Autumn 2011

CE 473: Artificial Intelligence. Autumn 2011 CE 473: Artificial Intelligence Autumn 2011 A* Search Luke Zettlemoyer Based on slides from Dan Klein Multiple slides from Stuart Russell or Andrew Moore Today A* Search Heuristic Design Graph search Recap:

More information

CS 343H: Artificial Intelligence

CS 343H: Artificial Intelligence CS 343H: Artificial Intelligence Lecture 4: Informed Search 1/23/2014 Slides courtesy of Dan Klein at UC-Berkeley Unless otherwise noted Today Informed search Heuristics Greedy search A* search Graph search

More information

Today. Informed Search. Graph Search. Heuristics Greedy Search A* Search

Today. Informed Search. Graph Search. Heuristics Greedy Search A* Search Informed Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Today Informed Search Heuristics

More information

Announcements. CS 188: Artificial Intelligence

Announcements. CS 188: Artificial Intelligence Announcements Projects: Looking for project partners? --- Come to front after lecture. Try pair programming, not divide-and-conquer Account forms available up front during break and after lecture Assignments

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Today Informed Search Informed Search Heuristics Greedy Search A* Search Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan

More information

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley AI Adjcent Fields Philosophy: Logic, methods of resoning Mind s physicl system Foundtions of lerning, lnguge, rtionlity Mthemtics Forml representtion nd proof Algorithms, computtion, (un)decidility, (in)trctility

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012 1 Hl Dumé III (me@hl3.nme) Uninformed Serch Hl Dumé III Comuter Science University of Mrylnd me@hl3.nme CS 421: Introduction to Artificil Intelligence 31 Jn 2012 Mny slides courtesy of Dn Klein, Sturt

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificial Intelligence Informed Search Instructor: Michele Van Dyne [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Informed Search Prof. Scott Niekum University of Texas at Austin [These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Artificial Intelligence Informed Search

Artificial Intelligence Informed Search Artificial Intelligence Informed Search Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter Abbeel for

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA Heuristic Search Rob Platt Northeastern University Some images and slides are used from: AIMA Recap: What is graph search? Start state Goal state Graph search: find a path from start to goal what are the

More information

Informed Search A* Algorithm

Informed Search A* Algorithm Informed Search A* Algorithm CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Most slides have

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificil Intelligence Fll 2008 Lecture 2: Queue-Bsed Serc 9/2/2008 Dn Klein UC Berkeley Mny slides from eiter Sturt Russell or Andrew Moore Announcements Written ssignments: One mini-omework ec

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Search Algorithms Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Today Agents that Plan Ahead Search Problems

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Informed Search Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Today Informed Search Heuristics Greedy

More information

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Heuristic Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Recap: What is graph search? Start state Goal state Graph search: find a path

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics,

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, performance data Pattern DBs? General Tree Search function

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) *

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) * Pln for Tody nd Beginning Next week Interpreter nd Compiler Structure, or Softwre Architecture Overview of Progrmming Assignments The MeggyJv compiler we will e uilding. Regulr Expressions Finite Stte

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grmmrs Descriing Lnguges We've seen two models for the regulr lnguges: Finite utomt ccept precisely the strings in the lnguge. Regulr expressions descrie precisely the strings in the lnguge.

More information

CS481: Bioinformatics Algorithms

CS481: Bioinformatics Algorithms CS481: Bioinformtics Algorithms Cn Alkn EA509 clkn@cs.ilkent.edu.tr http://www.cs.ilkent.edu.tr/~clkn/teching/cs481/ EXACT STRING MATCHING Fingerprint ide Assume: We cn compute fingerprint f(p) of P in

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

COMBINATORIAL PATTERN MATCHING

COMBINATORIAL PATTERN MATCHING COMBINATORIAL PATTERN MATCHING Genomic Repets Exmple of repets: ATGGTCTAGGTCCTAGTGGTC Motivtion to find them: Genomic rerrngements re often ssocited with repets Trce evolutionry secrets Mny tumors re chrcterized

More information

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved Network Interconnection: Bridging CS 57 Fll 6 6 Kenneth L. Clvert All rights reserved The Prolem We know how to uild (rodcst) LANs Wnt to connect severl LANs together to overcome scling limits Recll: speed

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grmmrs Descriing Lnguges We've seen two models for the regulr lnguges: Finite utomt ccept precisely the strings in the lnguge. Regulr expressions descrie precisely the strings in the lnguge.

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures ITEC0 Introduction to Dt Structures Lecture 7 Queues, Priority Queues Queues I A queue is First-In, First-Out = FIFO uffer e.g. line-ups People enter from the ck of the line People re served (exit) from

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy RecogniNon of Tokens if expressions nd relnonl opertors if è if then è then else è else relop è

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

Intermediate Information Structures

Intermediate Information Structures CPSC 335 Intermedite Informtion Structures LECTURE 13 Suffix Trees Jon Rokne Computer Science University of Clgry Cnd Modified from CMSC 423 - Todd Trengen UMD upd Preprocessing Strings We will look t

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011 CSCI 3130: Forml Lnguges nd utomt Theory Lecture 12 The Chinese University of Hong Kong, Fll 2011 ndrej Bogdnov In progrmming lnguges, uilding prse trees is significnt tsk ecuse prse trees tell us the

More information

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015 Finite Automt Lecture 4 Sections 3.6-3.7 Ro T. Koether Hmpden-Sydney College Wed, Jn 21, 2015 Ro T. Koether (Hmpden-Sydney College) Finite Automt Wed, Jn 21, 2015 1 / 23 1 Nondeterministic Finite Automt

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the LR() nlysis Drwcks of LR(). Look-hed symols s eplined efore, concerning LR(), it is possile to consult the net set to determine, in the reduction sttes, for which symols it would e possile to perform reductions.

More information

Lexical Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Lexical Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay Lexicl Anlysis Amith Snyl (www.cse.iit.c.in/ s) Deprtment of Computer Science nd Engineering, Indin Institute of Technology, Bomy Septemer 27 College of Engineering, Pune Lexicl Anlysis: 2/6 Recp The input

More information

Minimal Memory Abstractions

Minimal Memory Abstractions Miniml Memory Astrtions (As implemented for BioWre Corp ) Nthn Sturtevnt University of Alert GAMES Group Ferury, 7 Tlk Overview Prt I: Building Astrtions Minimizing memory requirements Performnes mesures

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv Compression Outline 15-853:Algorithms in the Rel World Dt Compression III Introduction: Lossy vs. Lossless, Benchmrks, Informtion Theory: Entropy, etc. Proility Coding: Huffmn + Arithmetic Coding Applictions

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata CS 432 Fll 2017 Mike Lm, Professor (c)* Regulr Expressions nd Finite Automt Compiltion Current focus "Bck end" Source code Tokens Syntx tree Mchine code chr dt[20]; int min() { flot x = 42.0; return 7;

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

pdfapilot Server 2 Manual

pdfapilot Server 2 Manual pdfpilot Server 2 Mnul 2011 by clls softwre gmbh Schönhuser Allee 6/7 D 10119 Berlin Germny info@cllssoftwre.com www.cllssoftwre.com Mnul clls pdfpilot Server 2 Pge 2 clls pdfpilot Server 2 Mnul Lst modified:

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

Applied Databases. Sebastian Maneth. Lecture 13 Online Pattern Matching on Strings. University of Edinburgh - February 29th, 2016

Applied Databases. Sebastian Maneth. Lecture 13 Online Pattern Matching on Strings. University of Edinburgh - February 29th, 2016 Applied Dtses Lecture 13 Online Pttern Mtching on Strings Sestin Mneth University of Edinurgh - Ferury 29th, 2016 2 Outline 1. Nive Method 2. Automton Method 3. Knuth-Morris-Prtt Algorithm 4. Boyer-Moore

More information

Orthogonal line segment intersection

Orthogonal line segment intersection Computtionl Geometry [csci 3250] Line segment intersection The prolem (wht) Computtionl Geometry [csci 3250] Orthogonl line segment intersection Applictions (why) Algorithms (how) A specil cse: Orthogonl

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup Regulr Expression Mtching with Multi-Strings nd Intervls Philip Bille Mikkel Thorup Outline Definition Applictions Previous work Two new problems: Multi-strings nd chrcter clss intervls Algorithms Thompson

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Qubit allocation for quantum circuit compilers

Qubit allocation for quantum circuit compilers Quit lloction for quntum circuit compilers Nov. 10, 2017 JIQ 2017 Mrcos Yukio Sirichi Sylvin Collnge Vinícius Fernndes dos Sntos Fernndo Mgno Quintão Pereir Compilers for quntum computing The first genertion

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona Implementing utomt Sc 5 ompilers nd Systems Softwre : Lexicl nlysis II Deprtment of omputer Science University of rizon collerg@gmil.com opyright c 009 hristin ollerg NFs nd DFs cn e hrd-coded using this

More information

Lecture T1: Pattern Matching

Lecture T1: Pattern Matching Introduction to Theoreticl CS Lecture T: Pttern Mtchin Two fundmentl questions. Wht cn computer do? Wht cn computer do with limited resources? Generl pproch. Don t tlk out specific mchines or prolems.

More information

PPS: User Manual. Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia

PPS: User Manual. Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia PPS: User Mnul Krishnendu Chtterjee, Mrtin Chmelik, Rghv Gupt, nd Ayush Knodi IST Austri (Institute of Science nd Technology Austri), Klosterneuurg, Austri In this section we descrie the tool fetures,

More information

A Comparison of High-Level Approaches for Speeding Up Pathfinding

A Comparison of High-Level Approaches for Speeding Up Pathfinding A Comprison of High-Level Approches for Speeding Up Pthfinding Nthn R. Sturtevnt Deprtment of Computing Science University of Alert Edmonton, Alert, Cnd nthnst@cs.ulert.c Roert Geiserger Fculty of Informtics

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Informed Search. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison

Informed Search. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison Informed Search Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials ] slide 1 Main messages

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information