Epipolar Geometry and Stereo Vision

Size: px
Start display at page:

Download "Epipolar Geometry and Stereo Vision"

Transcription

1 CS 1699: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 8, 2015

2 Today Review Projective transforms Image stitching (homography) Epipolar geometry Multiple views from different cameras Stereo vision Estimating depth from disparities Exam and homework info

3 2D Linear Transformations x' y' a c bx d y Only linear 2D transformations can be represented with a 2x2 matrix. Linear transformations are combinations of Scale, Rotation, Shear, and Mirror Alyosha Efros

4 2D Affine Transformations Affine transformations are combinations of Linear transformations, and Translations Parallel lines remain parallel w y x f e d c b a w y x ' ' ' Alyosha Efros

5 Projective Transformations Projective transformations: Affine transformations, and Projective warps Parallel lines do not necessarily remain parallel w y x i h g f e d c b a w y x ' ' ' Kristen Grauman

6 Fitting an affine transformation How many matches (correspondence pairs) do we need to solve for the transformation parameters? Once we have solved for the parameters, how do we compute given? i i i i i i y x t t m m m m y x y x ), ( new x new y Modified from Kristen Grauman ) ', ' ( new x new y

7 Projection matrix and camera parameters Silvio Savarese, Kristen Grauman x K R t X x: Image Coordinates: (u,v,1) K: Intrinsic Matrix (3x3) R: Rotation (3x3) t: Translation (3x1) X: World Coordinates: (X,Y,Z,1) Extrinsic params R, t Intrinsic params K: focal length, pixel sizes (mm), etc. We ll assume that these parameters are given and fixed.

8 X 0 x K I z y x f f v u w K Projection matrix: Simplest case Intrinsic Assumptions Unit aspect ratio Optical center at (0,0) No skew Extrinsic Assumptions No rotation Camera at (0,0,0) Silvio Savarese

9 Z Y X t r r r t r r r t r r r v u s f v u w z y x X t x K R 9 Derek Hoiem Projection matrix: General case

10 10 1 * * * * * * * * * * * * Z Y X w wv wu X t x K R Derek Hoiem Camera calibration

11 Mosaics... image from S. Seitz Obtain a wider angle view by combining multiple images. Kristen Grauman

12 Mosaics Two images with rotation/zoom but no translation Derek Hoiem Camera Center

13 How to stitch together a panorama (a.k.a. Basic Procedure mosaic)? Take a sequence of images from the same position Rotate the camera about its optical center Compute the homography (transformation) between second image and first Transform the second image to overlap with the first Blend the two together to create a mosaic (If there are more images, repeat) Modified from Steve Seitz

14 Computing the homography Steve Seitz mosaic plane The mosaic has a natural interpretation in 3D The images are reprojected onto a common plane The mosaic is formed on this plane Mosaic is a synthetic wide-angle camera

15 Computing the homography A projective transform is a mapping between any two PPs with the same center of projection rectangle should map to arbitrary quadrilateral parallel lines aren t but must preserve straight lines called Homography PP2 wx' wy' w p * * * * * * H * x * y * 1 p PP1 Alyosha Efros

16 Computing the homography x x1, y 1 1, y 1 x 2, y 2 x2, y 2 x,, n y n x y n n To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of H are the unknowns Kristen Grauman

17 Computing the homography Can set scale factor i=1. So, there are 8 unknowns. Set up a system of linear equations: Ah = b where vector of unknowns h = [a,b,c,d,e,f,g,h] T Need at least 8 eqs, but the more the better Solve for h. If overconstrained, solve using least-squares: >> help lmdivide p = Hp wx' a b c x wy' d e f y w g h i 1 min Ahb 2 Kristen Grauman

18 How to stitch together a panorama (a.k.a. Basic Procedure mosaic)? Take a sequence of images from the same position Rotate the camera about its optical center Compute the homography (transformation) between second image and first Transform the second image to overlap with the first Blend the two together to create a mosaic (If there are more images, repeat) Modified from Steve Seitz

19 1 y x * * * * * * * * * w wy' wx' H p p w wy w wx, y x, y x, To apply a given homography H Compute p = Hp (regular matrix multiply) Convert p from homogeneous to image coordinates Modified from Kristen Grauman Transforming the second image Image 1 canvas Image 2

20 Transforming the second image Image 2 Image 1 canvas H(x,y) y y x x f(x,y) g(x,y ) Forward warping: Send each pixel f(x,y) to its corresponding location (x,y ) = H(x,y) in the right image Modified from Alyosha Efros

21 Transforming the second image Image 2 Image 1 canvas y H -1 (x,y) y x x f(x,y) g(x,y ) Inverse warping: Get each pixel g(x,y ) from its corresponding location (x,y) = H -1 (x,y ) in the left image Q: what if pixel comes from between two pixels? A: Interpolate color value from neighbors Modified from Alyosha Efros

22 Derek Hoiem RANSAC for Homography

23 Today Review Projective transforms Image stitching (homography) Epipolar geometry Multiple views from different cameras Stereo vision Estimating depth from disparities Exam and homework info

24 Last class vs this class Last class: same camera center, but camera rotates This class: Camera center is not the same (we have multiple cameras) Epipolar geometry Relates cameras from two positions Stereo depth estimation Recover depth from two images Adapted from Derek Hoiem

25 Why multiple views? Structure and depth are inherently ambiguous from single views. Multiple views help us to perceive 3d shape and depth. Kristen Grauman, images from Svetlana Lazebnik

26 Stereo photography and stereo viewers Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images. Invented by Sir Charles Wheatstone, 1838 Image from fisher-price.com Kristen Grauman

27 Stereo photography and stereo viewers Kristen Grauman

28 Stereo vision Two cameras, simultaneous views Single moving camera and static scene Kristen Grauman

29 Depth from Stereo Goal: recover depth by finding image coordinate x that corresponds to x X X x x x z x' f f C Baseline C B Derek Hoiem

30 Depth from Stereo Goal: recover depth by finding image coordinate x that corresponds to x Sub-Problems 1. Calibration: How do we recover the relation of the cameras (if not already known)? 2. Correspondence: How do we search for the matching point x? X x x' Derek Hoiem

31 Geometry for a simple stereo system Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z? Similar triangles (p l, P, p r ) and (O l, P, O r ): T x l Z f x r T Z Depth is inversely proportional to disparity. depth disparity Z f T x r x l Adapted from Kristen Grauman

32 Depth from disparity We have two images taken from cameras with different intrinsic and extrinsic parameters. How do we match a point in the first image to a point in the second? image I(x,y) Disparity map D(x,y) image I (x,y ) So if we could find the corresponding points in two images, we could estimate relative depth Kristen Grauman

33 Stereo correspondence constraints Given p in left image, where can corresponding point p be? Kristen Grauman

34 Stereo correspondence constraints Kristen Grauman

35 Epipolar constraint Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view. It must be on the line carved out by a plane connecting the world point and optical centers. Potential matches for p have to lie on the corresponding line l. Potential matches for p have to lie on the corresponding line l. Kristen Grauman, Derek Hoiem

36 Epipolar geometry: notation X x x Derek Hoiem Baseline line connecting the two camera centers Epipoles = intersections of baseline with image planes = projections of the other camera center Epipolar Plane plane containing baseline Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs) Note: All epipolar lines intersect at the epipole.

37 Epipolar constraint This is useful because it reduces the correspondence problem to a 1D search along an epipolar line. Kristen Grauman, image from Andrew Zisserman

38 Stereo geometry, with calibrated cameras If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. Rotation: 3x3 matrix R; translation: 3x1 vector T. Kristen Grauman

39 Stereo geometry, with calibrated cameras If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. Kristen Grauman X ' c RX c T

40 An aside: cross product Vector cross product takes two vectors and returns a third vector that s perpendicular to both inputs. So here, c is perpendicular to both a and b, which means the dot product = 0. Kristen Grauman

41 From geometry to algebra Kristen Grauman X' RX T T X Normal to the plane TRX TRX TT X T X XT RX 0

42 Another aside: Matrix form of cross product Can be expressed as a matrix multiplication. c b b b a a a a a a b a a a a a a a a x Kristen Grauman

43 From geometry to algebra Kristen Grauman X' RX T T X Normal to the plane TRX TRX TT X T X XT RX 0

44 X X Essential matrix T RX 0 [T ] RX 0 x Let E [T x] R X T EX 0 E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation. If we observe a point in one image, its position in other image is constrained to lie on line defined by above. Ex is the epipolar line through x in the first image, corresponding to x. Note: these points are in camera coordinate systems. Kristen Grauman

45 Essential matrix example: parallel cameras R I p [ x, y, f ] T E [ d,0,0] [ T x ]R d 0 d 0 p' [ x', y', f ] p Ep 0 For the parallel cameras, image of any point must lie on same horizontal line in each image plane. Kristen Grauman

46 image I(x,y) Disparity map D(x,y) image I (x,y ) (x,y )=(x+d(x,y),y) What about when cameras optical axes are not parallel? Kristen Grauman

47 Stereo image rectification Reproject image planes onto a common plane parallel to the line between camera centers Pixel motion is horizontal after this transformation Two homographies (3x3 transform), one for each input image reprojection C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, Derek Hoiem

48 Mubarak Shah Image Rectification for Stereo

49 Alyosha Efros Stereo image rectification: example

50 What if we don t know the camera parameters? Want to estimate world geometry without requiring calibrated cameras Archival videos Photos from multiple unrelated users Weak calibration: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras Kristen Grauman

51 Computing F from correspondences Each point correspondence generates one constraint on F p im, rightfp im, left 0 Collect n of these constraints Solve for f, vector of parameters. Kristen Grauman

52 Fundamental matrix Relates pixel coordinates in the two views More general form than essential matrix: we remove need to know intrinsic parameters Kristen Grauman

53 Properties of the Fundamental matrix X x x Derek Hoiem x T Fx 0 with F K EK T 1 F x is the epipolar line associated with x (l = F x ) F T x is the epipolar line associated with x (l = F T x) F e = 0 and F T e = 0 F is singular (rank two): det(f)=0 F has seven degrees of freedom: 9 entries but defined up to scale, det(f)=0

54 Let s recap Fundamental matrix song Derek Hoiem

55 Today Review Projective transforms Image stitching (homography) Epipolar geometry Multiple views from different cameras Stereo vision Estimating depth from disparities Exam and homework info

56 Moving on to stereo Fuse a calibrated binocular stereo pair to produce a depth image image 1 image 2 Dense depth map Derek Hoiem

57 Basic stereo matching algorithm For each pixel in the first image Find corresponding epipolar scanline in the right image If necessary, rectify the two stereo images to transform epipolar lines into scanlines Search along epipolar line and pick the best match x Compute disparity x-x and set depth(x) = f*t/(x-x ) Derek Hoiem

58 Correspondence search Left Right scanline Matching cost disparity Slide a window along the right scanline and compare contents of that window with the reference window in the left image Matching cost: SSD or normalized correlation Derek Hoiem

59 Geometry for a simple stereo system Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z? Similar triangles (p l, P, p r ) and (O l, P, O r ): T x l Z f x r T Z depth disparity Z f T x r x l Kristen Grauman

60 Results with window search Data Left image Right image Window-based matching Window-based matching Ground truth Ground truth Derek Hoiem

61 How can we improve? Uniqueness For any point in one image, there should be at most one matching point in the other image Ordering Corresponding points should be in the same order in both views Smoothness We expect disparity values to change slowly (for the most part) Derek Hoiem

62 Many of these constraints can be encoded in an energy function and solved using graph cuts Before Derek Hoiem Graph cuts Ground truth Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 For the latest and greatest:

63 Projective structure from motion Given: m images of n fixed 3D points x ij = P i X j, i = 1,, m, j = 1,, n Problem: estimate m projection matrices P i and n 3D points X j from the mn corresponding 2D points x ij X j x 1j x 3j P 1 x 2j Svetlana Lazebnik P 2 P 3

64 Photo synth Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH

65 3D from multiple images Building Rome in a Day: Agarwal et al. 2009

66 Recap: Epipoles Point x in left image corresponds to epipolar line l in right image Epipolar line passes through the epipole (the intersection of the cameras baseline with the image plane C C Derek Hoiem

67 Recap: Fundamental Matrix Fundamental matrix maps from a point in one image to a line in the other If x and x correspond to the same 3d point X: Derek Hoiem

68 Recap: stereo with calibrated cameras Given image pair, R, T Detect some features Compute essential matrix E Match features using the epipolar and other constraints Triangulate for 3d structure and get depth Kristen Grauman

69 Summary Epipolar geometry Epipoles are intersection of baseline with image planes Matching point in second image is on a line passing through its epipole Epipolar constraint limits where points from one view will be imaged in the other, which makes search for correspondences quicker Fundamental matrix maps from a point in one image to a line (its epipolar line) in the other Can solve for F given corresponding points (e.g., interest points) Stereo depth estimation Find corresponding points along epipolar scanline Estimate disparity (depth is inverse to disparity) Modified from Kristen Grauman and Derek Hoiem

70 Today Review Projective transforms Image stitching (homography) Epipolar geometry Multiple views from different cameras Stereo vision Estimating depth from disparities Exam and homework info

71 Next Thursday (10/15) Midterm exam in class Review on Tuesday me with topics you want me to review or with questions Format Mostly short-answer questions (from easier/shorter to longer/harder) Some exercises to show you can apply some of the clustering and matching algorithms we discussed

72 Homework 1 Grades

73 Homework 2 Due tonight (11:59pm) Review late policy Beyond 3 free late days (3 total for the class), 1 minute late = 1 late day = 25% penalty Notes on Part III a: The x/y/scores you output should correspond to the final set of keypoints, after non-max suppression. If you re getting a negative mean R, you can ignore the threshold and output the top n keypoints (e.g. top 1%). Matlab tips

74 Homework 3 Released Due October 29, 11:59pm Part I: Hough transform for circles Part II: Video Google system (data and starter code provided)

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 CS 1674: Intro to Computer Vision Midterm Review Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 Reminders The midterm exam is in class on this coming Wednesday There will be no make-up

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Image warping and stitching

Image warping and stitching Image warping and stitching Thurs Oct 15 Last time Feature-based alignment 2D transformations Affine fit RANSAC 1 Robust feature-based alignment Extract features Compute putative matches Loop: Hypothesize

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 4 th, 2017 Yong Jae Lee UC Davis Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 2 Alignment problem In alignment, we will

More information

Image Warping and Mosacing

Image Warping and Mosacing Image Warping and Mosacing 15-463: Rendering and Image Processing Alexei Efros with a lot of slides stolen from Steve Seitz and Rick Szeliski Today Mosacs Image Warping Homographies Programming Assignment

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 5 th, 2015 Yong Jae Lee UC Davis PS2 due next Friday Announcements 2 Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 3 Alignment

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1)

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Guido Gerig CS 6320 Spring 2013 Credits: Prof. Mubarak Shah, Course notes modified from: http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

Final project bits and pieces

Final project bits and pieces Final project bits and pieces The project is expected to take four weeks of time for up to four people. At 12 hours per week per person that comes out to: ~192 hours of work for a four person team. Capstone:

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Structure from Motion

Structure from Motion /8/ Structure from Motion Computer Vision CS 43, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from motion

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

Structure from Motion

Structure from Motion 11/18/11 Structure from Motion Computer Vision CS 143, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Lecture 6 Stereo Systems Multi-view geometry

Lecture 6 Stereo Systems Multi-view geometry Lecture 6 Stereo Systems Multi-view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-5-Feb-4 Lecture 6 Stereo Systems Multi-view geometry Stereo systems

More information

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo.

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo. 6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman Lecture 11 Geometry, Camera Calibration, and Stereo. 2d from 3d; 3d from multiple 2d measurements? 2d 3d? Perspective projection

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Lecture 9 & 10: Stereo Vision

Lecture 9 & 10: Stereo Vision Lecture 9 & 10: Stereo Vision Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? IntroducEon to stereo vision Epipolar geometry: a gentle intro Parallel images Image receficaeon Solving

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Mosaics wrapup & Stereo

Mosaics wrapup & Stereo Mosaics wrapup & Stereo Tues Oct 20 Last time: How to stitch a panorama? Basic Procedure Take a sequence of images from the same position Rotate the camera about its optical center Compute transformation

More information

Recovering structure from a single view Pinhole perspective projection

Recovering structure from a single view Pinhole perspective projection EPIPOLAR GEOMETRY The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Svetlana Lazebnik (U. Illinois); Bill Freeman and Antonio Torralba (MIT), including their

More information

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th Undergrad HTAs / TAs Help me make the course better! HTA deadline today (! sorry) TA deadline March 2 st, opens March 5th Project 2 Well done. Open ended parts, lots of opportunity for mistakes. Real implementation

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

Affine and Projective Transformations

Affine and Projective Transformations CS 674: Intro to Computer Vision Affine and Projective Transformations Prof. Adriana Kovaska Universit of Pittsburg October 3, 26 Alignment problem We previousl discussed ow to matc features across images,

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar Geometry for General Cameras Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Now this Sanja

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Mosaics. Today s Readings

Mosaics. Today s Readings Mosaics VR Seattle: http://www.vrseattle.com/ Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html Today s Readings Szeliski and Shum paper (sections

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Stereo systems

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Lecture'9'&'10:'' Stereo'Vision'

Lecture'9'&'10:'' Stereo'Vision' Lecture'9'&'10:'' Stereo'Vision' Dr.'Juan'Carlos'Niebles' Stanford'AI'Lab' ' Professor'FeiAFei'Li' Stanford'Vision'Lab' 1' Dimensionality'ReducIon'Machine'(3D'to'2D)' 3D world 2D image Point of observation

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Structure from Motion CSC 767

Structure from Motion CSC 767 Structure from Motion CSC 767 Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R,t R 2,t 2 R 3,t 3 Camera??

More information

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #9 Multi-Camera Geometry Prof. Dan Huttenlocher Fall 2003 Pinhole Camera Geometric model of camera projection Image plane I, which rays intersect Camera center C, through which all rays pass

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 2 is due today, 11:59 PM Homework 3 will be assigned today Reading: Chapter 7: Stereopsis CSE 152 Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where relative

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16 Announcements Stereo III CSE252A Lecture 16 HW1 being returned HW3 assigned and due date extended until 11/27/12 No office hours today No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 1 is due today, 11:59 PM Homework 2 will be assigned on Thursday Reading: Chapter 7: Stereopsis CSE 252A Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where

More information

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Image Stitching Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Combine two or more overlapping images to make one larger image Add example Slide credit: Vaibhav Vaish

More information

C280, Computer Vision

C280, Computer Vision C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 11: Structure from Motion Roadmap Previous: Image formation, filtering, local features, (Texture) Tues: Feature-based Alignment

More information

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15 Announcement Stereo II CSE252A Lecture 15 HW3 assigned No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in WLH Room 2112 Mars Exploratory Rovers: Spirit and Opportunity Stereo Vision Outline

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Announcements. Mosaics. Image Mosaics. How to do it? Basic Procedure Take a sequence of images from the same position =

Announcements. Mosaics. Image Mosaics. How to do it? Basic Procedure Take a sequence of images from the same position = Announcements Project 2 out today panorama signup help session at end of class Today mosaic recap blending Mosaics Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

Image Transfer Methods. Satya Prakash Mallick Jan 28 th, 2003

Image Transfer Methods. Satya Prakash Mallick Jan 28 th, 2003 Image Transfer Methods Satya Prakash Mallick Jan 28 th, 2003 Objective Given two or more images of the same scene, the objective is to synthesize a novel view of the scene from a view point where there

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

Structure from motion

Structure from motion Multi-view geometry Structure rom motion Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Figure credit: Noah Snavely Structure rom motion? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Structure:

More information

Rectification and Disparity

Rectification and Disparity Rectification and Disparity Nassir Navab Slides prepared by Christian Unger What is Stereo Vision? Introduction A technique aimed at inferring dense depth measurements efficiently using two cameras. Wide

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

Announcements. Mosaics. How to do it? Image Mosaics

Announcements. Mosaics. How to do it? Image Mosaics Announcements Mosaics Project artifact voting Project 2 out today (help session at end of class) http://www.destination36.com/start.htm http://www.vrseattle.com/html/vrview.php?cat_id=&vrs_id=vrs38 Today

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 9: Image alignment http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/ Szeliski: Chapter 6.1 Reading All 2D Linear Transformations

More information

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin.

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin. More Mosaic Madness Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka CS223b Midterm Exam, Computer Vision Monday February 25th, Winter 2008, Prof. Jana Kosecka Your name email This exam is 8 pages long including cover page. Make sure your exam is not missing any pages.

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

Multi-view geometry problems

Multi-view geometry problems Multi-view geometry Multi-view geometry problems Structure: Given projections o the same 3D point in two or more images, compute the 3D coordinates o that point? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 12 130228 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Panoramas, Mosaics, Stitching Two View Geometry

More information