Lab 5 Mandelbrot Fractal Viewer

Size: px
Start display at page:

Download "Lab 5 Mandelbrot Fractal Viewer"

Transcription

1 Lab 5 Mandelbrot Fractal Viewer Your task is to design a digital circuit to plot a Mandelbrot Set Fractal over VGA display. Your circuit must generate all control and data signals driving the VGA output of the NEXYS3 board. The design should have a datapath and control unit to realize the function. You can make use of the DSP units and memory available in your FPGA to achieve full functionality of the design. The Mandelbrot Set and Fractals Background: The Mandelbrot set is made up of points plotted on a complex plane to form a fractal. Fractals are infinitely complex patterns that are self-similar across different scales. They are created by repeating a simple process over and over in an ongoing feedback loop. To generate the Mandelbrot set, a surprisingly simple iterative formula is applied to points in the complex plane.! z! = z!!! + c For a given complex number c, if after a number of iterations the absolute value of z! is found to be greater than 2, c escapes the Mandelbrot set, otherwise c belongs to the set. If the point c belongs to the set, the corresponding pixel has a fractal color, otherwise, it has a background color. Fig. 1. The Mandelbrot Set

2 Pseudocode: Each value of c=cx+i cy, in the pseudocode below, corresponds to one pixel of the display region. Based on Fig.1, the plotted region should have the following limits -2 cx=re[c] 1 and -1 cy=im[c] 1 for cy = -1 to 1, step 2/400 do for cx = -2 to 1, step 3/600 do { zx = 0 zy = 0 iteration = 0 // z = z 2 + c = (zx 2 zy 2 + cx) + i (2 zx zy + cy) } while (zx 2 + zy 2 < 4 && iteration < MAX_ITER ){ zxtemp = zx 2 zy 2 + cx zytemp = 2 zx zy + cy zx = zxtemp zy = zytemp iteration++ } x = x_conv(cx) // conversion to the x-coordinate of a pixel y = y_conv(cy) // conversion to the y-coordinate of a pixel if zx 2 + zy 2 < 4 color(x,y) = fractal_color else color(x,y) = background_color The functions x_conv() and y_conv() are used to convert the coordinates of the complex number into x and y coordinate of the pixel on your VGA screen. The conversion can be done as follows x = x_conv(cx) = 20 + (cx-(-2))*(600/3) = *(cx+2) y = y_conv(cy) = (cy-(-1))*(400/2)= *(cy+1)

3 Fixed Point Arithmetic: Taking into consideration the resources available on the Spartan 6 FPGA, you will have to use fixed point arithmetic. The fixed point representation of a number consists of integer and fractional components. To represent fixed point numbers, Q-notation is used. For example, using Q2.4 fixed point representation means that we have 2 bits for the integer part and 4 bits for the fractional parts. A two s complement can be formed by assigning a negative weigth to the leftmost bit. For your project, you can use Q4.28 representation. All computations will involve 4 integer bits and 28 fractional bits. Thus, to represent each number, 32-bits will be required. For arithmetic using fixed-point representation, addition/subtraction can be performed as usual. However, multiplication would result in an increase in the number of bits of the result. For example, the multiplication of a Q4.28 number with another Q4.28 number would result in a Q8.56 number. The result can be converted back to Q4.28 by shifting the number to right by 28 bits. As a result of this shift, the number will still be Q8.28 (36-bits). As all values are continuously being tested for convergence using the Mandelbrot criterion, we can ignore the most significant 4 bits as well without worrying about an overflow. VGA Display Area Configuration and Input/Output Scheme: For the display area on your VGA monitor, your task is to use a rectangular area of the size (600 x 400) pixels to display the Mandelbrot set fractal. This setting would leave the following room for your screen borders. The left and right borders should be 20-pixel each, while the top and bottom border should be 40-pixel each. The top border should display the text The Mandelbrot Set in the center. The font should have dimensions 16x32 in pixels (twice the size of dimensions of the standard tile). The bottom border should display the following information on the screen: 1. Percentage of the display area (i.e., the percentage of c values) evaluated so far, increasing every 0.5%. 2. Progress bar of the maximum size of 200 x 10 pixels (corresponding to 100%), increasing between 0 and 100%, with the step of 0.5% (1 pixel). 3. Total execution time with the step 0.1 s.

4 Use BTNS as the Start/Pause button to start/pause the computations. The color of the fractal and background should change depending on the settings of switches, as described in the table below: Switches Background Color Fractal Color SW0 White Black SW1 Yellow Red SW2 Blue White SW3 Black Red SW4 White Cyan SW5 Black Green SW6 Red Blue SW7 Blue Yellow Bonus Tasks: 1. Increase the speed of calculations, by evaluating 4 values of c in parallel. 2. Determine the maximum speed-up possible by evaluating N values of c in parallel, where N is limited only by the available FPGA resources. 3. Add colors by assigning a different color to each value of c, based on the number of iterations required for the decision (denoted in the pseudocode as iteration), and based on the following formula: color = iteration mod 8. The maximum size of the memory required would be 600 x 400 x 3 = 720,000 bit, which exceeds the memory available in our chip. The display area can be reduced to 300 x 200 pixels to reduce the memory requirement to half.

5 Important Dates Hands-on Sessions and Introductions to the Experiment Demonstration and Deliverables Due for Schedule A Demonstration and Deliverables Due for Schedule B (-8 point penalty for not attempting Lab 6; no penalty for Lab 5) Monday Wednesday Thursday 04/06/ /01/ /02/ /20/ /15/ /16/ /04/ /29/ /30/2015

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Lab Assignment 1. Developing and Using Testbenches

Lab Assignment 1. Developing and Using Testbenches Lab Assignment 1 Developing and Using Testbenches Task 1 Develop a testbench in VHDL to test and verify the operation of an ALU (Arithmetic Logic Unit), specified using Fig. 1 and Tables 1 and 2. The ALU

More information

Lab Assignment 2. Implementing Combinational and Sequential Logic in VHDL

Lab Assignment 2. Implementing Combinational and Sequential Logic in VHDL Lab Assignment 2 Implementing Combinational and Sequential Logic in VHDL Task 1 Draw a detailed block diagram of the ALU (Arithmetic Logic Unit), specified using Fig. 1 and Tables 1 and 2. Then develop

More information

CARLETON UNIVERSITY. Laboratory 2.0

CARLETON UNIVERSITY. Laboratory 2.0 CARLETON UNIVERSITY Department of Electronics ELEC 267 Switching Circuits Jan 3, 28 Overview Laboratory 2. A 3-Bit Binary Sign-Extended Adder/Subtracter A binary adder sums two binary numbers for example

More information

Escape-Time Fractals

Escape-Time Fractals Escape-Time Fractals Main Concept Fractals are geometric shapes that exhibit self-similarity. That is, they have the same pattern at different scales. In fact, fractals continue to show intricate details

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

Lab 2 Implementing Combinational Logic in VHDL. Advanced Testbenches.

Lab 2 Implementing Combinational Logic in VHDL. Advanced Testbenches. Task 1 (30%) Lab 2 Implementing Combinational Logic in VHDL. Advanced Testbenches. Draw a block diagram of the combinational circuit described by the given below pseudocode. Inputs: A: 8-bit unsigned integer

More information

Lab 3 Finite State Machines Movie Ticket Dispensing Machine

Lab 3 Finite State Machines Movie Ticket Dispensing Machine Lab 3 Finite State Machines Movie Ticket Dispensing Machine Design, implement, verify, and test a Movie Ticket Dispensing Machine based on the following specification: The machine should allow the choice

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Advanced Computer Architecture Lecture No. 34 Reading Material Vincent P. Heuring & Harry F. Jordan Chapter 6 Computer Systems Design and Architecture 6.1, 6.2 Summary Introduction to ALSU Radix Conversion

More information

Representation of Numbers and Arithmetic in Signal Processors

Representation of Numbers and Arithmetic in Signal Processors Representation of Numbers and Arithmetic in Signal Processors 1. General facts Without having any information regarding the used consensus for representing binary numbers in a computer, no exact value

More information

Introduction to Computer Science (I1100) Data Storage

Introduction to Computer Science (I1100) Data Storage Data Storage 145 Data types Data comes in different forms Data Numbers Text Audio Images Video 146 Data inside the computer All data types are transformed into a uniform representation when they are stored

More information

To design a 4-bit ALU To experimentally check the operation of the ALU

To design a 4-bit ALU To experimentally check the operation of the ALU 1 Experiment # 11 Design and Implementation of a 4 - bit ALU Objectives: The objectives of this lab are: To design a 4-bit ALU To experimentally check the operation of the ALU Overview An Arithmetic Logic

More information

Lab 2 Fractals! Lecture 5 Revised

Lab 2 Fractals! Lecture 5 Revised Lab 2 Fractals! Lecture 5 Revised Kunle Stanford EE183 Jan 27, 2003 Lab #1 Due Friday at 6pm No class on Friday!!! You can demo anytime before then I ll be in the lab around 5pm for demos Report due next

More information

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic

INF2270 Spring Philipp Häfliger. Lecture 4: Signed Binaries and Arithmetic INF2270 Spring 2010 Philipp Häfliger Lecture 4: Signed Binaries and Arithmetic content Karnaugh maps revisited Binary Addition Signed Binary Numbers Binary Subtraction Arithmetic Right-Shift and Bit Number

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers

More information

CS/EE1012 INTRODUCTION TO COMPUTER ENGINEERING SPRING 2013 HOMEWORK I. Solve all homework and exam problems as shown in class and sample solutions

CS/EE1012 INTRODUCTION TO COMPUTER ENGINEERING SPRING 2013 HOMEWORK I. Solve all homework and exam problems as shown in class and sample solutions CS/EE2 INTRODUCTION TO COMPUTER ENGINEERING SPRING 23 DUE : February 22, 23 HOMEWORK I READ : Related portions of the following chapters : È Chapter È Chapter 2 È Appendix E ASSIGNMENT : There are eight

More information

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN FALL 2005

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN FALL 2005 CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN FALL 2005 AN INTRODUCTION TO DIGITAL SYSTEMS AND THE PPM PROJECT 1. Introduction A digital system consists of digital circuits. It performs sequences of simple

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

LAB 7 Writing Assembly Code

LAB 7 Writing Assembly Code Goals To Do LAB 7 Writing Assembly Code Learn to program a processor at the lowest level. Implement a program that will be used to test your own MIPS processor. Understand different addressing modes of

More information

The Building Blocks: Binary Numbers, Boolean Logic, and Gates. Purpose of Chapter. External Representation of Information.

The Building Blocks: Binary Numbers, Boolean Logic, and Gates. Purpose of Chapter. External Representation of Information. The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4 Representing Information The Binary Numbering System Boolean Logic and Gates Building Computer Circuits Control Circuits CMPUT Introduction

More information

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts CMPSCI 145 MIDTERM #1 Solution Key NAME SPRING 2017 March 3, 2017 PROBLEM SCORE POINTS 1 10 2 10 3 15 4 15 5 20 6 12 7 8 8 10 TOTAL 100 10 Points Examine the following diagram of two systems, one involving

More information

Circle inversion fractals are based on the geometric operation of inversion of a point with respect to a circle, shown schematically in Fig. 1.

Circle inversion fractals are based on the geometric operation of inversion of a point with respect to a circle, shown schematically in Fig. 1. MSE 350 Creating a Circle Inversion Fractal Instructor: R.G. Erdmann In this project, you will create a self-inverse fractal using an iterated function system (IFS). 1 Background: Circle Inversion Circle

More information

Signed Binary Numbers

Signed Binary Numbers Signed Binary Numbers Unsigned Binary Numbers We write numbers with as many digits as we need: 0, 99, 65536, 15000, 1979, However, memory locations and CPU registers always hold a constant, fixed number

More information

EITF35 - Introduction to Structured VLSI Design (Fall 2017) Course projects

EITF35 - Introduction to Structured VLSI Design (Fall 2017) Course projects 1 EITF35 - Introduction to Structured VLSI Design (Fall 2017) Course projects v.1.0.0 1 Introduction This document describes the course projects provided in EITF35 Introduction to Structured VLSI Design

More information

Computer Systems and -architecture

Computer Systems and -architecture Computer Systems and -architecture Project 3: ALU 1 Ba INF 2018-2019 Brent van Bladel brent.vanbladel@uantwerpen.be Don t hesitate to contact the teaching assistant of this course. M.G.305 or by e-mail.

More information

CSC 120 Introduction to Creative Graphical Coding, Fall 2015

CSC 120 Introduction to Creative Graphical Coding, Fall 2015 CSC 120 Introduction to Creative Graphical Coding, Fall 2015 Dr. Dale E. Parson, Assignment 1, Implementing and testing an automated avatar in Processing. This assignment is due via D2L Dropbox Assignment

More information

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8 Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds. UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:

More information

Lab 3 Sequential Logic for Synthesis. FPGA Design Flow.

Lab 3 Sequential Logic for Synthesis. FPGA Design Flow. Lab 3 Sequential Logic for Synthesis. FPGA Design Flow. Task 1 Part 1 Develop a VHDL description of a Debouncer specified below. The following diagram shows the interface of the Debouncer. The following

More information

CS 445 HW#6 Solutions

CS 445 HW#6 Solutions CS 445 HW#6 Solutions Text problem 6.1 From the figure, x = 0.43 and y = 0.4. Since x + y + z = 1, it follows that z = 0.17. These are the trichromatic coefficients. We are interested in tristimulus values

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Wednesday, September 13, Chapter 4

Wednesday, September 13, Chapter 4 Wednesday, September 13, 2017 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/9 Features of the system Operational cycle Program trace Categories of

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

EITF35 - Introduction to Structured VLSI Design (Fall ) 7. Assignment 3 - Arithmetic Logic Unit (ALU)

EITF35 - Introduction to Structured VLSI Design (Fall ) 7. Assignment 3 - Arithmetic Logic Unit (ALU) EITF35 - Introduction to Structured VLSI Design (Fall 2018 2016 2015) 7 Assignment 3 - Arithmetic Logic Unit (ALU) v.1.1.0 Introduction In this lab assignment, a simple arithmetic logic unit (ALU) will

More information

Lecture 27: Board Notes: Parallel Programming Examples

Lecture 27: Board Notes: Parallel Programming Examples Lecture 27: Board Notes: Parallel Programming Examples Part A: Consider the following binary search algorithm (a classic divide and conquer algorithm) that searches for a value X in a sorted N-element

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

CS 463 Project 1 Imperative/OOP Fractals

CS 463 Project 1 Imperative/OOP Fractals CS 463 Project 1 Imperative/OOP Fractals The goal of a couple of our projects is to compare a simple project across different programming paradigms. This semester, we will calculate the Mandelbrot Set

More information

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 90 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (10 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a)

More information

Making the Gradient. Create a Linear Gradient Swatch. Follow these instructions to complete the Making the Gradient assignment:

Making the Gradient. Create a Linear Gradient Swatch. Follow these instructions to complete the Making the Gradient assignment: Making the Gradient Follow these instructions to complete the Making the Gradient assignment: Create a Linear Gradient Swatch 1) Save the Making the Gradient file (found on Mrs. Burnett s website) to your

More information

On Fractal Colouring Algorithms

On Fractal Colouring Algorithms 5 10 July 2004, Antalya, Turkey Dynamical Systems and Applications, Proceedings, pp. 706 711 On Fractal Colouring Algorithms Nergiz Yaz Department of Mathematics, Faculty of Sciences Ankara University,

More information

4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013)

4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013) 1 4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013) Lab #1: ITB Room 157, Thurs. and Fridays, 2:30-5:20, EOW Demos to TA: Thurs, Fri, Sept.

More information

CHAPTER 1 Numerical Representation

CHAPTER 1 Numerical Representation CHAPTER 1 Numerical Representation To process a signal digitally, it must be represented in a digital format. This point may seem obvious, but it turns out that there are a number of different ways to

More information

18) The perpendiculars slices not intersecting origo

18) The perpendiculars slices not intersecting origo 18) The perpendiculars slices not intersecting origo In the last article regarding cubic parameter space, we had a look at those special 2D-slices of the six perpendicular systems which intersect origo.

More information

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Instructions: Zip all your deliverables into an archive .zip and submit it through Blackboard no later than Wednesday, March 6,

More information

CSC 120 Introduction to Creative Graphical Coding, Fall 2017

CSC 120 Introduction to Creative Graphical Coding, Fall 2017 CSC 120 Introduction to Creative Graphical Coding, Fall 2017 Dr. Dale E. Parson, Assignment 1, Implementing and testing an automated avatar in Processing. This assignment is due via D2L Assignments Assignment

More information

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

More information

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu CS 543: Computer Graphics Lecture 3 (Part I: Fractals Emmanuel Agu What are Fractals? Mathematical expressions Approach infinity in organized way Utilizes recursion on computers Popularized by Benoit Mandelbrot

More information

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0 Integers So far, we've seen how to convert numbers between bases. How do we represent particular kinds of data in a certain (32-bit) architecture? We will consider integers floating point characters What

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

ELEC 326: Class project

ELEC 326: Class project ELEC 326: Class project Kartik Mohanram 1 Introduction For this project you will design and test a three-digit binary-coded-decimal (BCD) adder capable of adding positive and negative BCD numbers. In the

More information

The Design of C: A Rational Reconstruction

The Design of C: A Rational Reconstruction The Design of C: A Rational Reconstruction 1 Goals of this Lecture Help you learn about: The decisions that were available to the designers of C The decisions that were made by the designers of C and thereby

More information

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 CS 64 Lecture 2 Data Representation Reading: FLD 1.2-1.4 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 ) + (1x10 0 ) 1010 10?= 1010 2?= 1

More information

LAB WORK NO. 2 THE INTERNAL DATA REPRESENTATION

LAB WORK NO. 2 THE INTERNAL DATA REPRESENTATION LAB WORK NO. 2 THE INTERNAL DATA REPRESENTATION 1. Object of lab work The purpose of this work is to understand the internal representation of different types of data in the computer. We will study and

More information

NAME: 1a. (10 pts.) Describe the characteristics of numbers for which this floating-point data type is well-suited. Give an example.

NAME: 1a. (10 pts.) Describe the characteristics of numbers for which this floating-point data type is well-suited. Give an example. MSU CSC 285 Spring, 2007 Exam 2 (5 pgs.) NAME: 1. Suppose that a eight-bit floating-point data type is defined with the eight bits divided into fields as follows, where the bits are numbered with zero

More information

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

More information

Time (self-scheduled): Location Schedule Your Exam: What to bring:

Time (self-scheduled): Location Schedule Your Exam: What to bring: ECE 120 Midterm 1B HKN Review Session Time (self-scheduled): Between Wednesday, September 27 and Friday, September 29, 2017 Location: 57 Grainger Engineering Library (in the basement on the east side)

More information

Chapter 5 : Computer Arithmetic

Chapter 5 : Computer Arithmetic Chapter 5 Computer Arithmetic Integer Representation: (Fixedpoint representation): An eight bit word can be represented the numbers from zero to 255 including = 1 = 1 11111111 = 255 In general if an nbit

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds. ECE-78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers

More information

6. The Mandelbrot Set

6. The Mandelbrot Set 1 The Mandelbrot Set King of mathematical monsters Im 0-1 -2-1 0 Re Christoph Traxler Fractals-Mandelbrot 1 Christoph Traxler Fractals-Mandelbrot 2 6.1 Christoph Traxler Fractals-Mandelbrot 3 Christoph

More information

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal Basic Definition REPRESENTING INTEGER DATA Englander Ch. 4 An integer is a number which has no fractional part. Examples: -2022-213 0 1 514 323434565232 Unsigned and -Coded Decimal BCD: -Coded Decimal

More information

Random and Parallel Algorithms a journey from Monte Carlo to Las Vegas

Random and Parallel Algorithms a journey from Monte Carlo to Las Vegas Random and Parallel Algorithms a journey from Monte Carlo to Las Vegas Google Maps couldn t help! Bogdán Zaválnij Institute of Mathematics and Informatics University of Pecs Ljubljana, 2014 Bogdán Zaválnij

More information

Organisasi Sistem Komputer

Organisasi Sistem Komputer LOGO Organisasi Sistem Komputer OSK 8 Aritmatika Komputer 1 1 PT. Elektronika FT UNY Does the calculations Arithmetic & Logic Unit Everything else in the computer is there to service this unit Handles

More information

Fractal Dimension of Julia Sets

Fractal Dimension of Julia Sets Fractal Dimension of Julia Sets Claude Heiland-Allen claude@mathr.co.uk March 6, 2015 Fractal Dimension of Julia Sets Fractal Dimension How Long is a Coast? Box-Counting Dimension Examples Fractal Dimension

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

XPLANATION: FPGA 101. The Basics of. by Adam Taylor Principal Engineer EADS Astrium FPGA Mathematics

XPLANATION: FPGA 101. The Basics of. by Adam Taylor Principal Engineer EADS Astrium FPGA Mathematics The Basics of by Adam Taylor Principal Engineer EADS Astrium aptaylor@theiet.org FPGA Mathematics 44 Xcell Journal Third Quarter 2012 One of the main advantages of the FPGA is its ability to perform mathematical

More information

RECITATION SECTION: YOUR CDA 3101 NUMBER:

RECITATION SECTION: YOUR CDA 3101 NUMBER: PRINT YOUR NAME: KEY UFID [5:8]: RECITATION SECTION: YOUR CDA 3101 NUMBER: I have not looked at anyone else s paper, and I have not obtained unauthorized help in completing this exam. Also, I have adhered

More information

By, Ajinkya Karande Adarsh Yoga

By, Ajinkya Karande Adarsh Yoga By, Ajinkya Karande Adarsh Yoga Introduction Early computer designers believed saving computer time and memory were more important than programmer time. Bug in the divide algorithm used in Intel chips.

More information

EE 1315: DIGITAL LOGIC LAB EE Dept, UMD

EE 1315: DIGITAL LOGIC LAB EE Dept, UMD EXPERIMENT # 7: Basic Latches EE 1315: DIGITAL LOGIC LAB EE Dept, UMD Latches are primitive memory elements of sequential circuits that are used in building simple noise filtering circuits and flip-flops.

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 2/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Digital Signal

More information

Elec 326: Digital Logic Design

Elec 326: Digital Logic Design Elec 326: Digital Logic Design Project Requirements Fall 2005 For this project you will design and test a three-digit binary-coded-decimal (BCD) adder capable of adding positive and negative BCD numbers.

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

ECE 545 Fall 2013 Final Exam

ECE 545 Fall 2013 Final Exam ECE 545 Fall 2013 Final Exam Problem 1 Develop an ASM chart for the circuit EXAM from your Midterm Exam, described below using its A. pseudocode B. table of input/output ports C. block diagram D. interface

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

mywbut.com GATE SOLVED PAPER - CS (A) 2 k (B) ( k+ (C) 3 logk 2 (D) 2 logk 3

mywbut.com GATE SOLVED PAPER - CS (A) 2 k (B) ( k+ (C) 3 logk 2 (D) 2 logk 3 GATE SOLVED PAPER - CS 00 k k-1 Q. 1 The solution to the recurrence equation T( ) = 3T( ) + 1, T( 1) = 1 (A) k (B) ( k+ 1-1 ) is (C) 3 logk (D) logk 3 Q. The minimum number of colours required to colour

More information

Organisation. Assessment

Organisation. Assessment Week 1 s s Getting Started 1 3 4 5 - - Lecturer Dr Lectures Tuesday 1-13 Fulton House Lecture room Tuesday 15-16 Fulton House Lecture room Thursday 11-1 Fulton House Lecture room Friday 10-11 Glyndwr C

More information

How to use the IP generator from Xilinx to instantiate IP cores

How to use the IP generator from Xilinx to instantiate IP cores ÁÌ ¹ ÁÒØÖÓ ÙØ ÓÒ ØÓ ËØÖÙØÙÖ ÎÄËÁ Ò ÐÐ ¾¼½ µ ÓÙÖ ÔÖÓ Ø Úº½º¼º¼ 1 Introduction This document describes the course projects provided in EITF35 Introduction to Structured VLSI Design conducted at EIT, LTH.

More information

CS 361 Computer Systems Fall 2017 Homework Assignment 4 - Inter-Process Communications & I/O

CS 361 Computer Systems Fall 2017 Homework Assignment 4 - Inter-Process Communications & I/O CS 361 Computer Systems Fall 2017 Homework Assignment 4 - Inter-Process Communications & I/O Overall Assignment For this assignment, you are to write three programs that will work together using inter-process

More information

CS 315 Data Structures Fall Figure 1

CS 315 Data Structures Fall Figure 1 CS 315 Data Structures Fall 2012 Lab # 3 Image synthesis with EasyBMP Due: Sept 18, 2012 (by 23:55 PM) EasyBMP is a simple c++ package created with the following goals: easy inclusion in C++ projects,

More information

Chapter 1 Review of Number Systems

Chapter 1 Review of Number Systems 1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits

More information

Chapter 4: Data Representations

Chapter 4: Data Representations Chapter 4: Data Representations Integer Representations o unsigned o sign-magnitude o one's complement o two's complement o bias o comparison o sign extension o overflow Character Representations Floating

More information

Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition

Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition Digital Design Using Digilent FPGA Boards -- Verilog / Active-HDL Edition Table of Contents 1. Introduction to Digital Logic 1 1.1 Background 1 1.2 Digital Logic 5 1.3 Verilog 8 2. Basic Logic Gates 9

More information

UNIT 7A Data Representation: Numbers and Text. Digital Data

UNIT 7A Data Representation: Numbers and Text. Digital Data UNIT 7A Data Representation: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floating point number text encoded with

More information

Unit Title Key Concepts Vocabulary CCS

Unit Title Key Concepts Vocabulary CCS Unit Title Key Concepts Vocabulary CCS Unit 1 Writing and Evaluating s Unit 2 Writing and Solving Equations s and Equations Write numerical expressions Evaluate numerical expressions Write algebraic expressions

More information

TABLES AND HASHING. Chapter 13

TABLES AND HASHING. Chapter 13 Data Structures Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computer and Information, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ TABLES AND HASHING Chapter 13

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

Lab 6 Using PicoBlaze. Fast Sorting.

Lab 6 Using PicoBlaze. Fast Sorting. Lab 6 Using PicoBlaze. Fast Sorting. Design, implement, and verify experimentally a circuit shown in the block diagram below, composed of the following major components: PicoBlaze-6 microcontroller with

More information

LABORATORY. 3 Representing Numbers OBJECTIVE REFERENCES. Learn how negative numbers and real numbers are encoded inside computers.

LABORATORY. 3 Representing Numbers OBJECTIVE REFERENCES. Learn how negative numbers and real numbers are encoded inside computers. Dmitriy Shironosov/ShutterStock, Inc. LABORATORY 3 Representing Numbers OBJECTIVE Learn how negative numbers and real numbers are encoded inside computers. REFERENCES Software needed: 1) Apps from the

More information

CS 100 Spring Lecture Notes 3/8/05 Review for Exam 2

CS 100 Spring Lecture Notes 3/8/05 Review for Exam 2 CS 100 Spring 2005 Lecture Notes 3/8/05 Review for Exam 2 The second exam is Thursday, March 10. It will cover topics from Homework 2 through Homework 4, including anything pertaining to binary representation.

More information

Introduction to Computer Science-103. Midterm

Introduction to Computer Science-103. Midterm Introduction to Computer Science-103 Midterm 1. Convert the following hexadecimal and octal numbers to decimal without using a calculator, showing your work. (6%) a. (ABC.D) 16 2748.8125 b. (411) 8 265

More information

CSE2003: System Programming Final Exam. (Spring 2009)

CSE2003: System Programming Final Exam. (Spring 2009) CSE2003: System Programming Final Exam. (Spring 2009) 3:00PM 5:00PM, June 17, 2009. Instructor: Jin Soo Kim Student ID: Name: 1. Write the full name of the following acronym. (25 points) (1) GNU ( ) (2)

More information

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6 Standard 8.NS.1 8.NS.2 8.EE.1 8.EE.2 8.EE.3 8.EE.4 8.EE.5 8.EE.6 8.EE.7 8.EE.7.a Jackson County Core Curriculum Collaborative (JC4) 8th Grade Math Learning Targets in Student Friendly Language I can identify

More information

More about Binary 9/6/2016

More about Binary 9/6/2016 More about Binary 9/6/2016 Unsigned vs. Two s Complement 8-bit example: 1 1 0 0 0 0 1 1 2 7 +2 6 + 2 1 +2 0 = 128+64+2+1 = 195-2 7 +2 6 + 2 1 +2 0 = -128+64+2+1 = -61 Why does two s complement work this

More information

Representation of Non Negative Integers

Representation of Non Negative Integers Representation of Non Negative Integers In each of one s complement and two s complement arithmetic, no special steps are required to represent a non negative integer. All conversions to the complement

More information

Bits, bytes, binary numbers, and the representation of information

Bits, bytes, binary numbers, and the representation of information Bits, bytes, binary numbers, and the representation of information computers represent, process, store, copy, and transmit everything as numbers hence "digital computer" the numbers can represent anything

More information

Objectives. Connecting with Computer Science 2

Objectives. Connecting with Computer Science 2 Objectives Learn why numbering systems are important to understand Refresh your knowledge of powers of numbers Learn how numbering systems are used to count Understand the significance of positional value

More information