Type (1A) Young Won Lim 2/17/18

Size: px
Start display at page:

Download "Type (1A) Young Won Lim 2/17/18"

Transcription

1 Type (1A)

2 Copyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using LibreOffice.

3 Byte Address Little Endian Big Endian 3

4 Byte Address long a; Increasing address a 8-byte size data type &a? 4

5 Numbers in Positional Notation long a = 0x ; 8 (bytes) a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 Most Significant Byte Least Significant Byte a 7 = 0 x 10 a 6 = 0 x 20 a 5 = 0 x 30 a 4 = 0 x 40 a 3 = 0 x 50 a 2 = 0 x 60 a 1 = 0 x70 a 0 = 0 x the highest weight the lowest weight 5

6 Little / Big Endian Ordering of Bytes long a; Increasing address a MSByte Little Endian LSByte a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 LSByte Big Endian MSByte a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 6

7 Little Endian Byte Address Example Increasing address 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 long a; a 7 a 0 Increasing weight &a MSByte Little Endian LSByte 7

8 Big Endian Byte Address Example Increasing address 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 long a; a 0 a 7 Increasing weight &a LSByte Big Endian MSByte 8

9 Representations of Endianness downward, increasing address upward, increasing address &a &a Big Endian Little Endian 0x3000 a 7 0x3000 a 0 0x3007 a 0 0x3007 a 7 0x3001 0x3001 0x3006 0x3006 0x3002 0x3002 0x3005 0x3005 0x3003 0x3003 0x3004 0x3004 0x3004 0x3004 0x3003 0x3003 0x3005 0x3005 0x3002 0x3002 0x3006 0x3006 0x3001 0x3001 0x3007 a 0 0x3007 a 7 0x3000 a 7 0x3000 a 0 Big Endian Little Endian &a &a 9

10 Increasing address, Increasing byte weight downward, increasing address upward, increasing address &a &a Big Endian Little Endian Big Endian Little Endian &a &a 10

11 Little / Big Endian Processors Processor Endianness Motorola Big Endian PowerPC (PPC) Big Endian Sun Sparc Big Endian IBM S/390 Big Endian Intel x86 (32 bit) Little Endian Intel x86_64 (64 bit) Little Endian Dec VAX Little Endian Alpha (Big/Little) Endian ARM (Big/Little) Endian IA-64 (64 bit) (Big/Little) Endian MIPS (Big/Little) Endian 11

12 Pointer Types and Associated Data 8 bits data data data increasing address char val short val int val pc ps pi address address address char *pc; short *ps; int *pi; 12

13 Pointer Types 8 bits data data data increasing address pc ps pi address address address char *pc; short *ps; int *pi; 13

14 Little Endian Example 8 bits 8 bits data data increasing address &c &b c int a; b short b; char c; a the order of definition &a &b &c a b c increasing address &a 14

15 int *, short *, char * type variables int * pi; short * ps; char * pc; pi ps pc address Not a sized representation 15

16 Pointer Variable Assignment 8 bits &c &b data c b a char * pc; short * ps; int * pi; int a; short b; char c; &a pi ps pi = &a; ps = &b; pc = &c; pc address 16

17 Pointer Type Casting 8 bits data data data *pi a a a *ps &a *pc &a &a pc ps pi address address address short *ps; ps = (short *) &a char *pc; pc = (char *) &a int *pi; pi = (int *) &a 17

18 Accessing bytes of a variable 8 bits data data pc+3 *(pc+3) pc+3 a pc+2 pc+1 *(pc+2) *(pc+1) pc+2 pc+1 &a pc &a *(pc+0) pc pc pc address address char *pc; pc = (char *) &a char *pc; pc = (char *) &a 18

19 32-bit and 64-bit Address 32-bit machine : address : 4 bytes 64-bit machine : address : 8 bytes 8 bits 8 bits pi ps pc 64-bit machine address : 8 bytes 32-bit machine address : 4 bytes 19

20 64-bit machine : 8-byte address pi ps pc char *pc; short *ps; int *pi; 20

21 64-bit machine : 8-byte address & data buses 8 bits char *pc; pc 8 bits short *ps; ps 8 bits int *pi; pi 21

22 32-bit machine : 4-byte address pi ps pc char *pc; short *ps; int *pi; 22

23 64-bit machine : 8-byte address and data buses 8 bits pc char *pc; 8 bits ps short *ps; 8 bits pi int *pi; 23

24 Memory Alignment (1) - allocation of variables enforced by compilers efficient memory access 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 int a; short b; char c; 24

25 Memory Alignment (2) integer multiple addresses Memory Alignment: the data address is a multiple of the data size. 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 k = 0,1, 2, integer addresses = 4 k short addresses = 2 k character addresses = 1 k 25

26 Memory Alignment (3) pointed addresses 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 int *p; 4 k short *q; char *r; 2 k 1 k 26

27 Memory Alignment (4) non-pointed addresses 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x3000 int *p; 4 k + 1,2,3 short *q; char *r; 2 k

28 Memory Alignment (5) broken alignment Memory access is still possible but it takes longer time to access (Low Efficiency) This can happen by using inadvertent pointer type casting 0x3007 0x3006 0x3005 0x3004 0x3003 0x3002 0x3001 0x int *p; short *q; char *r; 28

29 Unsigned Char Addition 0xFF 0xFD Signed: -1 Unsigned: 255 Signed: -3 Unsigned: 253 Signed (-1) Signed (-3) Signed (-4) 0xFC Signed: -4 Unsigned: 252 Unsigned: 255 Unsigned: Unsigned 252 Unsigned Wrap around Modulo 256 Types 29

30 Converting Signed Numbers Signed (op) Unsigned = Unsigned (op) Unsigned Unsigned (op) Signed = Unsigned (op) Unsigned Signed Unsigned Types 30

31 Mixed Operation Examples 0xFF 0xFD Signed: i= -1 Unsigned: m= 255 Signed: j= -3 Unsigned: n= 253 0xFC Signed: -4 Unsigned: 252 m+n = = 252 m-n = = 2 i+j = -1-3 = -4 i-j = -1+3 = 2 m+j = = 252 m-j = = 2 i+n = = 252 i-n = = 2 (m > 0) = (255>0) = 1 (i > 0) = (-1 > 0) = 0 (m > n) = (255>253) = 1 (i > j) = (-1 > -3) = 1 (m < 256)=(255<0) = 0 (i < 256)=(-1<256) = 1 Types 31

32 %u conversion (32-bit) signed char m, n, p m=%d: 15 n=%d: -1 p=%d: 14 m=%u: 15 n=%u: p=%u: 14 #include <stdio.h> int main(void) { char m, n, p; m = 0x0f; n = 0xff; p = m + n; Promotion to 4-byte default integer But with a sign extension } printf("signed char m, n, p\n"); printf("m=%%d: %d \n", m); printf("n=%%d: %d \n", n); printf("p=%%d: %d \n", p); printf("m=%%u: %u \n", m); printf("n=%%u: %u \n", n); printf("p=%%u: %u \n", p); 0xff 0xffffffff Types 32

33 Void and Function Prototypes void func (void); void * No return value No function parameters a pointer type that doesn't specify what it points to. The void type comprises an empty set of values; it is an incomplete object type that cannot be completed. void func ( ) ; accepts a constant but unknown number of arguments void func (...) ; accepts a variable number of arguments (not ISO C) void ( * x) (); void * x (); pointer to a function returning no result function returning pointer to void Types 33

34 Ignoring Return Value int func (void) (void) func (void) (void) type casting to ignore the return int value Types 34

35 Void Pointer void * universal data pointer a pointer type that doesn't specify what it points to. can store an address to any non-function data type implicitly converted to any other pointer type on assignment must use an explicit cast if dereferenced inline. Types 35

36 Dereferencing Void Pointers #include <stdio.h> void fint (void *a) { printf("%d\n",* (int *) a ); } void fchar (void *a) { printf("%c\n", * (char *) a ); } void ffloat (void *a) { printf("%f\n", * (float *) a ); } void main(void) { int a = 100; char b = 'B'; float c = 3.14; fint fchar ffloat } (&a); (&b); (&c); dereferencing the void pointer without type-casting not possible. void indicates the absence of type cannot dereference or assign to. void fint (void *a) { printf("%d\n", (int) *a ); } void fchar (void *a) { printf("%c\n", (char) *a ); } void ffloat (void *a) { printf("%f\n", (float) *a ); } Types 36

37 Pointer Arithmetic and Void Pointers #include <stdio.h> void func (void *a) { int *p = a; void func (void *a) { } printf("%d\n", * p++); printf("%d\n", * p++); printf("%d\n", * p++); printf("%d\n", * p++); printf("%d\n", * p++); } printf("%d\n", * (int *) a++); printf("%d\n", * (int *) a++); printf("%d\n", * (int *) a++); printf("%d\n", * (int *) a++); printf("%d\n", * (int *) a++); void main(void) { int a[5] = {10, 20, 30, 40, 50}; func (a); Pointer arithmetic is not possible on pointers of void } Types 37

38 References [1] Essential C, Nick Parlante [2] Efficient C Programming, Mark A. Weiss [3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr. [4] C Language Express, I. K. Chun [5]

Pointers (1A) Young Won Lim 2/6/18

Pointers (1A) Young Won Lim 2/6/18 Pointers (1A) Copyright (c) 2010-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 2/10/18

Pointers (1A) Young Won Lim 2/10/18 Pointers (1A) Copyright (c) 2010-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 1/14/18

Pointers (1A) Young Won Lim 1/14/18 Pointers (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 1/22/18

Pointers (1A) Young Won Lim 1/22/18 Pointers (1A) Copyright (c) 2010-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 1/5/18

Pointers (1A) Young Won Lim 1/5/18 Pointers (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 1/9/18

Pointers (1A) Young Won Lim 1/9/18 Pointers (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 3/5/18

Pointers (1A) Young Won Lim 3/5/18 Pointers (1A) Copyright (c) 2010-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 11/1/17

Pointers (1A) Young Won Lim 11/1/17 Pointers (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Applications of Pointers (1A) Young Won Lim 12/26/17

Applications of Pointers (1A) Young Won Lim 12/26/17 Applications of (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Pointers (1A) Young Won Lim 12/4/17

Pointers (1A) Young Won Lim 12/4/17 Pointers (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Pointers (1A) Young Won Lim 10/18/17

Pointers (1A) Young Won Lim 10/18/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Pointers (1A) Young Won Lim 10/23/17

Pointers (1A) Young Won Lim 10/23/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Applications of Pointers (1A) Young Won Lim 3/14/18

Applications of Pointers (1A) Young Won Lim 3/14/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/21/18

Applications of Pointers (1A) Young Won Lim 3/21/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/31/18

Applications of Pointers (1A) Young Won Lim 3/31/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 2/27/18

Applications of Pointers (1A) Young Won Lim 2/27/18 Alications of (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Overview (1A) Young Won Lim 9/14/17

Overview (1A) Young Won Lim 9/14/17 Overview (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Overview (1A) Young Won Lim 9/9/17

Overview (1A) Young Won Lim 9/9/17 Overview (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Applications of Pointers (1A) Young Won Lim 4/11/18

Applications of Pointers (1A) Young Won Lim 4/11/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Arrays (1A) Young Won Lim 12/4/17

Arrays (1A) Young Won Lim 12/4/17 Arrays (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Overview (1A) Young Won Lim 9/25/17

Overview (1A) Young Won Lim 9/25/17 Overview (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Applications of Pointers (1A) Young Won Lim 4/24/18

Applications of Pointers (1A) Young Won Lim 4/24/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Structures (1A) Young Won Lim 12/8/17

Applications of Structures (1A) Young Won Lim 12/8/17 Applications of (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Applications of Pointers (1A) Young Won Lim 1/5/18

Applications of Pointers (1A) Young Won Lim 1/5/18 Alications of (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Applications of Arrays (1A) Young Won Lim 2/11/17

Applications of Arrays (1A) Young Won Lim 2/11/17 Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Applications of Structures (1A) Young Won Lim 12/4/17

Applications of Structures (1A) Young Won Lim 12/4/17 Applications of (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Applications of Arrays (1A) Young Won Lim 3/15/17

Applications of Arrays (1A) Young Won Lim 3/15/17 Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Arrays (1A) Young Won Lim 1/27/17

Arrays (1A) Young Won Lim 1/27/17 Arrays (1A) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Function Overview (1A) Young Won Lim 10/23/17

Function Overview (1A) Young Won Lim 10/23/17 Function Overview (1A) Copyright (c) 2010 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Expressions (2E) Young Won Lim 4/9/18

Expressions (2E) Young Won Lim 4/9/18 Expressions (2E) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Variables (2D) Young Won Lim 3/28/18

Variables (2D) Young Won Lim 3/28/18 Variables (2D) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Program Structure (2A) Young Won Lim 5/28/18

Program Structure (2A) Young Won Lim 5/28/18 Program Structure (2A) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Memory Arrays (4H) Gate Level Design. Young Won Lim 3/15/16

Memory Arrays (4H) Gate Level Design. Young Won Lim 3/15/16 Arrays (4H) Gate Level Design Young Won Lim 3/15/16 Copyright (c) 2011, 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Structures (1A) Young Won Lim 12/4/17

Structures (1A) Young Won Lim 12/4/17 Structures (1A) Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Arrays and Strings (2H) Young Won Lim 3/7/18

Arrays and Strings (2H) Young Won Lim 3/7/18 Arrays and Strings (2H) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Number System (1A) Young Won Lim 7/7/10

Number System (1A) Young Won Lim 7/7/10 Number System (A) 7/7/ Copyrigt (c) 9-6 Young W. Lim. Permission is granted to copy, distribute and/or modify tis document under te terms of te GNU ree Documentation License, Version. or any later version

More information

Expressions (2E) Young Won Lim 3/10/18

Expressions (2E) Young Won Lim 3/10/18 Expressions (2E) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (2G) Young Won Lim 3/7/18

Pointers (2G) Young Won Lim 3/7/18 Pointers (2G) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Program Structure (2A) Young Won Lim 3/8/18

Program Structure (2A) Young Won Lim 3/8/18 Program Structure (2A) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Example 1. Young Won Lim 11/17/17

Example 1. Young Won Lim 11/17/17 Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Example 1 : using 1-d arrays. Young Won Lim 12/13/17

Example 1 : using 1-d arrays. Young Won Lim 12/13/17 : using 1-d arrays Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Structure (1A) Young Won Lim 7/30/13

Structure (1A) Young Won Lim 7/30/13 Structure (1A) Copyright (c) 2010 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

File (1A) Young Won Lim 11/25/16

File (1A) Young Won Lim 11/25/16 File (1A) Copyright (c) 2010-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Memory (1A) Young Won Lim 9/7/17

Memory (1A) Young Won Lim 9/7/17 (1A) Copyright (c) 21-26 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Structures (1A) Young Won Lim 11/8/16

Structures (1A) Young Won Lim 11/8/16 Structures (1A) Copyright (c) 2010-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Example 2. Young Won Lim 11/24/17

Example 2. Young Won Lim 11/24/17 Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

ELF (1A) Young Won Lim 10/22/14

ELF (1A) Young Won Lim 10/22/14 ELF (1A) Copyright (c) 2010-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Applications of Array Pointers (1A) Young Won Lim 11/22/18

Applications of Array Pointers (1A) Young Won Lim 11/22/18 Appliations of Array Pointers (1A) Copyright () 2010-2018 Young W. Lim. Permission is granted to opy, distribute and/or modify this doument under the terms of the GNU Free Doumentation Liense, Version

More information

Example 3 : using a structure array. Young Won Lim 11/25/17

Example 3 : using a structure array. Young Won Lim 11/25/17 : using a structure array Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Byte Ordering. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Byte Ordering. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Byte Ordering Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Byte Ordering. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Byte Ordering. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Byte Ordering Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Memory Model Physical memory DRAM chips can read/write 4, 8, 16 bits DRAM modules

More information

ARM Assembly Exercise (1B) Young Won Lim 7/16/16

ARM Assembly Exercise (1B) Young Won Lim 7/16/16 ARM Assembly Exercise (1B) Copyright (c) 2014-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Accessibility (1A) Young Won Lim 8/22/13

Accessibility (1A) Young Won Lim 8/22/13 Accessibility (1A) Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Example 3. Young Won Lim 11/22/17

Example 3. Young Won Lim 11/22/17 Copyright (c) 2010-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Structures (2I) Young Won Lim 4/17/18

Structures (2I) Young Won Lim 4/17/18 Structures (2I) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Class (1A) Young Won Lim 9/8/14

Class (1A) Young Won Lim 9/8/14 Class (1A) Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Fall 2011 Name: Page Points Score 1 5 2 10 3 10 4 7 5 8 6 15 7 4 8 7 9 16 10 18 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of

More information

Structures (2I) Young Won Lim 3/7/18

Structures (2I) Young Won Lim 3/7/18 Structures (2I) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Distributed Systems 8. Remote Procedure Calls

Distributed Systems 8. Remote Procedure Calls Distributed Systems 8. Remote Procedure Calls Paul Krzyzanowski pxk@cs.rutgers.edu 10/1/2012 1 Problems with the sockets API The sockets interface forces a read/write mechanism Programming is often easier

More information

Pointer Arithmetic. Lecture 4 Chapter 10. Robb T. Koether. Hampden-Sydney College. Wed, Jan 25, 2017

Pointer Arithmetic. Lecture 4 Chapter 10. Robb T. Koether. Hampden-Sydney College. Wed, Jan 25, 2017 Pointer Arithmetic Lecture 4 Chapter 10 Robb T. Koether Hampden-Sydney College Wed, Jan 25, 2017 Robb T. Koether (Hampden-Sydney College) Pointer Arithmetic Wed, Jan 25, 2017 1 / 36 1 Pointer Arithmetic

More information

Day05 A. Young W. Lim Sat. Young W. Lim Day05 A Sat 1 / 14

Day05 A. Young W. Lim Sat. Young W. Lim Day05 A Sat 1 / 14 Day05 A Young W. Lim 2017-10-07 Sat Young W. Lim Day05 A 2017-10-07 Sat 1 / 14 Outline 1 Based on 2 Structured Programming (2) Conditions and Loops Conditional Statements Loop Statements Type Cast Young

More information

Algorithms Bubble Sort (1B) Young Won Lim 4/5/18

Algorithms Bubble Sort (1B) Young Won Lim 4/5/18 Algorithms Bubble Sort (1B) Young Won Lim 4/5/18 Copyright (c) 2017 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

More information

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee C Language Part 1 (Minor modifications by the instructor) References C for Python Programmers, by Carl Burch, 2011. http://www.toves.org/books/cpy/ The C Programming Language. 2nd ed., Kernighan, Brian,

More information

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls Problems with sockets Distributed Systems Sockets interface is straightforward [connect] read/write [disconnect] Remote Procedure Calls BUT it forces read/write mechanism We usually use a procedure call

More information

Day02 A. Young W. Lim Sat. Young W. Lim Day02 A Sat 1 / 12

Day02 A. Young W. Lim Sat. Young W. Lim Day02 A Sat 1 / 12 Day02 A Young W. Lim 2017-10-07 Sat Young W. Lim Day02 A 2017-10-07 Sat 1 / 12 Outline 1 Based on 2 Introduction (2) - Basic Elements Basic Elements in C Programming Young W. Lim Day02 A 2017-10-07 Sat

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

Course Administration

Course Administration Fall 2017 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture 2/4 Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701 E-mail: kodi@ohio.edu

More information

CENG3420 Lecture 03 Review

CENG3420 Lecture 03 Review CENG3420 Lecture 03 Review Bei Yu byu@cse.cuhk.edu.hk 2017 Spring 1 / 38 CISC vs. RISC Complex Instruction Set Computer (CISC) Lots of instructions of variable size, very memory optimal, typically less

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: March 5, 2018 at 05:33 CS429 Slideset 11: 1 Alignment CS429 Slideset

More information

CS C Primer. Tyler Szepesi. January 16, 2013

CS C Primer. Tyler Szepesi. January 16, 2013 January 16, 2013 Topics 1 Why C? 2 Data Types 3 Memory 4 Files 5 Endianness 6 Resources Why C? C is exteremely flexible and gives control to the programmer Allows users to break rigid rules, which are

More information

Day08 A. Young W. Lim Mon. Young W. Lim Day08 A Mon 1 / 27

Day08 A. Young W. Lim Mon. Young W. Lim Day08 A Mon 1 / 27 Day08 A Young W. Lim 2017-10-16 Mon Young W. Lim Day08 A 2017-10-16 Mon 1 / 27 Outline 1 Based on 2 C Functions (2) Storage Class and Scope Storage Class Specifiers A. Storage Duration B. Scope C. Linkage

More information

ICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2

ICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 ICS 2008 Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 Data Representations Sizes of C Objects (in Bytes) C Data Type Compaq Alpha Typical 32-bit Intel IA32 int 4 4 4 long int 8 4 4

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

CS4617 Computer Architecture

CS4617 Computer Architecture 1/27 CS4617 Computer Architecture Lecture 7: Instruction Set Architectures Dr J Vaughan October 1, 2014 2/27 ISA Classification Stack architecture: operands on top of stack Accumulator architecture: 1

More information

Computer Organization MIPS ISA

Computer Organization MIPS ISA CPE 335 Computer Organization MIPS ISA Dr. Iyad Jafar Adapted from Dr. Gheith Abandah Slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE 232 MIPS ISA 1 (vonneumann) Processor Organization

More information

Pointers. Lecture 2 Sections Robb T. Koether. Hampden-Sydney College. Fri, Jan 18, 2013

Pointers. Lecture 2 Sections Robb T. Koether. Hampden-Sydney College. Fri, Jan 18, 2013 Pointers Lecture 2 Sections 10.3-10.8 Robb T. Koether Hampden-Sydney College Fri, Jan 18, 2013 Robb T. Koether (Hampden-Sydney College) Pointers Fri, Jan 18, 2013 1 / 35 1 Introduction 2 Pointer Arithmetic

More information

Fundamental of Programming (C)

Fundamental of Programming (C) Borrowed from lecturer notes by Omid Jafarinezhad Fundamental of Programming (C) Lecturer: Vahid Khodabakhshi Lecture 9 Pointer Department of Computer Engineering 1/46 Outline Defining and using Pointers

More information

Operators and Expressions:

Operators and Expressions: Operators and Expressions: Operators and expression using numeric and relational operators, mixed operands, type conversion, logical operators, bit operations, assignment operator, operator precedence

More information

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Solutions

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Solutions Fall 2011 Name: Page Points Score 1 7 2 10 3 8 4 13 6 17 7 4 8 16 9 15 10 10 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of the

More information

Pointers. Lecture 2 Sections Robb T. Koether. Hampden-Sydney College. Mon, Jan 20, 2014

Pointers. Lecture 2 Sections Robb T. Koether. Hampden-Sydney College. Mon, Jan 20, 2014 Pointers Lecture 2 Sections 10.3-10.8 Robb T. Koether Hampden-Sydney College Mon, Jan 20, 2014 Robb T. Koether (Hampden-Sydney College) Pointers Mon, Jan 20, 2014 1 / 35 1 Endianness 2 Pointer Arithmetic

More information

cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */

cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */ cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */ #include #include /* The above include is present so that the return type

More information

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls Announcements HW1 is due on this Friday (Sept 12 th ) Appendix A is very helpful to HW1. Check out system calls on Page A-48. Ask TA (Liquan chen: liquan@ece.rutgers.edu) about homework related questions.

More information

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

More information

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

More information

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski Operating Systems 18. Remote Procedure Calls Paul Krzyzanowski Rutgers University Spring 2015 4/20/2015 2014-2015 Paul Krzyzanowski 1 Remote Procedure Calls 2 Problems with the sockets API The sockets

More information

Preprocessing (2K) Young Won Lim 3/7/18

Preprocessing (2K) Young Won Lim 3/7/18 Preprocessing (2K) Copyright (c) 2014-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Instruction Set Principles and Examples. Appendix B

Instruction Set Principles and Examples. Appendix B Instruction Set Principles and Examples Appendix B Outline What is Instruction Set Architecture? Classifying ISA Elements of ISA Programming Registers Type and Size of Operands Addressing Modes Types of

More information

A few notes on using pointers in the C language

A few notes on using pointers in the C language A few notes on using pointers in the C language R.C. Maher EE475 Fall 2004 A C language pointer is a variable that contains the address of a variable. The address of a variable is a non-negative integer

More information

Representation of Information

Representation of Information Representation of Information CS61, Lecture 2 Prof. Stephen Chong September 6, 2011 Announcements Assignment 1 released Posted on http://cs61.seas.harvard.edu/ Due one week from today, Tuesday 13 Sept

More information

CS3350B Computer Architecture MIPS Instruction Representation

CS3350B Computer Architecture MIPS Instruction Representation CS3350B Computer Architecture MIPS Instruction Representation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

1.3b Type Conversion

1.3b Type Conversion 1.3b Type Conversion Type Conversion When we write expressions involved data that involves two different data types, such as multiplying an integer and floating point number, we need to perform a type

More information

ELF (1A) Young Won Lim 3/24/16

ELF (1A) Young Won Lim 3/24/16 ELF (1A) Copyright (c) 21-216 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Administrivia. Introduction to Computer Systems. Pointers, cont. Pointer example, again POINTERS. Project 2 posted, due October 6

Administrivia. Introduction to Computer Systems. Pointers, cont. Pointer example, again POINTERS. Project 2 posted, due October 6 CMSC 313 Introduction to Computer Systems Lecture 8 Pointers, cont. Alan Sussman als@cs.umd.edu Administrivia Project 2 posted, due October 6 public tests s posted Quiz on Wed. in discussion up to pointers

More information

Declaration. Fundamental Data Types. Modifying the Basic Types. Basic Data Types. All variables must be declared before being used.

Declaration. Fundamental Data Types. Modifying the Basic Types. Basic Data Types. All variables must be declared before being used. Declaration Fundamental Data Types All variables must be declared before being used. Tells compiler to set aside an appropriate amount of space in memory to hold a value. Enables the compiler to perform

More information

Side Effects (3A) Young Won Lim 1/13/18

Side Effects (3A) Young Won Lim 1/13/18 Side Effects (3A) Copyright (c) 2016-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

C programming basics T3-1 -

C programming basics T3-1 - C programming basics T3-1 - Outline 1. Introduction 2. Basic concepts 3. Functions 4. Data types 5. Control structures 6. Arrays and pointers 7. File management T3-2 - 3.1: Introduction T3-3 - Review of

More information

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher Reverse Engineering II: Basics Gergely Erdélyi Senior Antivirus Researcher Agenda Very basics Intel x86 crash course Basics of C Binary Numbers Binary Numbers 1 Binary Numbers 1 0 1 1 Binary Numbers 1

More information