Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception

Size: px
Start display at page:

Download "Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception"

Transcription

1 Outline A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception 1

2 4 Which stage is the branch decision made? Case 1: 0 M u x 1 Add The MEM stage IF/ID ID/EX EX/MEM MEM/WB Write Shift left 2 Add Add result Branch PCSrc 4.9 Branch Control Hazard PC Address Instruction memory Instruction Read register 1 Read Read data 1 register 2 isters Read Write data 2 register Write data Instruction [15 0] 16 Sign 32 extend ALUSrc 0 M u x 1 6 ALU control Zero ALU ALU result Address Write data MemWrite Data memory MemRead Read data Memto 1 M u x 0 Instruction [20 16] Instruction [15 11] 0 M u x 1 ALUOp Dst 2

3 Control (or Branch) Hazards Branch decision is made in the MEM stage Unable to determine the following instruction in pipeline immediately Control hazard will occur Stall the pipeline utill branch decision is known not efficient, slow the pipeline significantly! if $1=$3 Branch decision is made in the MEM stage 40 beq $1, $3, and $12, $2, $5 48 or $13, $6, $2 52 add $14, $2, $2 72 lw $3, 50($7) beq $1, $3, 28 nop nop nop IM DM IM DM IM DM IM DM lw $3, 50($7) IM DM 3 cycles are wasted 3

4 Better solution 1: predict branch outcome Predict branch not taken => continue with next sequential instructions Correct prediction => no penalty and save time Incorrect prediction => have to flush the pipeline behind the branch (see next slide Case 1: Assume branch not taken and prediction is correct Pipeline is executed as normal Addr beq $1, $3, 28 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2 lw $3, 50($7) 40 beq $1, $3, and $12, $2, $5 48 or $13, $6, $2 IM DM IM DM IM DM 52 add $14, $2, $2 IM DM 4

5 Better solution 1: predict branch outcome 2 Case 2: Assume Branch not taken, Incorrect Prediction (branch outcome is determined in MEM) Program execution order (in instructions) Time (in clock cycles) CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 40 beq $1, $3, 7 IM DM Nop 44 and $12, $2, $5 Nop 48 or $13, $6, $2 Nop 52 add $14, $2, $2 IM IM IM DM DM DM Flush these instructions (Set control values to 0) 72 lw $4, 50($7) PC IM DM 5

6 How flushing instructions is done? When misprediction occurs Flush: Zero out all the control values (or the instruction itself) in pipeline registers for the instructions following the branch that are already in the pipeline Similar to the strategy as for stalling on load use data hazard (RAW) CC1 CC2 CC3 CC4 CC5 Cleared 40 beq $1, $3, 7 IM DM Nop 44 and $12, $2, $5 Nop 48 or $13, $6, $2 Nop 52 add $14, $2, $2 IM IM IM DM DM DM Zero out all the control values (or the instruction itself) in pipeline registers for the instructions 72 lw $4, 50($7) IM DM 6

7 Better Solution 2:Reducing Branch Delay If branch decision is made at MEM stage, three instructions are flushed if misprediction occurs How to reduce Brach delay =>Decide branch outcome earlier (make decision in ID stage) =>only one instruction is flushed (IF stage) IM DM Flush this instruction IM DM IM DM 7

8 Original branch decision Hardware that are moved to ID stage => Target address calculation & ister Comparator PCSrc 0 M u x 1 IF/ID ID/EX EX/MEM MEM/WB Add 4 Write Shift left 2 Add Add result Branch PC Address Instruction memory Instruction Read register 1 Read data 1 Read register 2 isters Read Write data 2 register Write data Instruction [15 0] 16 Sign 32 extend ALUSrc 0 M u x 1 6 ALU control Zero ALU ALU result Address Write data MemWrite Data memory MemRead Read data Memto 1 M u x 0 Instruction [20 16] Instruction [15 11] 0 M u x 1 ALUOp Dst 8

9 IF.Flush Optimized Datapath for Branch IF.Flush signal zeros out the instruction (which follows the branch) in the IF/ID pipeline register target address calculation ister comparator PC 4 M u x Instruction memory IF/ID Hazard detection unit Control Shift left 2 0 isters M u x = ID/EX WB M EX M u x M u x ALU EX/MEM WB M Data memory MEM/WB WB M u x Sign extend M u x Forwarding unit Branch decision is moved from the MEM stage to the ID stage simplified drawing not showing enhancements to the forwarding and hazard detection units 9

10 Reducing Branch Delay by detecting at ID stage Two changes are needed to move the branch decision to the ID stage Target address calculation calculating the branch target address in ID stage, inputs to this adder, the PC value and the immediate fields are already available in the IF/ID pipeline register) ister comparator calculating the branch decision in ID stage, for equality test, by XORing respective bits and then ORing all the results and inverting, rather than using the ALU to subtract and then test for zero (when there is a carry delay) Also modify the forwarding and hazard detection units to forward to or stall the branch at the ID stage in case the branch decision depends on an earlier result (see textbook for more details) 10

11 Example: branch taken Reducing Branch Delay 36: sub $10, $4, $8 40: beq $1, $3, 7 44: and $12, $2, $5 48: or $13, $2, $6 52: add $14, $4, $2 56: slt $15, $6, $ : lw $4, 50($7) 11

12 36 sub $10, $4, $8 40 beq $1, $3, 7 44 and $12 $2, $5 48 or $13 $2, $6 52 add $14, $4, $2 56 slt $15, $6, $7 72 lw $4, 50($7) Example: Branch is predicted not taken, but actually taken Assume $1 == $3, and predict not taken, but prediction is incorrect) 12

13 36 sub $10, $4, $8 40 beq $1, $3, 7 44 and $12 $2, $5 48 or $13 $2, $6 52 add $14, $4, $2 56 slt $15, $6, $7 72 lw $4, 50($7) Example: Branch is predicted not taken, but actually taken Assume $1 == $3, and predict not taken (incorrect prediction) Optimized pipeline with only one bubble penalty 13

14 Data Hazards for Branches Are any stalls in need in the following instructions? If so, how many? Don t forget forwarding. add $1, $2, $3 add $4, $5, $6 add $6, $7, $8 beq $1, $4, target IM DM IM DM IM DM IM DM Solution: no stall, due to forwarding 14

15 Hidden Data Hazards for Branches 2 Are any stalls in need in the following instructions? If so, how many? Don t forget forwarding. lw $1, addr add $4, $5, $6 beq $1, $4, target 15

16 Data Hazards for Branches If a comparison register is a destination of immediately preceding load instruction Need 2 stall cycles lw $1, addr beq $1, $0, target How many stalls? lw $1, addr IF ID EX MEM WB nop IF ID nop ID beq $1, $0, target Solution: two stalls, even with forwarding 17 ID EX MEM WB

17 Static branch prediction (Recap) Branch Prediction Based on typical branch behavior Example: loop and if statement branches Predict backward branches taken Predict forward branches not taken taken Memory 0xf f ffffff 0x120040ac 0x Today: Dynamic branch prediction Prediction based on record recent history of each branch Hardware measures actual branch behavior Taken, Taken, Taken, Taken not taken data What is the next prediction? Taken for Not Taken? 0x c 0x x x word address 18

18 Better Solution 3: Dynamic Branch Prediction Improve prediction accuracy Based on the past history Use dynamic prediction Branch prediction buffer (aka branch history table) Indexed by recent branch instruction addresses Stores outcome (taken/not taken) To execute a branch Check table, expect the same outcome Based the table, make prediction Branch PC 1 Recent history (1 bit predictor) BHT 19

19 1 bit predictor: Example: 1 Bit Predictor When 0=> predict not taken, When 1=>predict taken, Change states when incorrectly predicted Example: assume four branches are taken, taken, taken, not taken, 1 bit predictor is initialized to 0, what is the prediction accuracy if 1 bit predictor is used Execution pattern T T T N Predictor value Predicted branch Correct or incorrect 0 N I 1 T C 1 T C 1 T I Accurac y=2/4 = 50% 20

20 Four states: 00, 01, 10, 11 2 Bit Predictor 00,01=> predict not taken, 10, 11=> prediction taken Only change prediction on two successive mispredictions bit predictor is initialized to 0 Execution Pattern Predictor value at time of prediction Predicted branch Prediction result in steady state T T 0 1 N N I I 21 N T T T N T T N T T T T I I C C I C

21 Another Example: Consider the following loop branch that branches nine times in a row (taken), and then is not taken once. Prediction accuracy for 1 bit predictor Prediction accuracy for 2 bit predictor 1 bit predictor Execution Pattern: Predictor value at time of prediction Predicted branch Prediction result in steady state 2 bit predictor Execution Pattern: Predictor value at time of prediction Predicted branch Prediction result in steady state Loop: sll $t1, $s3, 2 add $t1, $t1, $s6 lw $t0, 0($t1) bne $t0, $s5, Exit addi $s3, $s3, 1 j Loop Exit: T T T T T T T T T N T T T T T T T T T N N T T T T T T T T T N T T T T T T T T T I C C C C C C C C I I C C C C C C C C I Prediction accuracy (on average) for many loops: 80% T T T T T T T T T N T T T T T T T T T N T N N T T T T T T T T T T T T T T T T T T T I I C C C C C C C I C C C C C C C C C I C Prediction accuracy (on average) for many loops: 90% 22

22 Delay Branch Delay branch: the instruction after branch instruction, Sequential successor1, is always executed no matter taken or not taken called branch delay slot Schedule a instruction that always run Branch instruction Sequential successor1 Branch target if taken Delay Slot Scheduling branch delay slot to reduce branch penalties From before From target From fall through 23

23 Delay Branch (from target or fall through) From target and from fall through is used when from before is not available Effective in a 5 stage pipeline single issue But less effective in modern CPU with longer pipeline and multiple issues because Since s1 in ADD is not determined => can t be moved to delay slot Target DSUB is copied (not just moved) to delay slot Since $s1 in ADD is not determined => can t be moved to delay slot Not taken fallthrough instruction SUB is moved to delay slot Single delay slot is not enough 24

24 Outline A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception 27

25 Exceptions and Interrupts Unexpected events requiring change in flow of control Different ISAs use the terms differently Exception Arises within the CPU e.g., undefined opcode, overflow, syscall, Interrupt From an external I/O controller Dealing with them without sacrificing performance is hard 4.9 Exceptions Type of event From where? MIPS terminology I/O device request External Interrupt Invoke OS from user program Internal Exception Arithmetic overflow Internal Exception Using an undefined instruction Internal Exception Hardware malfunction Either Exception or interrupt 28

26 Handling Exceptions In MIPS, exceptions managed by a System Control Coprocessor (CP0) Save PC of offending (or interrupted) instruction In MIPS: Exception Program Counter (EPC) Save indication of the problem Cause register (Used by MIPS) We ll assume 1 bit, 0 for undefined opcode, 1 for overflow Vectored interrupts In MIPS, jump to handler at

27 Handler Actions Read cause, and transfer to relevant handler Determine action required If restartable Take corrective action use EPC to return to program Otherwise Terminate program Exception occurs Report error using EPC, cause, Save address to EPC Transfer control to OS and perform actions for exceptions Terminate the program Use EPC to restart the program Cause register Vectored interrupt 31

28 Exceptions in a Pipeline Another form of control hazard Flush later instructions Fetches new instructions Consider overflow on add in EX stage add $1, $2, $1 Prevent $1 from being clobbered Complete previous instructions Flush add and subsequent instructions Set Cause and EPC register values Transfer control to handler Similar to mispredicted branch Use much of the same hardware 32

29 Pipeline with Exceptions 33

30 Pipeline with Exceptions 2 Need to flush later instructions Flush IF stage IF.Flush : same as before Change to nop instructions Flush ID stage Add ID.Flush signal ID.Flush is Ored with stall signal from hazard detection unit Flush EX stage Add Ex.Flush to cause new MUX to zero the controls To start from location Add additional input to the PC MUX that sends to PC EPC and Cause register 34

31 Restartable exceptions Exception Properties Pipeline can flush the instruction Handler executes, then returns to the instruction Refetched and executed from scratch PC saved in EPC register Identifies causing instruction Actually PC + 4 is saved Handler must adjust 35

32 Exception Example Exception on add in 40 sub $11, $2, $4 44 and $12, $2, $5 48 or $13, $2, $6 4C add $1, $2, $1 50 slt $15, $6, $7 54 lw $16, 50($7) Handler sw $25, 1000($0) sw $26, 1004($0) 36

33 Exception Example cycle 6 37

34 Exception Example cycle 7 38

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University The Processor Logic Design Conventions Building a Datapath A Simple Implementation Scheme An Overview of Pipelining Pipelined

More information

The Processor: Improving the performance - Control Hazards

The Processor: Improving the performance - Control Hazards The Processor: Improving the performance - Control Hazards Wednesday 14 October 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

Lecture 9 Pipeline and Cache

Lecture 9 Pipeline and Cache Lecture 9 Pipeline and Cache Peng Liu liupeng@zju.edu.cn 1 What makes it easy Pipelining Review all instructions are the same length just a few instruction formats memory operands appear only in loads

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 21 and 22 April 22 and 27, 2009 martha@cs.columbia.edu Amdahl s Law Be aware when optimizing... T = improved Taffected improvement factor + T unaffected

More information

1 Hazards COMP2611 Fall 2015 Pipelined Processor

1 Hazards COMP2611 Fall 2015 Pipelined Processor 1 Hazards Dependences in Programs 2 Data dependence Example: lw $1, 200($2) add $3, $4, $1 add can t do ID (i.e., read register $1) until lw updates $1 Control dependence Example: bne $1, $2, target add

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ...

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ... CHAPTER 6 1 Pipelining Instruction class Instruction memory ister read ALU Data memory ister write Total (in ps) Load word 200 100 200 200 100 800 Store word 200 100 200 200 700 R-format 200 100 200 100

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Architecture Pipelining By: Dr. Alireza Abdollahpouri Pipelined MIPS processor Any instruction set can be implemented in many

More information

CENG 3420 Lecture 06: Pipeline

CENG 3420 Lecture 06: Pipeline CENG 3420 Lecture 06: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L06.1 Spring 2019 Outline q Pipeline Motivations q Pipeline Hazards q Exceptions q Background: Flip-Flop Control Signals CENG3420 L06.2

More information

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Determined by ISA and compiler. We will examine two MIPS implementations. A simplified version A more realistic pipelined version

Determined by ISA and compiler. We will examine two MIPS implementations. A simplified version A more realistic pipelined version MIPS Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S.

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S. Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing (2) Pipeline Performance Assume time for stages is ps for register read or write

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing Note: Appendices A-E in the hardcopy text correspond to chapters 7- in the online

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations Determined by ISA

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

EIE/ENE 334 Microprocessors

EIE/ENE 334 Microprocessors EIE/ENE 334 Microprocessors Lecture 6: The Processor Week #06/07 : Dejwoot KHAWPARISUTH Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2009, Elsevier (MK) http://webstaff.kmutt.ac.th/~dejwoot.kha/

More information

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl.

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl. Lecture 4: Review of MIPS Instruction formats, impl. of control and datapath, pipelined impl. 1 MIPS Instruction Types Data transfer: Load and store Integer arithmetic/logic Floating point arithmetic Control

More information

14:332:331 Pipelined Datapath

14:332:331 Pipelined Datapath 14:332:331 Pipelined Datapath I n s t r. O r d e r Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be timed to accommodate

More information

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University The Processor (3) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Pipeline Hazards Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hazards What are hazards? Situations that prevent starting the next instruction

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor 1 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A

More information

There are different characteristics for exceptions. They are as follows:

There are different characteristics for exceptions. They are as follows: e-pg PATHSHALA- Computer Science Computer Architecture Module 15 Exception handling and floating point pipelines The objectives of this module are to discuss about exceptions and look at how the MIPS architecture

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes NAME: STUDENT NUMBER: EE557--FALL 1999 MAKE-UP MIDTERM 1 Closed books, closed notes Q1: /1 Q2: /1 Q3: /1 Q4: /1 Q5: /15 Q6: /1 TOTAL: /65 Grade: /25 1 QUESTION 1(Performance evaluation) 1 points We are

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31 4.16 Exercises 419 Exercise 4.11 In this exercise we examine in detail how an instruction is executed in a single-cycle datapath. Problems in this exercise refer to a clock cycle in which the processor

More information

Chapter 4 The Processor 1. Chapter 4B. The Processor

Chapter 4 The Processor 1. Chapter 4B. The Processor Chapter 4 The Processor 1 Chapter 4B The Processor Chapter 4 The Processor 2 Control Hazards Branch determines flow of control Fetching next instruction depends on branch outcome Pipeline can t always

More information

MIPS An ISA for Pipelining

MIPS An ISA for Pipelining Pipelining: Basic and Intermediate Concepts Slides by: Muhamed Mudawar CS 282 KAUST Spring 2010 Outline: MIPS An ISA for Pipelining 5 stage pipelining i Structural Hazards Data Hazards & Forwarding Branch

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Chapter 4. The Processor. Jiang Jiang

Chapter 4. The Processor. Jiang Jiang Chapter 4 The Processor Jiang Jiang jiangjiang@ic.sjtu.edu.cn [Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, MK] Chapter 4 The Processor 2 Introduction CPU performance

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor? Chapter 4 The Processor 2 Introduction We will learn How the ISA determines many aspects

More information

ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University

ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University Prof. Mi Lu TA: Ehsan Rohani Laboratory Exercise #8 Dynamic Branch Prediction

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Recall. ISA? Instruction Fetch Instruction Decode Operand Fetch Execute Result Store Next Instruction Instruction Format or Encoding how is it decoded? Location of operands and

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard Computer Architecture and Organization Pipeline: Control Hazard Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 15.1 Pipelining Outline Introduction

More information

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions.

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions. Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions Stage Instruction Fetch Instruction Decode Execution / Effective addr Memory access Write-back Abbreviation

More information

DEE 1053 Computer Organization Lecture 6: Pipelining

DEE 1053 Computer Organization Lecture 6: Pipelining Dept. Electronics Engineering, National Chiao Tung University DEE 1053 Computer Organization Lecture 6: Pipelining Dr. Tian-Sheuan Chang tschang@twins.ee.nctu.edu.tw Dept. Electronics Engineering National

More information

LECTURE 10. Pipelining: Advanced ILP

LECTURE 10. Pipelining: Advanced ILP LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17" Short Pipelining Review! ! Readings!

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17 Short Pipelining Review! ! Readings! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 4.5-4.7!! (Over the next 3-4 lectures)! Lecture 17" Short Pipelining Review! 3! Processor components! Multicore processors and programming! Recap: Pipelining

More information

ECE/CS 552: Pipeline Hazards

ECE/CS 552: Pipeline Hazards ECE/CS 552: Pipeline Hazards Prof. Mikko Lipasti Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith Pipeline Hazards Forecast Program Dependences

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 251, Winter 2019, Assignment 5.1.1 3% of course mark Due Wednesday, March 27th, 5:30PM Lates accepted until 1:00pm March 28th with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

CSE 533: Advanced Computer Architectures. Pipelining. Instructor: Gürhan Küçük. Yeditepe University

CSE 533: Advanced Computer Architectures. Pipelining. Instructor: Gürhan Küçük. Yeditepe University CSE 533: Advanced Computer Architectures Pipelining Instructor: Gürhan Küçük Yeditepe University Lecture notes based on notes by Mark D. Hill and John P. Shen Updated by Mikko Lipasti Pipelining Forecast

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

ELE 655 Microprocessor System Design

ELE 655 Microprocessor System Design ELE 655 Microprocessor System Design Section 2 Instruction Level Parallelism Class 1 Basic Pipeline Notes: Reg shows up two places but actually is the same register file Writes occur on the second half

More information

Unresolved data hazards. CS2504, Spring'2007 Dimitris Nikolopoulos

Unresolved data hazards. CS2504, Spring'2007 Dimitris Nikolopoulos Unresolved data hazards 81 Unresolved data hazards Arithmetic instructions following a load, and reading the register updated by the load: if (ID/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

ECE154A Introduction to Computer Architecture. Homework 4 solution

ECE154A Introduction to Computer Architecture. Homework 4 solution ECE154A Introduction to Computer Architecture Homework 4 solution 4.16.1 According to Figure 4.65 on the textbook, each register located between two pipeline stages keeps data shown below. Register IF/ID

More information

Minimizing Data hazard Stalls by Forwarding Data Hazard Classification Data Hazards Present in Current MIPS Pipeline

Minimizing Data hazard Stalls by Forwarding Data Hazard Classification Data Hazards Present in Current MIPS Pipeline Instruction Pipelining Review: MIPS In-Order Single-Issue Integer Pipeline Performance of Pipelines with Stalls Pipeline Hazards Structural hazards Data hazards Minimizing Data hazard Stalls by Forwarding

More information

LECTURE 9. Pipeline Hazards

LECTURE 9. Pipeline Hazards LECTURE 9 Pipeline Hazards PIPELINED DATAPATH AND CONTROL In the previous lecture, we finalized the pipelined datapath for instruction sequences which do not include hazards of any kind. Remember that

More information

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science Pipeline Overview Dr. Jiang Li Adapted from the slides provided by the authors Outline MIPS An ISA for Pipelining 5 stage pipelining Structural and Data Hazards Forwarding Branch Schemes Exceptions and

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems)

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building

More information

Instruction Pipelining Review

Instruction Pipelining Review Instruction Pipelining Review Instruction pipelining is CPU implementation technique where multiple operations on a number of instructions are overlapped. An instruction execution pipeline involves a number

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science Cases that affect instruction execution semantics

More information

Homework 5. Start date: March 24 Due date: 11:59PM on April 10, Monday night. CSCI 402: Computer Architectures

Homework 5. Start date: March 24 Due date: 11:59PM on April 10, Monday night. CSCI 402: Computer Architectures Homework 5 Start date: March 24 Due date: 11:59PM on April 10, Monday night 4.1.1, 4.1.2 4.3 4.8.1, 4.8.2 4.9.1-4.9.4 4.13.1 4.16.1, 4.16.2 1 CSCI 402: Computer Architectures The Processor (4) Fengguang

More information

CS 351 Exam 2 Mon. 11/2/2015

CS 351 Exam 2 Mon. 11/2/2015 CS 351 Exam 2 Mon. 11/2/2015 Name: Rules and Hints The MIPS cheat sheet and datapath diagram are attached at the end of this exam for your reference. You may use one handwritten 8.5 11 cheat sheet (front

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Instruction Level Parallelism ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Basic Block A straight line code sequence with no branches in except to the entry and no branches

More information

CS/CoE 1541 Mid Term Exam (Fall 2018).

CS/CoE 1541 Mid Term Exam (Fall 2018). CS/CoE 1541 Mid Term Exam (Fall 2018). Name: Question 1: (6+3+3+4+4=20 points) For this question, refer to the following pipeline architecture. a) Consider the execution of the following code (5 instructions)

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN ARM COMPUTER ORGANIZATION AND DESIGN Edition The Hardware/Software Interface Chapter 4 The Processor Modified and extended by R.J. Leduc - 2016 To understand this chapter, you will need to understand some

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good CPU performance equation: T = I x CPI x C Both effective CPI and clock cycle C are heavily influenced by CPU design. For single-cycle CPU: CPI = 1 good Long cycle time bad On the other hand, for multi-cycle

More information

Lecture 2: Processor and Pipelining 1

Lecture 2: Processor and Pipelining 1 The Simple BIG Picture! Chapter 3 Additional Slides The Processor and Pipelining CENG 6332 2 Datapath vs Control Datapath signals Control Points Controller Datapath: Storage, FU, interconnect sufficient

More information

Question 1: (20 points) For this question, refer to the following pipeline architecture.

Question 1: (20 points) For this question, refer to the following pipeline architecture. This is the Mid Term exam given in Fall 2018. Note that Question 2(a) was a homework problem this term (was not a homework problem in Fall 2018). Also, Questions 6, 7 and half of 5 are from Chapter 5,

More information

Forwarding. March 31, Howard Huang 1

Forwarding. March 31, Howard Huang 1 Forwarding Just before Spring Break, we introduced a pipelined MIPS processor which executes several instructions simultaneously. Each instruction requires five stages, and five cycles, to complete. Each

More information

Chapter 4 The Processor (Part 4)

Chapter 4 The Processor (Part 4) Department of Electr rical Eng ineering, Chapter 4 The Processor (Part 4) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Engineering, Feng-Chia Unive ersity Outline

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong 1 EE 457 Unit 8 Exceptions What Happens When Things Go Wrong 2 What are Exceptions? Exceptions are rare events triggered by the hardware and forcing the processor to execute a software handler HW Interrupts

More information

Improve performance by increasing instruction throughput

Improve performance by increasing instruction throughput Improve performance by increasing instruction throughput Program execution order Time (in instructions) lw $1, 100($0) fetch 2 4 6 8 10 12 14 16 18 ALU Data access lw $2, 200($0) 8ns fetch ALU Data access

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering ECE260: Fundamentals of Computer Engineering Pipelined Datapath and Control James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania ECE260: Fundamentals of Computer Engineering

More information

Pipelining. lecture 15. MIPS data path and control 3. Five stages of a MIPS (CPU) instruction. - factory assembly line (Henry Ford years ago)

Pipelining. lecture 15. MIPS data path and control 3. Five stages of a MIPS (CPU) instruction. - factory assembly line (Henry Ford years ago) lecture 15 Pipelining MIPS data path and control 3 - factory assembly line (Henry Ford - 100 years ago) - car wash Multicycle model: March 7, 2016 Pipelining - cafeteria -... Main idea: achieve efficiency

More information

Improving Performance: Pipelining

Improving Performance: Pipelining Improving Performance: Pipelining Memory General registers Memory ID EXE MEM WB Instruction Fetch (includes PC increment) ID Instruction Decode + fetching values from general purpose registers EXE EXEcute

More information

ECE 486/586. Computer Architecture. Lecture # 12

ECE 486/586. Computer Architecture. Lecture # 12 ECE 486/586 Computer Architecture Lecture # 12 Spring 2015 Portland State University Lecture Topics Pipelining Control Hazards Delayed branch Branch stall impact Implementing the pipeline Detecting hazards

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 35: Final Exam Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Material from Earlier in the Semester Throughput and latency

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information