Lesson 3: The Control Unit

Size: px
Start display at page:

Download "Lesson 3: The Control Unit"

Transcription

1 Exercises Lesson 3: Computer Structure and Organization Graduate in Computer Sciences Graduate in Computer Engineering Academic course:

2 Lesson 3: Page: 2 / Lets be an elemental computer with the following elements: A 16 operations with two multiplexor attached to their inputs. Accumulator register to store temporal values. A 32 registers file with two outputs ports and one input port. PC attached to data / addresses bus. Main memory of 128 Mbytes of capacity ory reading and writing use two clock periods Data / addresses bus is 32 bits length. Execute next instruction: SHL F, 5 c. Design micro instruction format. Control ory 64k. d. Design the micro program for the above execution phase.

3 Lesson 3: Page: 3 / 12 Dir A Sal A Sal B X0, X1 Y0 Mux X Mux Y Dir B entera Talu oria a Dir A a Dir B R.Ins Desp./ DI. C.Fases Bus de datos / direcciones 2. Lest following elemental computer: A 8 operations : +,, arithmetic shift left and right AND, OR, XOR y logical shift right. Accumulator register to store temporal values. A 16 registers file with two outputs ports and one input port. Autoincremented PC. Main memory of 16Mbytes of capacity. Data bus and addresses bus are 32 bits length. All instruction formats are 4 words length.

4 Lesson 3: Page: 4 / 12 Inc Dir A Sal A Sal B X0 Dir B Mux X entera Mux Y Talu Y0 oria Tbdad Bus de datos Tadbd R.Ins Desp./ DI. C.Fases Bus de direcciones a Dir A a Dir B Execute next instruction: XOR F, [E h] c. Design micro instruction format. Control ory 64k. d. Design the micro program for the above execution phase. 3. Lets be the following elemental computer: A 16 operations. Input to Output transfer is one of its operations, as well ass A-B and B-A.

5 Lesson 3: Page: 5 / 12 Accumulator register to store temporal values. A 8 registers files with one input port and one output port. Autoincremented PC Main ory of 128Mbytes of capacity. Data and Addresses buses are 16 bits length. Data bus content can be transferred to Addresses bus and vice versa. Inc Dir. Salida entera Talu oria a Dir Tbdad Tadbd R.Ins Desp./ DI. C.Fases Bus de datos Bus de direcciones Execute next instruction: SUB [B++], A c. Design microinstruction format. Control ory 32k. d. Design the micro program for the above execution phase.

6 Lesson 3: Page: 6 / Lets be the following elemental computer: Two s: one of them is specialized in multiply and divide operations and the another one in addition and subtraction operations. Both s have an accumulator register to store temporal values. A 32 registers file with one input port and one output port.. Autoincremented PC Main ory of 32Mbytes of capacity. Data and Addresses buses are 32 bits length. Data bus content can be transferred to Addresses bus and vice versa. The whole instructions formats are 32 bits length. Inc Dir. Salida mul / div Talu 2 add / sub 2 Talu2 2 oria Tbdad Bus de datos Tadbd a Dir R.Ins Desp./ DI. C.Fases Bus de direcciones

7 Lesson 3: Page: 7 / 12 Execute the following instruction: Div C, D c. Design microinstruction format. Control ory 32k. d. Design the micro program for the above execution phase. 5. Lets be the next elemental computer: A 32 operations with the possibility of input to output transfer. Temporal and Accumulator registers to store temporal values which cannot be used by assembly language. 16 register files with two output ports and one input port. Stack pointer attached to addresses register Main memory: 16 Mbytes of capacity Data bus content can be transferred to Addresses bus and vice versa. Buses are 32 bits length The whole instruction formats are 32 bits length. Execute next instruction: ADD A, B

8 Lesson 3: Page: 8 / 12 Dir A Sal A Sal B X0, X1 Y0 Mux X Mux Y Dir B entera Talu oria Bus de datos / direcciones Tsp Lsp SP Ttmp Ltmp Tmp R.Ins Desp./ DI. C.Fases a Dir A a Dir B 6. Lets be following elemental computer: Two specialized s: one in multiply and dicide operations, addition and subtraction the another one. Temporal and Accumulator register to store temporal values with no assembly access. 32 registers file with one input and output ports. Autoincremented PC.. Stack pointer attached to addresses bus. Main memory of 32Mbytes of capacity Buses are 32 bits length. The whole instruction formats are 32 bits length.

9 Lesson 3: Page: 9 / 12 Data bus content can be transferred to Addresses bus and vice versa. Inc Dir. Salida 1 mul / div Talu Mux X 2 X0 2 add / sub 2 Talu2 2 oria Tbdad Tadbd Bus de datos Tsp Lsp SP Ttmp Ltmp Tmp R.Ins Desp./ DI. Bus de direcciones C.Fases a Dir Execute following isntructions: ADD [[B h]], [C h] 7. Lets be a elemental computer as follows.: Two specialized s. a fixed point and a floating point one.

10 Lesson 3: Page: 10 / 12 Temporal and Accumulator registers to store temporal values which cannot be used by assembly language. Two 32 registers file with one input and output ports. One for fixed point registers and the another for floating point ones. Autoincremented PC Main ory of 4Gbytes of capacity. Buses are 32 bits length. The whole instruction formats are 32 bits length. Data bus content can be transferred to Addresses bus and vice versa. Inc Dir A Salida de coma fija X0 Mux X Mux Y coma fija Y0 Talu Ltmp Tmp Ttmp oria 2 Sal A de coma flotante Sal B Talu2 2 2 coma flotante Mux X X0' Mux Y 2 Y0' Tbdad Tadbd a Dir A Bus de datos Bus de direcciones R.Ins Desp./ DI. C.Fases Dir A Dir B a Dir B Execute following instruction: MULF D, C, 3.27

11 Lesson 3: Page: 11 / Lets be next elemental computer: A 16 operations. 3 registers file: B, C and D. Main ory of 640Kbytes. Data and Addresses buses are 32 bits length Execute following instruction: SUB B, [ C h ] a. Modify bellow computer if needed b. Describe elemental operation to perform in each execution phase c. Draw above instruction chronogram

12 Lesson 3: Page: 12 / Lets be following elemental computer: A 16 operations. Datapath contains PC, SP and Accumulator register, as well as a 3 registers file. Main memory 32 Kbytes of capacity. Data bus: 8 bits. Addreses bus: 16 bits. Instructions have different sizes Execute next instruction: POP B

Lesson 2. Instruction set design

Lesson 2. Instruction set design Exercises Lesson 2. Computer Structure and Organization Graduate in Computer Sciences Graduate in Computer Engineering Lesson 2: Page: 2 / 6 1. Lets a 32 bits word computer with a register file of 16 registers

More information

CHAPTER 8: Central Processing Unit (CPU)

CHAPTER 8: Central Processing Unit (CPU) CS 224: Computer Organization S.KHABET CHAPTER 8: Central Processing Unit (CPU) Outline Introduction General Register Organization Stack Organization Instruction Formats Addressing Modes 1 Major Components

More information

TYPES OF INTERRUPTS: -

TYPES OF INTERRUPTS: - There are 3 types of interrupts. TYPES OF INTERRUPTS: - External Interrupts. Internal Interrupts. Software interrupts. Hardware Interrupts (1) External interrupts come from I/O devices, from a timing device

More information

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers

The register set differs from one computer architecture to another. It is usually a combination of general-purpose and special purpose registers Part (6) CPU BASICS A typical CPU has three major components: 1- register set, 2- arithmetic logic unit (ALU), 3- control unit (CU). The figure below shows the internal structure of the CPU. The CPU fetches

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats Computer Architecture and Organization Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Immediate Addressing

More information

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 153) Pass Marks: 24

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 153) Pass Marks: 24 Prepared By ASCOL CSIT 2070 Batch Institute of Science and Technology 2065 Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 153) Pass

More information

16-Bit Intel Processor Architecture

16-Bit Intel Processor Architecture IBM-PC Organization 16-Bit Intel Processor Architecture A-16 bit microprocessor can operate on 16 bits of data at a time. 8086/8088 have the simplest structure 8086/8088 have the same instruction set,

More information

COMPUTER ARCHITECTURE AND PARALEL PROCESSING STUDY NOTES

COMPUTER ARCHITECTURE AND PARALEL PROCESSING STUDY NOTES COMPUTER ARCHITECTURE AND PARALEL PROCESSING STUDY NOTES UNIT 1 INTRODUCTION Central Processing unit (CPU): Alternately referred to as a processor, central processor, or microprocessor, the CPU is the

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

STRUCTURE OF DESKTOP COMPUTERS

STRUCTURE OF DESKTOP COMPUTERS Page no: 1 UNIT 1 STRUCTURE OF DESKTOP COMPUTERS The desktop computers are the computers which are usually found on a home or office desk. They consist of processing unit, storage unit, visual display

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15]

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] Code No: 09A50402 R09 Set No. 2 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] 2. (a) Discuss asynchronous serial transfer concept? (b) Explain in

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Computer Organization and Architecture (CSCI-365) Sample Final Exam

Computer Organization and Architecture (CSCI-365) Sample Final Exam Computer Organization and Architecture (CSCI-365) Sample Final Exam NAME: STUDENT NUMBER 1. Consider a computer system with 64Kbytes main memory and 256bytes cache. If we assume the cache line size is

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Computer Architecture Programming the Basic Computer

Computer Architecture Programming the Basic Computer 4. The Execution of the EXCHANGE Instruction The EXCHANGE routine reads the operand from the effective address and places it in DR. The contents of DR and AC are interchanged in the third microinstruction.

More information

CDA 3103 Computer Organization Homework #7 Solution Set

CDA 3103 Computer Organization Homework #7 Solution Set CDA 3103 Computer Organization Homework #7 Solution Set 1 Problems 1. Write a MARIE assembly program for the following algorithm where the subroutine takes two numbers and returns their product. Your assembly

More information

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Addressing Modes Addressing Modes and Formats Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin http://akademik.bahcesehir.edu.tr/~naydin Immediate Direct Indirect Register Register

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

COMPUTER ORGANIZATION & ARCHITECTURE

COMPUTER ORGANIZATION & ARCHITECTURE COMPUTER ORGANIZATION & ARCHITECTURE Instructions Sets Architecture Lesson 5a 1 What are Instruction Sets The complete collection of instructions that are understood by a CPU Can be considered as a functional

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

SOEN228, Winter Revision 1.2 Date: October 25,

SOEN228, Winter Revision 1.2 Date: October 25, SOEN228, Winter 2003 Revision 1.2 Date: October 25, 2003 1 Contents Flags Mnemonics Basic I/O Exercises Overview of sample programs 2 Flag Register The flag register stores the condition flags that retain

More information

S3.0 : A multicore 32-bit Processor

S3.0 : A multicore 32-bit Processor S3.0 : A multicore 32-bit Processor S3.0 is a multicore version of S2.1 simple processor. This is a typical simple 32-bit processor. It has three-address instructions and 32 registers. Most operations

More information

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string.

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string. 1 od 5 17. 12. 2017 23:53 (https://github.com/schweigi/assembler-simulator) Introduction This simulator provides a simplified assembler syntax (based on NASM (http://www.nasm.us)) and is simulating a x86

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

Topics. Computer Organization CS Exam 2 Review. Infix Notation. Reverse Polish Notation (RPN)

Topics. Computer Organization CS Exam 2 Review. Infix Notation. Reverse Polish Notation (RPN) Computer Organization CS 231-01 Exam 2 Review Dr. William H. Robinson October 11, 2004 http://eecs.vanderbilt.edu/courses/cs231/ Topics Education is a progressive discovery of our own ignorance. Will Durant

More information

Assembly Language Programming Assignment 1

Assembly Language Programming Assignment 1 U08809 Microprocessors Assembly Language Programming Assignment 1 1. Write a short assembly program that illustrates the use of the direct addressing mode, and the use of the MUL function 2 number2 slot

More information

REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

More information

Question Bank Part-A UNIT I- THE 8086 MICROPROCESSOR 1. What is microprocessor? A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary information

More information

Chapter 9. Programming Framework

Chapter 9. Programming Framework Chapter 9 Programming Framework Lesson 1 Registers Registers Pointers Accumulator Status General Purpose Outline CPU Registers Examples 8-bitA (Accumulator) Register 8-bit B Register 8-bitPSW (Processor

More information

Its Assembly language programming

Its Assembly language programming 8085 Architecture & Its Assembly language programming Dr A Sahu Dept of Computer Science & Engineering IIT Guwahati 8085 Era and Features 8085 Outline Block diagram (Data Path) Bus Structure Register Structure

More information

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud.

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud. Chapter 1 Microprocessor architecture ECE 3130 Dr. Mohamed Mahmoud The slides are copyright protected. It is not permissible to use them without a permission from Dr Mahmoud http://www.cae.tntech.edu/~mmahmoud/

More information

Instruction Sets: Characteristics and Functions Addressing Modes

Instruction Sets: Characteristics and Functions Addressing Modes Instruction Sets: Characteristics and Functions Addressing Modes Chapters 10 and 11, William Stallings Computer Organization and Architecture 7 th Edition What is an Instruction Set? The complete collection

More information

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions Structure of von Nuemann machine Arithmetic and Logic Unit Input Output Equipment Main Memory Program Control Unit 1 1 Instruction Set - the type of Instructions Arithmetic + Logical (ADD, SUB, MULT, DIV,

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

Interfacing Compiler and Hardware. Computer Systems Architecture. Processor Types And Instruction Sets. What Instructions Should A Processor Offer?

Interfacing Compiler and Hardware. Computer Systems Architecture. Processor Types And Instruction Sets. What Instructions Should A Processor Offer? Interfacing Compiler and Hardware Computer Systems Architecture FORTRAN 90 program C++ program Processor Types And Sets FORTRAN 90 Compiler C++ Compiler set level Hardware 1 2 What s Should A Processor

More information

Signed number Arithmetic. Negative number is represented as

Signed number Arithmetic. Negative number is represented as Signed number Arithmetic Signed and Unsigned Numbers An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the first 128 combinations (0 to 127) represent positive numbers

More information

Note that none of the above MAY be a VALID ANSWER.

Note that none of the above MAY be a VALID ANSWER. ECE 270 Learning Outcome 4-1 - Practice Exam / Solution OUTCOME #4: An ability to design and implement computer logic circuits. Multiple Choice select the single most appropriate response for each question.

More information

Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1

Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1 Darshan Institute of Engineering & Technology for Diploma Studies Unit - 1 1. Draw and explain 4 bit binary arithmetic or adder circuit diagram. A binary parallel adder is digital function that produces

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Computer Structure. Unit 4. Processor

Computer Structure. Unit 4. Processor Computer Structure Unit 4. Processor Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contents Computer elements Processor organization

More information

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE INSTRUCTION SET ARCHITECTURE Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Appendix A, John L. Hennessy and David A. Patterson, Morgan Kaufmann,

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

session 7. Datapath Design

session 7. Datapath Design General Objective: Determine the hardware requirement of a digital computer based on its instruction set. Specific Objectives: Describe the general concepts in designing the data path of a digital computer

More information

Computer Architecture and Organization: L04: Micro-operations

Computer Architecture and Organization: L04: Micro-operations Computer Architecture and Organization: L4: Micro-operations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com, hafez@research.iiit.ac.in 1 Outlines 1. Arithmetic microoperation 2.

More information

Introduction. 3 major parts of CPU : Fig Design Examples of simple CPU. In this chapter : Chap. 8. Chap. 8 Central Processing Unit

Introduction. 3 major parts of CPU : Fig Design Examples of simple CPU. In this chapter : Chap. 8. Chap. 8 Central Processing Unit Central Processing Unit 8-1 Introduction 3 major parts of CPU : Fig. 8-1 1) Register Set 2) ALU 3) Control Design Examples of simple CPU Hardwired Control : Chap. 5 Microprogrammed Control : Chap. 7 In

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

REGISTER TRANSFER AND MICROOPERATIONS

REGISTER TRANSFER AND MICROOPERATIONS 1 REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1 Part II Instruction-Set Architecture Jan. 211 Computer Architecture, Instruction-Set Architecture Slide 1 Short review of the previous lecture Performance = 1/(Execution time) = Clock rate / (Average CPI

More information

Computer Architecture

Computer Architecture Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

More information

Computer Architecture Lecture No.4 5-Instruction Set Architecture and Design 5-1 Memory locations and Operations. word

Computer Architecture Lecture No.4 5-Instruction Set Architecture and Design 5-1 Memory locations and Operations. word 5-Instruction Set Architecture and Design There are basic principles involved in instruction set architecture and design. Therefore, this section includes many important issues will discuss. 5-1 Memory

More information

MOXSYN. General Description. Features. Symbol

MOXSYN. General Description. Features. Symbol MOXSYN C68MX11 CPU General Description The C68MX11 CPU core is based on the Motorola M68HC11 microcontroller controller, but has an enhanced full 16 bit architecture, thus requiring less clock cycles for

More information

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output 8085 SATISH CHANDRA What is a Microprocessor? The word comes from the combination micro and processor. Processor means a device that processes whatever. In this context, processor means a device that processes

More information

Introduction to MIPS Processor

Introduction to MIPS Processor Introduction to MIPS Processor The processor we will be considering in this tutorial is the MIPS processor. The MIPS processor, designed in 1984 by researchers at Stanford University, is a RISC (Reduced

More information

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design MC92Computer Organization Unit 4 Lesson Processor Design Basic Processing Unit Connection Between the Processor and the Memory Memory MAR PC MDR R Control IR R Processo ALU R n- n general purpose registers

More information

Fig: Computer memory with Program, data, and Stack. Blog - NEC (Autonomous) 1

Fig: Computer memory with Program, data, and Stack. Blog -   NEC (Autonomous) 1 Central Processing Unit 1. Stack Organization A useful feature that is included in the CPU of most computers is a stack or last in, first out (LIFO) list. A stack is a storage device that stores information

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

COMPUTER HARDWARE. Instruction Set Architecture

COMPUTER HARDWARE. Instruction Set Architecture COMPUTER HARDWARE Instruction Set Architecture Overview Computer architecture Operand addressing Addressing architecture Addressing modes Elementary instructions Data transfer instructions Data manipulation

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

complement) Multiply Unsigned: MUL (all operands are nonnegative) AX = BH * AL IMUL BH IMUL CX (DX,AX) = CX * AX Arithmetic MUL DWORD PTR [0x10]

complement) Multiply Unsigned: MUL (all operands are nonnegative) AX = BH * AL IMUL BH IMUL CX (DX,AX) = CX * AX Arithmetic MUL DWORD PTR [0x10] The following pages contain references for use during the exam: tables containing the x86 instruction set (covered so far) and condition codes. You do not need to submit these pages when you finish your

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1 CSIS1120A 10. Instruction Set & Addressing Mode CSIS1120A 10. Instruction Set & Addressing Mode 1 Elements of a Machine Instruction Operation Code specifies the operation to be performed, e.g. ADD, SUB

More information

10-1 C D Pearson Education, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

10-1 C D Pearson Education, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e 10-1 C D E A B 10-2 A B A B C (A B) C D A A B (A B) C E D (A B) C D E (A B) C + D E (A B) C 10-3 Opcode Mode Address or operand 10-4 Memory 250 Opcode Mode PC = 250 251 ADRS 252 Next instruction ACC Opcode:

More information

Register Oriented Instruction Set Rois24_24 variant

Register Oriented Instruction Set Rois24_24 variant Register Oriented Instruction Set Rois24_24 variant James Brakefield Contents Instruction Set Op-codes Variations 1. Instruction Set Register to register Immediate1 Immediate2 Immediate3 X: Op-code D:

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Computer Architecture

Computer Architecture http://www.bsccsit.com/ Computer Architecture CSC. 201 Third Semester Prepared By: Arjun Singh Saud Special thanks to Mr. Arjun Singh Saud for providing this valuable note! Chapter 1 Data representation

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

INSTRUCTION SET AND EXECUTION

INSTRUCTION SET AND EXECUTION SECTION 6 INSTRUCTION SET AND EXECUTION Fetch F1 F2 F3 F3e F4 F5 F6 Decode D1 D2 D3 D3e D4 D5 Execute E1 E2 E3 E3e E4 Instruction Cycle: 1 2 3 4 5 6 7 MOTOROLA INSTRUCTION SET AND EXECUTION 6-1 SECTION

More information

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

PROBLEMS. 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory? 446 CHAPTER 7 BASIC PROCESSING UNIT (Corrisponde al cap. 10 - Struttura del processore) PROBLEMS 7.1 Why is the Wait-for-Memory-Function-Completed step needed when reading from or writing to the main memory?

More information

Register Transfer and Micro-operations

Register Transfer and Micro-operations Register Transfer Language Register Transfer Bus Memory Transfer Micro-operations Some Application of Logic Micro Operations Register Transfer and Micro-operations Learning Objectives After reading this

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: Logic Operations and Introduction to Conditionals Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Previously examined

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor?

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor? UNIT-I INTRODUCTION TO MICROPROCESSOR A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time. (i) The first commercially available microprocessor was

More information

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE Final Page 1 of 7 UNIVERSITY OF CALIFORNIA, RIVERSIDE Computer Science Department CS61 Machine Organization & Assembly Language Final September 1, 2000 53 Name: Solution Key Student ID#: Please print legibly

More information

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support Components of an ISA EE 357 Unit 11 MIPS ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats William Stallings Computer Organization and Architecture 8 th Edition Chapter 11 Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

Implementing Algorithms in MIPS Assembly

Implementing Algorithms in MIPS Assembly 1 / 18 Implementing Algorithms in MIPS Assembly (Part 1) January 28 30, 2013 2 / 18 Outline Effective documentation Arithmetic and logical expressions Compositionality Sequentializing complex expressions

More information

Multi cycle Processor Modification

Multi cycle Processor Modification Multi cycle Processor Modification Introduction Modification of the multi cycle processor deals with changing the datapath and control. In this design, the datapath is implemented in multicycle.v (Verilog

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

3.0 Instruction Set. 3.1 Overview

3.0 Instruction Set. 3.1 Overview 3.0 Instruction Set 3.1 Overview There are 16 different P8 instructions. Research on instruction set usage was the basis for instruction selection. Each instruction has at least two addressing modes, with

More information