Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns

Size: px
Start display at page:

Download "Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns"

Transcription

1 Chapter Si Pipelining Improve perfomance by increasing instruction throughput eecutionı Time lw $, ($) access lw $2, 2($) 8 ns access lw $3, 3($) eecutionı Time lw $, ($) lw $2, 2($) 2 ns 8 ns access ı access 8 ns... lw $3, 3($) 2 ns access 2 ns 2 ns 2 ns 2 ns 2 ns Ideal speedup is number of stages in the pipeline. Do we achieve this? 2

2 Pipelining What makes it easy all instructions are the same length just a few instruction formats operands appear only in loads and stores What makes it hard? structural hazards: suppose we had only one control hazards: need to worry about branch instructions hazards: an instruction depends on a previous instruction We ll build a simple pipeline and look at these issues We ll talk about modern processors and what really makes it hard: eception handling trying to improve performance with out-of-order eecution, etc. 3 Basic Idea IF: ID: decode/ı register file read EX: Eecute/ı address calculation E: emory access : Write back ı register register 2 isters register 2 Zero ı 6 etend 32 What do we need to add to actually split the path into stages?

3 Pipelined Datapath IF/ID ID/EX EX/E E/ ı register register 2 isters register 2 Zero ı 6 etend 32 Can you find a problem even if there are no dependencies? What instructions can we eecute to manifest the problem? 5 Corrected Datapath IF/ID ID/EX EX/E E/ ı register register 2 isters register 2 Zero ı 6 etend 32 6

4 Graphically Representing Pipelines eecutionı lw $, 2($) Time (in clock cycles) CC CC 2 CC 3 CC CC 5 CC 6 sub $, $2, $3 Can help with answering questions like: how many cycles does it take to eecute this code? what is the doing during cycle? use this representation to help understand paths 7 Pipeline Control Src IF/ID ID/EX EX/E E/ Write ı Branch register register 2 isters 2 register [5 ] 6 32 etend Src 6 ı control Zero ı emwrite emread emto [2 6] [5 ] Op Dst 8

5 Pipeline control We have 5 stages. What needs to be controlled in each stage? Fetch and Increment Decode / ister Fetch Eecution emory Stage Write Back How would control be handled in an automobile plant? a fancy control center telling everyone what to do? should we use a finite state machine? 9 Pipeline Control Pass control signals along just like the Eecution/ Calculation stage control lines emory access stage control lines stage control lines Dst Op Op Src Branch em Read em Write write em to R-format lw sw X X beq X X Control EX IF/ID ID/EX EX/E E/

6 Datapath with Control Src Control ID/EX EX/E E/ IF/ID EX Write register register 2 isters 2 register ı Src Zero ı Branch emwrite emto [5 ] 6 32 etend 6 ı control emread [2 6] [5 ] Dst Op Dependencies Problem with starting net instruction before first is finished dependencies that go backward in time are hazards Time (in clock cycles) Value of ı register $2: eecutionı sub $2, $, $3 CC CC 2 CC 3 CC CC 5 CC 6 CC 7 CC 8 CC 9 / and $2, $2, $5 or $3, $6, $2 add $, $2, $2 sw $5, ($2) 2

7 Software Solution Have compiler guarantee no hazards Where do we insert the nops? sub $2, $, $3 and $2, $2, $5 or $3, $6, $2 add $, $2, $2 sw $5, ($2) Problem: this really slows us down! 3 Forwarding Use temporary s, don t wait for them to be written register file forwarding to handle read/write to same register forwarding Time (in clock cycles) CC CC 2 CC 3 CC CC 5 CC 6 CC 7 CC 8 CC 9 Value of register $2 : / Value of EX/E : X X X 2 X X X X X Value of E/ : X X X X 2 X X X X eecution sub $2, $, $3 and $2, $2, $5 or $3, $6, $2 add $, $2, $2 sw $5, ($2) what if this $2 was $3?

8 Forwarding ID/EX EX/E Control E/ IF/ID EX isters IF/ID.isterRs Rs IF/ID.isterRt Rt IF/ID.isterRt IF/ID.isterRd Rt Rd EX/E.isterRd Forwardingı unit E/.isterRd 5 Can't always forward Load word can still cause a hazard: an instruction tries to read a register following a load instruction that writes to the same register. eecutionı lw $2, 2($) Time (in clock cycles) CC CC 2 CC 3 CC CC 5 CC 6 CC 7 CC 8 CC 9 and $, $2, $5 or $8, $2, $6 add $9, $, $2 slt $, $6, $7 Thus, we need a hazard detection unit to stall the load instruction 6

9 Stalling We can stall the pipeline by keeping an instruction in the same stage Time (in clock cycles) eecutionı CC CC 2 CC 3 CC CC 5 CC 6 CC 7 CC 8 CC 9 CC lw $2, 2($) and $, $2, $5 or $8, $2, $6 add $9, $, $2 bubble slt $, $6, $7 7 Hazard Detection Unit Stall by letting an instruction that won t write anything go forward Hazardı detectionı unit ID/EX.emRead ID/EX IF/IDWrite IF/ID Control EX EX/E E/ Write isters IF/ID.isterRs IF/ID.isterRt IF/ID.isterRt IF/ID.isterRd ID/EX.isterRt Rt Rd Rs Rt Forwardingı unit EX/E.isterRd E/.isterRd 8

10 Branch Hazards When we decide to branch, other instructions are in the pipeline! eecutionı Time (in clock cycles) CC CC 2 CC 3 CC CC 5 CC 6 CC 7 CC 8 CC 9 beq $, $3, 7 and $2, $2, $5 8 or $3, $6, $2 52 add $, $2, $2 72 lw $, 5($7) We are predicting branch not taken need to add hardware for flushing instructions if we are wrong 9 Flushing s IF.Flush Hazardı detectionı unit ID/EX EX/E Control E/ IF/ID EX isters = etend Forwardingı unit 2

11 Improving Performance Try and avoid stalls! E.g., reorder these instructions: lw $t, ($t) lw $t2, ($t) sw $t2, ($t) sw $t, ($t) a branch delay slot the net instruction after a branch is always eecuted rely on compiler to fill the slot with something useful Superscalar: start more than one instruction in the same cycle 2 Dynamic Scheduling The hardware performs the scheduling hardware tries to find instructions to eecute out of order eecution is possible speculative eecution and dynamic branch prediction All modern processors are very complicated DEC Alpha 226: 9 stage pipeline, 6 instruction issue Power and Pentium: branch history table Compiler technology important This class has given you the background you need to learn more Video: An Overview of Intel s Pentium Processor (available from University Video Communications) 22

Improve performance by increasing instruction throughput

Improve performance by increasing instruction throughput Improve performance by increasing instruction throughput Program execution order Time (in instructions) lw $1, 100($0) fetch 2 4 6 8 10 12 14 16 18 ALU Data access lw $2, 200($0) 8ns fetch ALU Data access

More information

Chapter 4 (Part II) Sequential Laundry

Chapter 4 (Part II) Sequential Laundry Chapter 4 (Part II) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Sequential Laundry 6 P 7 8 9 10 11 12 1 2 A T a s k O r d e r A B C D 30 30 30 30 30 30 30 30 30 30

More information

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ...

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ... CHAPTER 6 1 Pipelining Instruction class Instruction memory ister read ALU Data memory ister write Total (in ps) Load word 200 100 200 200 100 800 Store word 200 100 200 200 700 R-format 200 100 200 100

More information

What do we have so far? Multi-Cycle Datapath (Textbook Version)

What do we have so far? Multi-Cycle Datapath (Textbook Version) What do we have so far? ulti-cycle Datapath (Textbook Version) CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instruction being processed in datapath How to lower CPI further? #1 Lec # 8 Summer2001

More information

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1,

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1, SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Chapter 6 ADMIN ing for Chapter 6: 6., 6.9-6.2 2 Midnight Laundry Task order A 6 PM 7 8 9 0 2 2 AM B C D 3 Smarty

More information

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good CPU performance equation: T = I x CPI x C Both effective CPI and clock cycle C are heavily influenced by CPU design. For single-cycle CPU: CPI = 1 good Long cycle time bad On the other hand, for multi-cycle

More information

Pipeline Data Hazards. Dealing With Data Hazards

Pipeline Data Hazards. Dealing With Data Hazards Pipeline Data Hazards Warning, warning, warning! Dealing With Data Hazards In Software inserting independent instructions In Hardware inserting bubbles (stalling the pipeline) data forwarding Data Data

More information

What do we have so far? Multi-Cycle Datapath

What do we have so far? Multi-Cycle Datapath What do we have so far? lti-cycle Datapath CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instrction being processed in datapath How to lower CPI frther? #1 Lec # 8 Spring2 4-11-2 Pipelining pipelining

More information

Designing a Pipelined CPU

Designing a Pipelined CPU Designing a Pipelined CPU CSE 4, S2'6 Review -- Single Cycle CPU CSE 4, S2'6 Review -- ultiple Cycle CPU CSE 4, S2'6 Review -- Instruction Latencies Single-Cycle CPU Load Ifetch /Dec Exec em Wr ultiple

More information

Enhanced Performance with Pipelining

Enhanced Performance with Pipelining Chapter 6 Enhanced Performance with Pipelining Note: The slides being presented represent a mi. Some are created by ark Franklin, Washington University in St. Lois, Dept. of CSE. any are taken from the

More information

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions?

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions? Basic Instruction Timings Pipelining 1 Making some assumptions regarding the operation times for some of the basic hardware units in our datapath, we have the following timings: Instruction class Instruction

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

Overview of Pipelining

Overview of Pipelining EEC 58 Compter Architectre Pipelining Department of Electrical Engineering and Compter Science Cleveland State University Fndamental Principles Overview of Pipelining Pipelined Design otivation: Increase

More information

Multi-cycle Datapath (Our Version)

Multi-cycle Datapath (Our Version) ulti-cycle Datapath (Our Version) npc_sel Next PC PC Instruction Fetch IR File Operand Fetch A B ExtOp ALUSrc ALUctr Ext ALU R emrd emwr em Access emto Data em Dst Wr. File isters added: IR: Instruction

More information

微算機系統第六章. Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學. Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold

微算機系統第六章. Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學. Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold 微算機系統第六章 Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學 chap6- Pipeline is natural! Laundry Example Ann, Brian, athy, Dave each have one load of clothes to wash, dry, and fold A B D Washer takes

More information

Instruction fetch. MemRead. IRWrite ALUSrcB = 01. ALUOp = 00. PCWrite. PCSource = 00. ALUSrcB = 00. R-type completion

Instruction fetch. MemRead. IRWrite ALUSrcB = 01. ALUOp = 00. PCWrite. PCSource = 00. ALUSrcB = 00. R-type completion . (Chapter 5) Fill in the vales for SrcA, SrcB, IorD, Dst and emto to complete the Finite State achine for the mlti-cycle datapath shown below. emory address comptation 2 SrcA = SrcB = Op = fetch em SrcA

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Computer Architecture Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Computer Science and Engineering Shanghai Jiao Tong University Parallel

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S.

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S. Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing (2) Pipeline Performance Assume time for stages is ps for register read or write

More information

1 Hazards COMP2611 Fall 2015 Pipelined Processor

1 Hazards COMP2611 Fall 2015 Pipelined Processor 1 Hazards Dependences in Programs 2 Data dependence Example: lw $1, 200($2) add $3, $4, $1 add can t do ID (i.e., read register $1) until lw updates $1 Control dependence Example: bne $1, $2, target add

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

14:332:331 Pipelined Datapath

14:332:331 Pipelined Datapath 14:332:331 Pipelined Datapath I n s t r. O r d e r Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be timed to accommodate

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing Note: Appendices A-E in the hardcopy text correspond to chapters 7- in the online

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

Lecture 6: Pipelining

Lecture 6: Pipelining Lecture 6: Pipelining i CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

Processor (II) - pipelining. Hwansoo Han

Processor (II) - pipelining. Hwansoo Han Processor (II) - pipelining Hwansoo Han Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 =2.3 Non-stop: 2n/0.5n + 1.5 4 = number

More information

ECE154A Introduction to Computer Architecture. Homework 4 solution

ECE154A Introduction to Computer Architecture. Homework 4 solution ECE154A Introduction to Computer Architecture Homework 4 solution 4.16.1 According to Figure 4.65 on the textbook, each register located between two pipeline stages keeps data shown below. Register IF/ID

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed Lecture 3: General Purpose Processor Design CSCE 665 Advanced VLSI Systems Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, tet etc included in slides are borrowed from various books, websites,

More information

CPU Pipelining Issues

CPU Pipelining Issues CPU Pipelining Issues What have you been beating your head against? This pipe stuff makes my head hurt! L17 Pipeline Issues & Memory 1 Pipelining Improve performance by increasing instruction throughput

More information

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Pipeline Hazards Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hazards What are hazards? Situations that prevent starting the next instruction

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University The Processor Logic Design Conventions Building a Datapath A Simple Implementation Scheme An Overview of Pipelining Pipelined

More information

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4 The Processor 1. Chapter 4B. The Processor

Chapter 4 The Processor 1. Chapter 4B. The Processor Chapter 4 The Processor 1 Chapter 4B The Processor Chapter 4 The Processor 2 Control Hazards Branch determines flow of control Fetching next instruction depends on branch outcome Pipeline can t always

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Architecture Pipelining By: Dr. Alireza Abdollahpouri Pipelined MIPS processor Any instruction set can be implemented in many

More information

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moore s Law Gordon Moore @ Intel (1965) 2 Computer Architecture Trends (1)

More information

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception Outline A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception 1 4 Which stage is the branch decision made? Case 1: 0 M u x 1 Add

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Data Hazards in a Pipelined Datapath James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Data

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University The Processor (3) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Processor Architecture

Processor Architecture Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W12-M

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W12-M CSE 22 Computer Organization Hugh Chesser, CSEB 2U W2- Graphical Representation Time 2 6 8 add $s, $t, $t IF ID E E Decode / Execute emory Back fetch from / stage into the instruction register file. Shading

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

Chapter 6: Pipelining

Chapter 6: Pipelining Chapter 6: Pipelining Otline An overview of pipelining A pipelined path Pipelined control Data hazards and forwarding Data hazards and stalls Branch hazards Eceptions Sperscalar and dynamic pipelining

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

Orange Coast College. Business Division. Computer Science Department. CS 116- Computer Architecture. Pipelining

Orange Coast College. Business Division. Computer Science Department. CS 116- Computer Architecture. Pipelining Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture Pipelining Recall Pipelining is parallelizing execution Key to speedups in processors Split instruction

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Computer Design and Test Lab. Indian Institute of Science (IISc) Bangalore virendra@computer.org Advance Computer Architecture http://www.serc.iisc.ernet.in/~viren/courses/aca/aca.htm

More information

Advanced Computer Architecture Pipelining

Advanced Computer Architecture Pipelining Advanced Computer Architecture Pipelining Dr. Shadrokh Samavi Some slides are from the instructors resources which accompany the 6 th and previous editions of the textbook. Some slides are from David Patterson,

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

ECEC 355: Pipelining

ECEC 355: Pipelining ECEC 355: Pipelining November 8, 2007 What is Pipelining Pipelining is an implementation technique whereby multiple instructions are overlapped in execution. A pipeline is similar in concept to an assembly

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

Ti Parallel Computing PIPELINING. Michał Roziecki, Tomáš Cipr

Ti Parallel Computing PIPELINING. Michał Roziecki, Tomáš Cipr Ti5317000 Parallel Computing PIPELINING Michał Roziecki, Tomáš Cipr 2005-2006 Introduction to pipelining What is this What is pipelining? Pipelining is an implementation technique in which multiple instructions

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Graduate Computer Architecture Lecture 6 - Hazards Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27)

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27) Lecture Topics Today: Data and Control Hazards (P&H 4.7-4.8) Next: continued 1 Announcements Exam #1 returned Milestone #5 (due 2/27) Milestone #6 (due 3/13) 2 1 Review: Pipelined Implementations Pipelining

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

Chapter 7. Microarchitecture. Copyright 2013 Elsevier Inc. All rights reserved.

Chapter 7. Microarchitecture. Copyright 2013 Elsevier Inc. All rights reserved. Chapter 7 Microarchitecture 1 Figure 7.1 State elements of MIPS processor 2 Figure 7.2 Fetch instruction from memory 3 Figure 7.3 Read source operand from register file 4 Figure 7.4 Sign-extend the immediate

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture2 Pipelining: Basic and Intermediate Concepts Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each

More information

Determined by ISA and compiler. We will examine two MIPS implementations. A simplified version A more realistic pipelined version

Determined by ISA and compiler. We will examine two MIPS implementations. A simplified version A more realistic pipelined version MIPS Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3. Emil Sekerinski, McMaster University, Fall Term 2015/16

4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3. Emil Sekerinski, McMaster University, Fall Term 2015/16 4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3 Emil Sekerinski, McMaster University, Fall Term 2015/16 Instruction Execution Consider simplified MIPS: lw/sw rt, offset(rs) add/sub/and/or/slt

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 21 and 22 April 22 and 27, 2009 martha@cs.columbia.edu Amdahl s Law Be aware when optimizing... T = improved Taffected improvement factor + T unaffected

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Pipelining James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy What is Pipelining? Pipelining

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e Instruction Level Parallelism Appendix C and Chapter 3, HP5e Outline Pipelining, Hazards Branch prediction Static and Dynamic Scheduling Speculation Compiler techniques, VLIW Limits of ILP. Implementation

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei How Can We Improve the Performance? Exec Time = IC * CPI * CCT Optimization IC CPI CCT Source Level * Compiler * * ISA * * Organization * * Technology * With Pipelining We

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations Determined by ISA

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 4. The Processor BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Compter Architectre Chapter 3 & Appendi C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Compter Science and Engineering Shanghai Jiao Tong University 1 Otline Introdction

More information

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 8: Data Hazard and Resolution James C. Hoe Department of ECE Carnegie ellon University 18 447 S18 L08 S1, James C. Hoe, CU/ECE/CALC, 2018 Your goal today Housekeeping detect and resolve

More information

DEE 1053 Computer Organization Lecture 6: Pipelining

DEE 1053 Computer Organization Lecture 6: Pipelining Dept. Electronics Engineering, National Chiao Tung University DEE 1053 Computer Organization Lecture 6: Pipelining Dr. Tian-Sheuan Chang tschang@twins.ee.nctu.edu.tw Dept. Electronics Engineering National

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

ELE 655 Microprocessor System Design

ELE 655 Microprocessor System Design ELE 655 Microprocessor System Design Section 2 Instruction Level Parallelism Class 1 Basic Pipeline Notes: Reg shows up two places but actually is the same register file Writes occur on the second half

More information

Computer Architecture Spring 2016

Computer Architecture Spring 2016 Computer Architecture Spring 2016 Lecture 02: Introduction II Shuai Wang Department of Computer Science and Technology Nanjing University Pipeline Hazards Major hurdle to pipelining: hazards prevent the

More information

EIE/ENE 334 Microprocessors

EIE/ENE 334 Microprocessors EIE/ENE 334 Microprocessors Lecture 6: The Processor Week #06/07 : Dejwoot KHAWPARISUTH Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2009, Elsevier (MK) http://webstaff.kmutt.ac.th/~dejwoot.kha/

More information

(Basic) Processor Pipeline

(Basic) Processor Pipeline (Basic) Processor Pipeline Nima Honarmand Generic Instruction Life Cycle Logical steps in processing an instruction: Instruction Fetch (IF_STEP) Instruction Decode (ID_STEP) Operand Fetch (OF_STEP) Might

More information

CS420/520 Homework Assignment: Pipelining

CS420/520 Homework Assignment: Pipelining CS42/52 Homework Assignment: Pipelining Total: points. 6.2 []: Using a drawing similar to the Figure 6.8 below, show the forwarding paths needed to execute the following three instructions: Add $2, $3,

More information

EECS 322 Computer Architecture Improving Memory Access: the Cache

EECS 322 Computer Architecture Improving Memory Access: the Cache EECS 322 Computer Architecture Improving emory Access: the Cache Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow

More information

CENG 3420 Lecture 06: Pipeline

CENG 3420 Lecture 06: Pipeline CENG 3420 Lecture 06: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L06.1 Spring 2019 Outline q Pipeline Motivations q Pipeline Hazards q Exceptions q Background: Flip-Flop Control Signals CENG3420 L06.2

More information

PS Midterm 2. Pipelining

PS Midterm 2. Pipelining PS idterm 2 Pipelining Seqential Landry 6 P 7 8 9 idnight Time T a s k O r d e r A B C D 3 4 2 3 4 2 3 4 2 3 4 2 Seqential landry takes 6 hors for 4 loads If they learned pipelining, how long wold landry

More information

CSE 533: Advanced Computer Architectures. Pipelining. Instructor: Gürhan Küçük. Yeditepe University

CSE 533: Advanced Computer Architectures. Pipelining. Instructor: Gürhan Küçük. Yeditepe University CSE 533: Advanced Computer Architectures Pipelining Instructor: Gürhan Küçük Yeditepe University Lecture notes based on notes by Mark D. Hill and John P. Shen Updated by Mikko Lipasti Pipelining Forecast

More information