Advanced Microcontrollers Grzegorz Budzyń Lecture. 1: Introduction

Size: px
Start display at page:

Download "Advanced Microcontrollers Grzegorz Budzyń Lecture. 1: Introduction"

Transcription

1 Advanced Microcontrollers Grzegorz Budzyń Lecture 1: Introduction

2 Plan Introduction Course requirements Workplan for thesemester Firstlecture Basic definitions, Microcontroller, Microprocessor

3 Introduction Whatisthiscourseabout Whatistheaimofthiscourse

4 Courserequirements Course consists of: Lecture 2h/week Project 2h/week Courseendswithanexam Course completion requires passing project classandtheexam Theexamwill be heldduringexamination period andwill be oral

5 Lecture1 Workplanfor thesemster Basic definitions. Embedded systems. Main elements of embedded systems Lecture2 8-bit microcontrollers: AVR family. PIC Micro family Lecture3 8-bit/16-bitmicrocontrollers:8051 family, MSP430 family

6 Lecture4 Workplanfor thesemster 32-bit microcontrollers: AVR32 and PIC32 family Lecture5 32-bit microcontrollers: ARM family. ARM7, ARM9, ARM11, Cortex M, R, A Lecture6 32-bit microcontrollers: ARM based microcontrollers: STM, NXP

7 Lecture7 Workplanfor thesemster DSC & PSoCcontrollers Lecture8 DSP processors Lecture 9,10 Serial interfaces: USB, RS232, SPI, I2C, CAN

8 Workplanfor thesemster Lecture11 ADC anddac Lecture 12,13 RTOS introduction, main parameters Lecture14 RTOS -examples Lecture15 Methods of interfacing ADC and DAC to advanced microcontrollers

9 Lecture1 Embedded systems Microcontrollers

10 Embedded systems

11 Embedded systems Embedded system a system designed to perform/ control specific function in a larger design Often with real time computing constraints (i.e. with predictable response)

12 Embedded systems

13 Embedded systems Because Embedded System has defined functionality, thus it can be heavily optimized in order to: Minimize total cost Maximize performance Maximize perfomance/cost ratio

14 Embedded systems Main elements: Microcontrollers: 8-bit 16-bit 32-bit Digital Signal Processors Digital Signal Controllers FPGA / ASIC programmable logic

15 Embedded systems Embedded software architecture: Simple control tasks/loops: Used for simples applications Used mostly for 8-bit and 16-bit constructions Efficient (in assembly code even very efficient) Difficult to construct for more complicated tasks

16 Embedded systems Embedded software architecture: Interrupt based system: Most common type of embedded system software architecture Can be very efficient and rapid in development even for quite complicated tasks/devices Functionality depends greatly on the used microcontroller : Number of serviced interrupt sources Interrupt latency

17 Embedded systems Embedded software architecture: Simple real-time operating system: Very usable for programming different, nondependent on themselves tasks Very usable for parallel development by a few programmers Timing control & latency control worse than in simpler systems Cooperative or Preemptive multitasking can be used

18 Embedded systems Embedded software architecture: Monolithic operating system: Large kernel gives programmers an environment similar to a desktop operating systems like MS Windows (WinCE, Win 8 RT), Linux or Android Usable in the largest applications like GPS or cell phones Hardware layer controlled totally by the system applications isolated from the hardware

19 Microcontroller- basics

20 Microcontrollers - basics Microcontroller is a combination of a microprocessor and peripheral blocks like: Memory (RAM, ROM, flash) Serial port Ethernet controllers USB controllers ADC DAC etc

21 Microcontrollers - basics Microprocessor (CPU) inside a microcontroller (MCU) is supervising data transfer berween peripherals over data buses Main advantages of MCUs are: High integration scale Low cost

22

23 Microprocessor- operation

24 Microprocessor - basics Microprocessor: is a programmable device accepts digital input data processes the data according to instructions stored in memory provides results as output operates on symbols represented in binary numeral system

25 Microprocessor - basics Main elements: Arithmethic Logic Unit Status Register Stack Pointer Program Counter Instruction Decoder Registers / Scratch Memory

26 Microprocessor - basics

27 Microprocessor - ALU ALU Arithmetic Logic Unit is the heart of microprocessor Width of A,B and R defines if microprocessor is 8-, 16-, 32- or 64 bits!!!

28 Microprocessor - ALU Functionality of ALU depends on the paticular realisation Usually it offers: Addition Subtraction Comparison Logical operations Multiplication Division

29 Microprocessor Status register Status register contains various flags and control bits Flags in the register are modified by different assembly code instructions

30 Microprocessor Stack Pointer TheStackismainlyused: for storing temporary data for storing local variables for storing return addresses after interrupts and subroutine calls The Stack Pointer Register always points to the top ofthestack the Stack is implemented as growing from higher memory locations to lower memory locations

31 Microprocessor Program Counter Program Counter (PC) - a special register holding the address of the instruction currently being executed Programcounter is automatically advanced to point to the next instruction in the case of a jump, subroutine call, etc., a new value will simply be loaded into the program counter in order to cause a jump

32 Microprocessor Instruction decoder Instruction decoder fetches instructions from a proper memory In the next cycle the instructions are decoded and then executed For faster execution pipelining is used

33 Microprocessor Registers Each CPU consists of a certain number of universal registers They are usually used as temporary storage of data In some CPUs instead of registers a memory is used Access to the registers/momey is much faster than to external memory

34 Microprocessor program flow

35 Microprocessor program flow The program control logic and programaddressgenerationlogicworktogetherto provide proper program flow Normally, theflowofa program issequential: the CPU executes instructions at consecutive program-memory addresses Discontinuities are caused by branches, function calls or interrupts

36 Microprocessor program flow Program execution starts from the address pointed by a special RESET pointer Instructionsareina machinecode i.e. streamof8-, 16-or32b longvalues For simplicity assembly code is used:

37 Microprocessor memory map

38 Microprocessor addressing modes

39 Microprocessor addressing modes Direct Single Register Addressing Direct Register Addressing, Two Registers I/O Direct Addressing Direct Data Addressing Data Indirect with Displacement Data Indirect Addressing Data Indirect Addressing with Pre-decrement

40 Microprocessor addressing modes Data Indirect Addressing with Post-increment Program Memory Constant Addressing Program Memory Addressing with Postincrement Direct Program Memory Addressing Indirect Program Memory Addressing Relative Program Memory Addressing

41 DirectSingle Register Addressing Very simple, efficient and fast addressing mode Usableonlyfor accessto register file

42 Direct Register Addressing, Two Registers Very simple, efficient and fast addressing mode Usableonlyfor accessto register file

43 I/O Direct Addressing Easyandefficientaccessto I/O memory Access only to limited memory space(6-bit wide)

44 DirectData Addressing Access to wholememoryspace Instruction takes much more memory Instruction decoding lasts long

45 Data IndirectwithDisplacementAddressing Target address calculated in dependance on the special addressing-register (Y orz)

46 Data IndirectAddressing Targetaddresstakefromthespecial addressing-register (X, Y orz)

47 Data Indirect Addressing with Pre-decrement The content of an addressing register is decremented before use Especially useful in higher level languages

48 Data IndirectAddressingwithPost-increment The content of an addressing register is incremented after use Especially useful in higher level languages

49 Program MemoryConstantAddressing Access to program memory(loadingwithlpm or storing with SPM instructions)

50 Program Memory Addressing with Post-increment Access to program memory(loadingwithlpm or storing with SPM instructions) Z-register incremented after use

51 DirectProgram MemoryAddressing Program execution continues at the address immediate in the instruction word UsedinJMP andcall instructions

52 IndirectProgram MemoryAddressing Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Zregister)

53 RelativeProgram MemoryAddressing Program executioncontinuesataddresspc + k + 1. Therelativeaddressk isfrom-2048 to 2047.

54 Microprocessor- classifications

55 Microprocessorclassifications SIMD ang. Single Instruction Multiple Data SISD ang. Single Instruction Single Data MIMD ang. Multiple Instruction Multiple Data MISD ang. Multiple Instruction Single Data

56 Microprocessorclassifications CISC ang. Complex Instruction Set Computers RISC ang. Reduced Instruction Set Computers

57 Microprocessorclassifications Architectures: Von Neuman Harvard Harvard modified

58 Microprocessorclassifications SISD features: One data stream One instruction stream Simple construction Reduced efficiency Very popular Most microcontrollers works with this architeture Source: [1]

59 Microprocessorclassifications MISD features: Many instruction streams Single data stream Parallel operation Many unitsmakesthe same operationon one data Rarely used Source: [1]

60 Microprocessorclassifications SIMD features: Single instruction stream Many data streams Efficient parallel processing Different data processed in the same way Used in supercomputers, vector coprocessors and DSP Source: [1]

61 Microprocessorclassifications MIMD features: Many instruction streams Many data streams Efficient parallel processing Many units operates independently and asynchronously Used in computation networks Source: [1]

62 Microprocessorclassifications CISC architecture: Large number of instructions Small optimization Some instructions need many clock cycles Existance of complex instructions Large number of addressing modes Smallerprocessorclockingas comparedto RISC architecture

63 Microprocessorclassifications RISC architecture: Reduced number of instructions(even below 30) Most instructions performed in one clock cycyle Instructions simple or very simple Limited access to memory Large number of auxiliary registers

64 Microprocessorclassifications Von Neumann architecture Source: [2]

65 Microprocessorclassifications Harvard architecture Source: [2]

66 8-bits vs16-bits vs32-bits Some remarks: More bits= easier operation with large number of data More bits = less problems with computation errors More bits faster operation

67 8-bits vs16-bits vs32-bits Some remarks: Simpler processors can be overclocked more easily 32-bit processors are usually fasterbecause that is necessary Smaller processors are very often much more efficient and simpler for programming then their large brothers

68 Numbers in microcontrollers CPUs natively support only integer numbers signed or unsigned CPU accumulator width defines size of supported numbers: 8b -> [0;0xff] = [0;255] 16b -> [0;0xffff] = [0;65535] 32b -> [0;0xffffffff] = [0; ]

69 Numbers in microcontrollers Signed integers are usually written in U2 code: i.e. -1 = 0xff -128 = 0x80

70 Numbers in microcontrollers In CPUs there is problem with non-integer numbers Some CPUs support fractional numbers Some have additional coprocessor (Floating Point Unit FPU) for real numbers calculation

71 Numbers in microcontrollers Comparison of Integer and Fractional numbers:

72 Numbers in microcontrollers Integer: 8-bit (Byte) 16-bit (Word) 32-bit (Long) Float: Single precision (float) Double precision (double)

73 Numbers in microcontrollers Single precision: S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF X = ( 1) S 1. F 2 E 127 S sign E exponent bits F - fraction

74 Numbers in microcontrollers Double precision: S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF X = ( 1) S 1. F 2 E 1023 S sign E exponent bits F - fraction

75 Endiannes Endiannes is the same as byte-order Big-endian = MSB goes first Little-endian = LSB goes first

76 Benchmarking

77 Benchmarking Benchmarking is used for speed comparation of microprocessors and microcontrollers Comparing microprocessors is difficult Comparing microcontrollers is even more difficult itisfairlyeasyto comparecoresbut very hard to compare peripherals!!!

78 Benchmarking Main measures of microcontrollers core speed are: MIPS DMIPS FLOPS

79 Benchmarking-MIPS MIPS Millions of Instructions Per Second Simplealgorithmusuallyused speedofnop instruction Comparison of processors speeds requires thorough analysis. The speed of a given CPU is dependent upon many factors: the type of instructions being executed, the execution order and the presence of branch instructions(pipeline!)

80 Benchmarking-MIPS CPU instruction rates are usuallydifferent from clock frequencies Each instruction usuallyrequire several clock cycles to complete The number of cycles required for instructions to complete is dependent upon the instruction being executed MIPS can be useful when comparing performance between processors made from a similar architecture

81 Benchmarking-DMIPS DMIPS anothernamefor Dhrystonetype computer speed test Dhrystone is a synthetic computing benchmark intended to be representative of system (integer) programming Thealgorithmiswelldocumentedandcan be made to work on almost any system

82 Benchmarking-DMIPS DMIPS shortcomings: it features unusual code that is not usually representative of real-life programs it is susceptible to compiler optimizations Dhrystone'ssmall code size may fit in the instruction cache of a modern CPU, so that instruction fetch performance is not rigorously tested

83 Benchmarking-FLOPS FLOPS - FLoating-point Operations Per Second Measure of floating point arithmetic operation speed of a microcontroller Similarto MIPS but for floatingpoint numbers

84 Thank you for your attention

85 References [1] [2] Computer-Architecture [3]

Universität Dortmund. ARM Architecture

Universität Dortmund. ARM Architecture ARM Architecture The RISC Philosophy Original RISC design (e.g. MIPS) aims for high performance through o reduced number of instruction classes o large general-purpose register set o load-store architecture

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

COMP3221: Microprocessors and. and Embedded Systems. Instruction Set Architecture (ISA) What makes an ISA? #1: Memory Models. What makes an ISA?

COMP3221: Microprocessors and. and Embedded Systems. Instruction Set Architecture (ISA) What makes an ISA? #1: Memory Models. What makes an ISA? COMP3221: Microprocessors and Embedded Systems Lecture 2: Instruction Set Architecture (ISA) http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session 2, 2005 Instruction Set Architecture (ISA) ISA is

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

ELC4438: Embedded System Design Embedded Processor

ELC4438: Embedded System Design Embedded Processor ELC4438: Embedded System Design Embedded Processor Liang Dong Electrical and Computer Engineering Baylor University 1. Processor Architecture General PC Von Neumann Architecture a.k.a. Princeton Architecture

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Micro Architecture Nawin Somyat Department of Electrical and Computer Engineering Thammasat University 28 August 2018 Outline Course Contents 1 Introduction 2 Simple

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

Embedded Systems Design (630414) Lecture 1 Introduction to Embedded Systems Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630414) Lecture 1 Introduction to Embedded Systems Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630414) Lecture 1 Introduction to Embedded Systems Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Definition of an E.S. It is a system whose principal function is not computational,

More information

FIFTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY-MARCH 2014 EMBEDDED SYSTEMS (Common for CT,CM) [Time: 3 hours] (Maximum marks : 100)

FIFTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY-MARCH 2014 EMBEDDED SYSTEMS (Common for CT,CM) [Time: 3 hours] (Maximum marks : 100) (Revision-10) FIFTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY-MARCH 2014 EMBEDDED SYSTEMS (Common for CT,CM) [Time: 3 hours] (Maximum marks : 100) PART-A (Maximum marks : 10) I. Answer all

More information

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 GBI0001@AUBURN.EDU ELEC 6200-001: Computer Architecture and Design Silicon Technology Moore s law Moore's Law describes a long-term trend in the history

More information

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA)

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA) COMP2121: Microprocessors and Interfacing Instruction Set Architecture (ISA) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Contents Memory models Registers Data types Instructions

More information

ECE 471 Embedded Systems Lecture 2

ECE 471 Embedded Systems Lecture 2 ECE 471 Embedded Systems Lecture 2 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 3 September 2015 Announcements HW#1 will be posted today, due next Thursday. I will send out

More information

ECE 471 Embedded Systems Lecture 2

ECE 471 Embedded Systems Lecture 2 ECE 471 Embedded Systems Lecture 2 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 7 September 2018 Announcements Reminder: The class notes are posted to the website. HW#1 will

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

EE 354 Fall 2015 Lecture 1 Architecture and Introduction

EE 354 Fall 2015 Lecture 1 Architecture and Introduction EE 354 Fall 2015 Lecture 1 Architecture and Introduction Note: Much of these notes are taken from the book: The definitive Guide to ARM Cortex M3 and Cortex M4 Processors by Joseph Yiu, third edition,

More information

Typical Processor Execution Cycle

Typical Processor Execution Cycle Typical Processor Execution Cycle Instruction Fetch Obtain instruction from program storage Instruction Decode Determine required actions and instruction size Operand Fetch Locate and obtain operand data

More information

Embedded Computing Platform. Architecture and Instruction Set

Embedded Computing Platform. Architecture and Instruction Set Embedded Computing Platform Microprocessor: Architecture and Instruction Set Ingo Sander ingo@kth.se Microprocessor A central part of the embedded platform A platform is the basic hardware and software

More information

3.1 Description of Microprocessor. 3.2 History of Microprocessor

3.1 Description of Microprocessor. 3.2 History of Microprocessor 3.0 MAIN CONTENT 3.1 Description of Microprocessor The brain or engine of the PC is the processor (sometimes called microprocessor), or central processing unit (CPU). The CPU performs the system s calculating

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

Computer Hardware Requirements for Real-Time Applications

Computer Hardware Requirements for Real-Time Applications Lecture (4) Computer Hardware Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Real-Time Systems, Prof. Kasim Al-Aubidy 1 Lecture

More information

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture I Benny Thörnberg Associate Professor in Electronics Hardware architecture Computer architecture The functionality of a modern computer is so complex that no human can

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Module 2: Introduction to AVR ATmega 32 Architecture

Module 2: Introduction to AVR ATmega 32 Architecture Module 2: Introduction to AVR ATmega 32 Architecture Definition of computer architecture processor operation CISC vs RISC von Neumann vs Harvard architecture AVR introduction AVR architecture Architecture

More information

Chapter 5. Introduction ARM Cortex series

Chapter 5. Introduction ARM Cortex series Chapter 5 Introduction ARM Cortex series 5.1 ARM Cortex series variants 5.2 ARM Cortex A series 5.3 ARM Cortex R series 5.4 ARM Cortex M series 5.5 Comparison of Cortex M series with 8/16 bit MCUs 51 5.1

More information

COMPUTER STRUCTURE AND ORGANIZATION

COMPUTER STRUCTURE AND ORGANIZATION COMPUTER STRUCTURE AND ORGANIZATION Course titular: DUMITRAŞCU Eugen Chapter 4 COMPUTER ORGANIZATION FUNDAMENTAL CONCEPTS CONTENT The scheme of 5 units von Neumann principles Functioning of a von Neumann

More information

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 Trends of 32-bit microcontrollers

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers AVR Architecture Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 23, 2018 Aly El-Osery (NMT) EE 308:

More information

Microprocessors and Microcontrollers. Assignment 1:

Microprocessors and Microcontrollers. Assignment 1: Microprocessors and Microcontrollers Assignment 1: 1. List out the mass storage devices and their characteristics. 2. List the current workstations available in the market for graphics and business applications.

More information

ARM ARCHITECTURE. Contents at a glance:

ARM ARCHITECTURE. Contents at a glance: UNIT-III ARM ARCHITECTURE Contents at a glance: RISC Design Philosophy ARM Design Philosophy Registers Current Program Status Register(CPSR) Instruction Pipeline Interrupts and Vector Table Architecture

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

Microprocessor Architecture Dr. Charles Kim Howard University

Microprocessor Architecture Dr. Charles Kim Howard University EECE416 Microcomputer Fundamentals Microprocessor Architecture Dr. Charles Kim Howard University 1 Computer Architecture Computer System CPU (with PC, Register, SR) + Memory 2 Computer Architecture ALU

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

Slides for Lecture 6

Slides for Lecture 6 Slides for Lecture 6 ENCM 501: Principles of Computer Architecture Winter 2014 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 28 January,

More information

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O ECE2049-E17 Lecture 4 1 ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O Administrivia Homework 1: Due today by 7pm o Either place in box in ECE office or give to me o Office hours tonight!

More information

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA)

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective Introduce MSP430 Instruction Set Architecture (Class of ISA,

More information

MICROPROCESSOR BASED SYSTEM DESIGN

MICROPROCESSOR BASED SYSTEM DESIGN MICROPROCESSOR BASED SYSTEM DESIGN Lecture 5 Xmega 128 B1: Architecture MUHAMMAD AMIR YOUSAF VON NEUMAN ARCHITECTURE CPU Memory Execution unit ALU Registers Both data and instructions at the same system

More information

Memory Models. Registers

Memory Models. Registers Memory Models Most machines have a single linear address space at the ISA level, extending from address 0 up to some maximum, often 2 32 1 bytes or 2 64 1 bytes. Some machines have separate address spaces

More information

In this tutorial, we will discuss the architecture, pin diagram and other key concepts of microprocessors.

In this tutorial, we will discuss the architecture, pin diagram and other key concepts of microprocessors. About the Tutorial A microprocessor is a controlling unit of a micro-computer, fabricated on a small chip capable of performing Arithmetic Logical Unit (ALU) operations and communicating with the other

More information

Choosing a Micro for an Embedded System Application

Choosing a Micro for an Embedded System Application Choosing a Micro for an Embedded System Application Dr. Manuel Jiménez DSP Slides: Luis Francisco UPRM - Spring 2010 Outline MCU Vs. CPU Vs. DSP Selection Factors Embedded Peripherals Sample Architectures

More information

CSCE 5610: Computer Architecture

CSCE 5610: Computer Architecture HW #1 1.3, 1.5, 1.9, 1.12 Due: Sept 12, 2018 Review: Execution time of a program Arithmetic Average, Weighted Arithmetic Average Geometric Mean Benchmarks, kernels and synthetic benchmarks Computing CPI

More information

Introduction to Computers - Chapter 4

Introduction to Computers - Chapter 4 Introduction to Computers - Chapter 4 Since the invention of the transistor and the first digital computer of the 1940s, computers have been increasing in complexity and performance; however, their overall

More information

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4 15CS44: MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK with SOLUTIONS MODULE-4 1) Differentiate CISC and RISC architectures. 2) Explain the important design rules of RISC philosophy. The RISC philosophy

More information

Micro computer Organization

Micro computer Organization Micro computer Organization I Base Basic Components CPU SYSTEM BUSES VDD CLK RESET 1 MPU vs MCU Microprocessor Unit (MPU) CPU (called Microprocessor) is a die All components external to die Basically on

More information

CISC RISC. Compiler. Compiler. Processor. Processor

CISC RISC. Compiler. Compiler. Processor. Processor Q1. Explain briefly the RISC design philosophy. Answer: RISC is a design philosophy aimed at delivering simple but powerful instructions that execute within a single cycle at a high clock speed. The RISC

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 3 Fundamentals in Computer Architecture Computer Architecture Part 3 page 1 of 55 Prof. Dr. Uwe Brinkschulte,

More information

Instruction Set Design

Instruction Set Design Instruction Set Design software instruction set hardware CPE442 Lec 3 ISA.1 Instruction Set Architecture Programmer's View ADD SUBTRACT AND OR COMPARE... 01010 01110 10011 10001 11010... CPU Memory I/O

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUB CODE / SUBJECT: CS1202/COMPUTER ARCHITECHTURE YEAR / SEM: II / III UNIT I BASIC STRUCTURE OF COMPUTER 1. What is meant by the stored program

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

PIPELINE AND VECTOR PROCESSING

PIPELINE AND VECTOR PROCESSING PIPELINE AND VECTOR PROCESSING PIPELINING: Pipelining is a technique of decomposing a sequential process into sub operations, with each sub process being executed in a special dedicated segment that operates

More information

EE 4980 Modern Electronic Systems. Processor Advanced

EE 4980 Modern Electronic Systems. Processor Advanced EE 4980 Modern Electronic Systems Processor Advanced Architecture General Purpose Processor User Programmable Intended to run end user selected programs Application Independent PowerPoint, Chrome, Twitter,

More information

Computer Architecture

Computer Architecture Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY Department of Computer science and engineering Year :II year CS6303 COMPUTER ARCHITECTURE Question Bank UNIT-1OVERVIEW AND INSTRUCTIONS PART-B

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1 Pipelining and Vector Processing Parallel Processing: The term parallel processing indicates that the system is able to perform several operations in a single time. Now we will elaborate the scenario,

More information

ARM Architecture and Assembly Programming Intro

ARM Architecture and Assembly Programming Intro ARM Architecture and Assembly Programming Intro Instructors: Dr. Phillip Jones http://class.ece.iastate.edu/cpre288 1 Announcements HW9: Due Sunday 11/5 (midnight) Lab 9: object detection lab Give TAs

More information

CS1004: Intro to CS in Java, Spring 2005

CS1004: Intro to CS in Java, Spring 2005 CS1004: Intro to CS in Java, Spring 2005 Lecture #10: Computer architecture Janak J Parekh janak@cs.columbia.edu HW#2 due Tuesday Administrivia Mass Storage RAM is volatile Not useful for permanent storage,

More information

RISC Processors and Parallel Processing. Section and 3.3.6

RISC Processors and Parallel Processing. Section and 3.3.6 RISC Processors and Parallel Processing Section 3.3.5 and 3.3.6 The Control Unit When a program is being executed it is actually the CPU receiving and executing a sequence of machine code instructions.

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

A First Look at Microprocessors

A First Look at Microprocessors A First Look at Microprocessors using the The General Prototype Computer (GPC) model Part 2 Can you identify an opcode to: Decrement the contents of R1, and store the result in R5? Invert the contents

More information

Embedded Systems: Hardware Components (part I) Todor Stefanov

Embedded Systems: Hardware Components (part I) Todor Stefanov Embedded Systems: Hardware Components (part I) Todor Stefanov Leiden Embedded Research Center Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded System

More information

Hercules ARM Cortex -R4 System Architecture. Processor Overview

Hercules ARM Cortex -R4 System Architecture. Processor Overview Hercules ARM Cortex -R4 System Architecture Processor Overview What is Hercules? TI s 32-bit ARM Cortex -R4/R5 MCU family for Industrial, Automotive, and Transportation Safety Hardware Safety Features

More information

DSP Platforms Lab (AD-SHARC) Session 05

DSP Platforms Lab (AD-SHARC) Session 05 University of Miami - Frost School of Music DSP Platforms Lab (AD-SHARC) Session 05 Description This session will be dedicated to give an introduction to the hardware architecture and assembly programming

More information

Real instruction set architectures. Part 2: a representative sample

Real instruction set architectures. Part 2: a representative sample Real instruction set architectures Part 2: a representative sample Some historical architectures VAX: Digital s line of midsize computers, dominant in academia in the 70s and 80s Characteristics: Variable-length

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science ã Cengage Learning Objectives After studying this chapter, the student should be able to: q List the three subsystems of a computer. q Describe

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

538 Lecture Notes Week 1

538 Lecture Notes Week 1 538 Clowes Lecture Notes Week 1 (Sept. 6, 2017) 1/10 538 Lecture Notes Week 1 Announcements No labs this week. Labs begin the week of September 11, 2017. My email: kclowes@ryerson.ca Counselling hours:

More information

Lecture 1: Introduction to Microprocessors

Lecture 1: Introduction to Microprocessors ECE342 Digital II Lecture 1: Introduction to Microprocessors Dr. Ying (Gina) Tang Electrical and Computer Engineering Rowan University 1 What is a microprocessor Informally, a microprocessor (µp) is the

More information

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter IT 3123 Hardware and Software Concepts Notice: This session is being recorded. CPU and Memory June 11 Copyright 2005 by Bob Brown Latches Can store one bit of data Can be ganged together to store more

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

Von Neumann architecture. The first computers used a single fixed program (like a numeric calculator).

Von Neumann architecture. The first computers used a single fixed program (like a numeric calculator). Microprocessors Von Neumann architecture The first computers used a single fixed program (like a numeric calculator). To change the program, one has to re-wire, re-structure, or re-design the computer.

More information

Introduction to the ARM Architecture. or: a loose set of random facts blatantly copied from tech sheets and the Architecture Ref.

Introduction to the ARM Architecture. or: a loose set of random facts blatantly copied from tech sheets and the Architecture Ref. Introduction to the ARM Architecture or: a loose set of random facts blatantly copied from tech sheets and the Architecture Ref. Manual Glance into the past Initial ARM Processor developed by Acorn Computers,

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) represents an important

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

General Purpose Processors

General Purpose Processors Calcolatori Elettronici e Sistemi Operativi Specifications Device that executes a program General Purpose Processors Program list of instructions Instructions are stored in an external memory Stored program

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY BRANCH NAME: INSTRUMENTATION & CONTROL ENGINEERING (17) SUBJECT NAME: EMBEDDED SYSTEM DESIGN SUBJECT CODE: 2171711 B.E. 7 th SEMESTER Type of course: Core Engineering Prerequisite:

More information

Automation Engineers AB Pvt Ltd, NOIDA Job-Oriented Course on Embedded Microcontrollers & Related Software Stack

Automation Engineers AB Pvt Ltd, NOIDA Job-Oriented Course on Embedded Microcontrollers & Related Software Stack Automation Engineers AB Pvt Ltd, NOIDA Job-Oriented Course on Embedded Microcontrollers & Related Software Stack Course Syllabus: Chapter# Topic Covered Duration MODULE 1 INTRO TO EMBEDDED SYSTEMS 2-1

More information

ARM Ltd. ! Founded in November 1990! Spun out of Acorn Computers

ARM Ltd. ! Founded in November 1990! Spun out of Acorn Computers ARM Architecture ARM Ltd! Founded in November 1990! Spun out of Acorn Computers! Designs the ARM range of RISC processor cores! Licenses ARM core designs to semiconductor partners who fabricate and sell

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 15 April 1, 2009 martha@cs.columbia.edu and the rest of the semester Source code (e.g., *.java, *.c) (software) Compiler MIPS instruction set architecture

More information

UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a

UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a computer? 3. What is the use of buffer register? 4. Define

More information

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1 Part II Instruction-Set Architecture Jan. 211 Computer Architecture, Instruction-Set Architecture Slide 1 Short review of the previous lecture Performance = 1/(Execution time) = Clock rate / (Average CPI

More information

EMBEDDED SYSTEM DESIGN (10EC74)

EMBEDDED SYSTEM DESIGN (10EC74) UNIT 2 The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A First Look, Embedded Systems-An Instruction Set View, Embedded

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors COMP2121: Microprocessors and Interfacing Introduction to Microprocessors http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 1 Contents Processor architectures Bus Memory hierarchy 2

More information

TMS320C3X Floating Point DSP

TMS320C3X Floating Point DSP TMS320C3X Floating Point DSP Microcontrollers & Microprocessors Undergraduate Course Isfahan University of Technology Oct 2010 By : Mohammad 1 DSP DSP : Digital Signal Processor Why A DSP? Example Voice

More information

EC-801 Advanced Computer Architecture

EC-801 Advanced Computer Architecture EC-801 Advanced Computer Architecture Lecture 5 Instruction Set Architecture I Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Instruction Set Architecture

More information

Proven 8051 Microcontroller Technology, Brilliantly Updated

Proven 8051 Microcontroller Technology, Brilliantly Updated Proven 8051 Microcontroller Technology, Brilliantly Updated By: Tom David, Principal Design Engineer, Silicon Labs Introduction The proven 8051 core received a welcome second wind when its architecture

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as input,processes the data according to those instructions and provides

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Number Representation 09212011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Logic Circuits for Register Transfer

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information