Introduction to Real-Time Systems ECE 397-1

Size: px
Start display at page:

Download "Introduction to Real-Time Systems ECE 397-1"

Transcription

1 Introduction to Real-Time Systems ECE Northwestern University Department of Computer Science Department of Electrical and Computer Engineering Teachers: Robert Dick Peter Dinda Office: L477 Tech 338, 1890 Maple Ave. Phone: Webpage: 1

2 Homework index 1 Lab six

3 Goals for lecture Lab four? Lab six Simulation of real-time operating systems Impact of modern architectural features 3

4 Lab four Please or hand in the write-up for lab assignment four Problems? See me. Will need everything from lab four working for lab six 4

5 Lab six Develop priority-based cooperative scheduler for TinyOS that keeps track of the percentage of idle time. Develop a tree routing algorithm for the sensor network. Send noise, light, and temperature data to a PPC, via the network root. Have motes respond to send audio samples and buzz commands. Play back or display this data on PPCs to verify the that the system functions. 5

6 Outline Introduction Role of real-time OS in embedded system Related work and contributions Examples of energy optimization Simulation infrastructure Results Conclusions 6

7 Introduction Real-Time Operating Systems are often used in embedded systems. They simplify use of hardware, ease management of multiple tasks, and adhere to real-time constraints. Power is important in many embedded systems with RTOSs. RTOSs can consume significant amount of power. They are re-used in many embedded systems. They impact power consumed by application software. RTOS power effects influence system-level design. 7

8 Introduction Real Time Operating Systems important part of embedded systems Abstraction of HW Resource management Meet real-time constraints Used in several low-power embedded systems Need for RTOS power analysis Significant power consumption Impacts application software power Re-used across several applications 8

9 Role of RTOS in embedded system Applications MPEG encoding ABS Communication Micro browser etc. Organizer IPC Timer Memory manager RTOS services Task manager Basic IO ISR Processor Memory Timer Other hardware Message composer Tasks Database Network interface Hardware 9

10 Related work and contributions Instruction level power analysis V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI Design, 1996 System-level power simulation Y. Li and J. Henkel, Design Automation Conf., 1998 MicroC/OS-II: J.J. Labrosse, R & D Books, Lawrence, KS, 1998 Our work First step towards detailed power analysis of RTOS Applications: low-power RTOS, energy-efficient software architecture, incorporate RTOS effects in system design 10

11 Simulated embedded system IBM PT3 60 DRAM IBM PT3 60 DRAM EPROM LEDs Processor bus Fujitsu SPARClite On chip cache Timer UART Interrupts Other ASICs and peripherals Easy to add new devices Cycle-accurate model Fujitsu board support library used in model µc/os-ii RTOS used 11

12 Single task network interface Get packet Compute checksum Procure Ethernet controller Transfer packet Release Ethernet controller Checksum computation and output Procuring Ethernet controller has high energy cost 12

13 TCP example Checksum computation Get packet Compute checksum Buffer management Get packet Compute checksum Procure Ethernet controller Transfer packet Release Ethernet controller Output Procure Ethernet controller Transfer packets Release Ethernet controller Checksum computation and output Straight-forward implementation Multi-task implementation 13

14 Multi-tasking network interface Checksum computation Get packet Compute checksum Buffer management Output Procure Ethernet controller Transfer packets Release Ethernet controller RTOS power analysis used for process re-organization to reduce energy 21% reduction in energy consumption. Similar power consumption. 14

15 ABS example Y Sense speed and pedal conditions Timer transition? N Compute acceleration Brake decision Sleep Actuate brake 15

16 ABS example timing Timer Brake pedal ABS process Wheel sensor Brake action Time 16

17 Straight-forward ABS implementation Timer Y Timer transition? N Sleep Sense speed and pedal conditions Compute acceleration Brake decision Actuate brake Brake pedal ABS process Wheel sensor Brake action Time 17

18 Periodically triggered ABS Y Sense speed and pedal conditions Timer transition? N Compute acceleration Brake decision Sleep Actuate brake 18

19 Periodically triggered ABS timing Timer Brake pedal ABS process Wheel sensor Brake action Time 19

20 Selectively triggered ABS Pedal pressed? N Y Sense speed and pedal conditions Sleep Compute acceleration N Timer transition? Brake decision Actuate brake Y 20

21 Selectively triggered ABS timing Timer Brake pedal ABS process Wheel sensor Brake action Time 63% reduction in energy and power consumption 21

22 Power-optimized ABS example Timer Pedal pressed? N Y Sense speed and pedal conditions Brake pedal Sleep Compute acceleration ABS process N Brake decision Wheel sensor Timer transition? Y Actuate brake Brake action Time 22

23 ! k Infrastructure Application code OS code External stimulus SPARClite compiler Energy by call tree position for task A OSSched() main() OSSem() Timer model UART model Models for other peripherals SPARClite cache simulator SPARClite ISS Instruction level energy model Memory model Memory energy model Cache controller model Bus interface unit model 1s1s1s./ Energy by call tree position for task B 1B1B 23

24 À È Ž Experimental results Energy (mj) œ À ÀÀ È È Ç ÈÈ Ç È Ç ABS 1 ABS 2 Mailbox Semaphore Application Floating point Initialization Input/output Interrupt Mailbox Memory Misc. Scheduling Semaphore Sleep Synchronization Task control Net 1 Net 2 24

25 Ö Õ Ø è è è è Ú Ú è è Ú Ú è è Ú Ú è è Ú Ú è è Þ ÝÞ è è â ä ä Time (ms) TCP/IP 2 TCP/IP 1 ABS 1 ABS 2 Mailbox Semaphore ç ç ç ç ç ç ç Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÏÐ ÓÔ ÓÔ Ö Ø Ù Ù Ù Ù à ß à áâ ã Experimental results time Application Floating point Initialization Input/output Interrupt Mailbox Memory Misc. Scheduling Semaphore Sleep Synchronization Task control 25

26 Agent example Key Broadcast Price advertisement Sale Agent 1 Money Commodity 1 Commodity 2 Commodity 3 Commodity 4 Agent 6 Agent 3 Agent 2 Agent 5 Agent 4 26

27 ú ù þ ý ü ü Experimental results 8000 Energy (mj) ñòó ô óô Time (ms) õö ø ø ú þ û ÿ ÿ Application Floating point Initialization Input/output Interrupt Mailbox Memory Misc. Scheduling Semaphore Sleep Synchronization Task control (a) (b) 27

28 Experimental results Agent Application Floating point Initialization Input/output Interrupt mail tuned Ethernet Energy (mj) non buf buf Mailbox Memory Misc. Scheduling Semaphore Sleep Synchronization Task control (a) (b) 28

29 TCP example: 20.5% energy reduction 0.2% power reduction Optimization effects RTOS directly accounted for 1% of system energy ABS example: 63% energy reduction 63% power reduction RTOS directly accounted for 50% of system energy Mailbox example: RTOS directly accounted for 99% of system energy Semaphore example: RTOS directly accounted for 98.7% of system energy 29

30 Partial semaphore hierarchical results Function Energy/invocation (uj) Energy (%) Time (ms) Calls realstart init tvecs mj total init timer liteled % 5.51 mj total 1.74 % startup do main mj total save data % init data init bss cache on Task1 win unf trap mj total OSDisableInt % OSEnableInt sparcsim terminate OSSemPend win unf trap mj total OSDisableInt % OSEnableInt OSEventTaskWait OSSched OSSemPost OSDisableInt mj total OSEnableInt % OSTimeGet OSDisableInt mj total OSEnableInt % CPUInit BSPInit mj total exceptionhandler % printf win unf trap mj total vfprintf % 30

31 Energy per invocation for µc/os-ii services Service Minimum energy (µj) Maximum energy (µj) OSEventTaskRdy OSEventTaskWait OSEventWaitListInit OSInit OSMboxCreate OSMboxPend OSMboxPost OSMemCreate OSMemGet OSMemInit OSMemPut OSQInit OSSched OSSemCreate OSSemPend etc. etc. etc. 31

32 Conclusions RTOS can significantly impact power RTOS power analysis can improve application software design Applications Low-power RTOS design Energy-efficient software architecture Consider RTOS effects during system design 32

33 Impact of modern architectural features Memory hierarchy Bus protocols ISA vs. PCI Pipelining Superscalar execution SIMD VLIW 33

34 Summary Labs Simulation of real-time operating systems Impact of modern architectural features 34

Homework index. Lab four. Goals for lecture. Lab six. Outline. Introduction. Introduction. Introduction to Real-Time Systems ECE Lab six...

Homework index. Lab four. Goals for lecture. Lab six. Outline. Introduction. Introduction. Introduction to Real-Time Systems ECE Lab six... Introduction to Real- Systems ECE 397-1 Homework index 1 Lab six..................... 5 orthwestern University Department of r Science Department of Electrical and r Engineering Teachers: Robert Dick Peter

More information

Introduction to Real-Time Systems ECE 397-1

Introduction to Real-Time Systems ECE 397-1 Introduction to Real-Time Systems ECE 397-1 Northwestern University Department of Computer Science Department of Electrical and Computer Engineering Teachers: Robert Dick Peter Dinda Office: L477 Tech

More information

Homework index. Lab four. Goals for lecture. Rate monotonic scheduling. Optimality and utilization for limited case. Introduction to Real-Time Systems

Homework index. Lab four. Goals for lecture. Rate monotonic scheduling. Optimality and utilization for limited case. Introduction to Real-Time Systems Introduction to Real- Sstems ECE 397-1 Homework index 1 Reading assignment.............. 29 2 Lab six..................... 32 orthwestern Universit Department of r Science Department of Electrical and

More information

1 Is the monetary size of the general-purpose computing market. 2 What is the time complexity class of linear programming (one

1 Is the monetary size of the general-purpose computing market. 2 What is the time complexity class of linear programming (one Embedded System Design and Synthesis Quiz (page ) Robert Dick http://ziyang.eecs.northwestern.edu/ dickrp/esds-two-week Department of Electrical Engineering and r Science Northwestern University Office

More information

Lab 8 Real-time OS - 1

Lab 8 Real-time OS - 1 Lab 8-1 Speaker: Hao-Yun Chin Advisor: Prof. Tian-Sheuan Chang Apr 27, 2004 Outline Introduction to Real-time Operation System (RTOS) Introduction to C/OS-II Features Task & task scheduling Start C/OS-II

More information

Introduction to Real-Time Systems ECE 397-1

Introduction to Real-Time Systems ECE 397-1 Introduction to Real-Time Systems ECE 97-1 Northwestern University Department of Computer Science Department of Electrical and Computer Engineering Teachers: Robert Dick Peter Dinda Office: L477 Tech 8,

More information

Embedded Systems: OS

Embedded Systems: OS Embedded Systems: OS Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu) Standalone

More information

Homework index. Processing resource description. Goals for lecture. Communication resource description. Graph extensions. Problem definition

Homework index. Processing resource description. Goals for lecture. Communication resource description. Graph extensions. Problem definition Introduction to Real-Time Systems ECE 97-1 Homework index 1 Reading assignment.............. 4 Northwestern University Department of Computer Science Department of Electrical and Computer Engineering Teachers:

More information

µc/os-ii for the Philips XA

µc/os-ii for the Philips XA Application Note AN-1000 Jean J. Labrosse Jean.Labrosse@uCOS-II.com www.ucos-ii.com Acknowledgements I would like to thank Tasking Software for providing me with their fine compiler (V3.0r0) and CrossView

More information

Embedded Systems: OS. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Embedded Systems: OS. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Embedded Systems: OS Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Standalone Applications Often no OS involved One large loop Microcontroller-based

More information

CEC 450 Real-Time Systems

CEC 450 Real-Time Systems CEC 450 Real-Time Systems Lecture 6 Accounting for I/O Latency September 28, 2015 Sam Siewert A Service Release and Response C i WCET Input/Output Latency Interference Time Response Time = Time Actuation

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Part 1 Closed book, no crib sheet Part 2 Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator, devices with wireless communication).

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK VI SEMESTER EE6602 EMBEDDED SYSTEMS Regulation 2013 Academic Year

More information

EE458 - Embedded Systems Introduction to uc/os

EE458 - Embedded Systems Introduction to uc/os EE458 - Embedded Systems Introduction to uc/os Outline Introduction to uc/os References uc/os RTOS Library Reference 1 Background The source code to uc/os was published in Embedded Systems Programming

More information

Micriμm. Getting Started with Micriμm s. Matt Gordon, Sr. Applications Engineer. 9L05I Renesas Electronics America Inc.

Micriμm. Getting Started with Micriμm s. Matt Gordon, Sr. Applications Engineer. 9L05I Renesas Electronics America Inc. Getting Started with Micriμm s μc/os-iii Kernel Matt Gordon, Sr. Applications Engineer Micriμm Class ID: 9L05I Renesas Electronics America Inc. 2012 Renesas Electronics America Inc. All rights reserved.

More information

Micrium µc/os II RTOS Introduction EE J. E. Lumpp

Micrium µc/os II RTOS Introduction EE J. E. Lumpp Micrium µc/os II RTOS Introduction (by Jean Labrosse) EE599 001 Fall 2012 J. E. Lumpp μc/os II μc/os II is a highly portable, ROMable, very scalable, preemptive real time, deterministic, multitasking kernel

More information

Embedded Systems. 7. System Components

Embedded Systems. 7. System Components Embedded Systems 7. System Components Lothar Thiele 7-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

Cartons (PCCs) Management

Cartons (PCCs) Management Final Report Project code: 2015 EE04 Post-Consumer Tetra Pak Cartons (PCCs) Management Prepared for Tetra Pak India Pvt. Ltd. Post Consumer Tetra Pak Cartons (PCCs) Management! " # $ " $ % & ' ( ) * +,

More information

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1 ITS 225: Operating Systems Operating Systems Lecture 1 Introduction & Overview Jan 15, 2004 Dr. Matthew Dailey Information Technology Program Sirindhorn International Institute of Technology Thammasat

More information

What Operating Systems Do An operating system is a program hardware that manages the computer provides a basis for application programs acts as an int

What Operating Systems Do An operating system is a program hardware that manages the computer provides a basis for application programs acts as an int Operating Systems Lecture 1 Introduction Agenda: What Operating Systems Do Computer System Components How to view the Operating System Computer-System Operation Interrupt Operation I/O Structure DMA Structure

More information

Memory Expansion. Lecture Embedded Systems

Memory Expansion. Lecture Embedded Systems Memory Expansion Lecture 22 22-1 In These Notes... Memory Types Memory Expansion Interfacing Parallel Serial Direct Memory Access controllers 22-2 Memory Characteristics and Issues Volatility - Does it

More information

EC EMBEDDED AND REAL TIME SYSTEMS

EC EMBEDDED AND REAL TIME SYSTEMS EC6703 - EMBEDDED AND REAL TIME SYSTEMS Unit I -I INTRODUCTION TO EMBEDDED COMPUTING Part-A (2 Marks) 1. What is an embedded system? An embedded system employs a combination of hardware & software (a computational

More information

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu Integrating Concurrency Control and Energy Management in Device Drivers Chenyang Lu Overview Ø Concurrency Control: q Concurrency of I/O operations alone, not of threads in general q Synchronous vs. Asynchronous

More information

Embedded Systems: Hardware Components (part I) Todor Stefanov

Embedded Systems: Hardware Components (part I) Todor Stefanov Embedded Systems: Hardware Components (part I) Todor Stefanov Leiden Embedded Research Center Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded System

More information

Improvement of the Communication Protocol Conversion Equipment Based on Embedded Multi-MCU and μc/os-ii

Improvement of the Communication Protocol Conversion Equipment Based on Embedded Multi-MCU and μc/os-ii Improvement of the Communication Protocol Conversion Equipment Based on Embedded Multi-MCU and μc/os-ii P. Sai Chaitanya & T. Sandeep ECE Department, Varadha Reddy College of Engineering, Hasanparthy,

More information

Lecture 5 C Programming Language

Lecture 5 C Programming Language Lecture 5 C Programming Language Summary of Lecture 5 Pointers Pointers and Arrays Function arguments Dynamic memory allocation Pointers to functions 2D arrays Addresses and Pointers Every object in the

More information

INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to

INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to CHAPTER 2 ucosiii Page 1 ENGG4420 CHAPTER 2 LECTURE 5 October 22 12 3:28 PM INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to the CPU.

More information

Introduction to Computing Systems Terminology Guide

Introduction to Computing Systems Terminology Guide Introduction to Computing Systems Terminology Guide Sam Siewert January 12, 2014 Sam Siewert ADC - Analog to Digital Converter, encodes analog signals into digital values. ALU Arithmetic Logic Unit, the

More information

Basic Low Level Concepts

Basic Low Level Concepts Course Outline Basic Low Level Concepts Case Studies Operation through multiple switches: Topologies & Routing v Direct, indirect, regular, irregular Formal models and analysis for deadlock and livelock

More information

) $ G}] }O H~U. G yhpgxl. Cong

) $ G}] }O H~U. G yhpgxl. Cong » Þ åî ïî á ë ïý þý ÿ þ ë ú ú F \ Œ Œ Ÿ Ÿ F D D D\ \ F F D F F F D D F D D D F D D D D FD D D D F D D FD F F F F F F F D D F D F F F D D D D F Ÿ Ÿ F D D Œ Ÿ D Ÿ Ÿ FŸ D c ³ ² í ë óô ò ð ¹ í ê ë Œ â ä ã

More information

Computer Hardware Requirements for Real-Time Applications

Computer Hardware Requirements for Real-Time Applications Lecture (4) Computer Hardware Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Real-Time Systems, Prof. Kasim Al-Aubidy 1 Lecture

More information

Overview of Microcontroller and Embedded Systems

Overview of Microcontroller and Embedded Systems UNIT-III Overview of Microcontroller and Embedded Systems Embedded Hardware and Various Building Blocks: The basic hardware components of an embedded system shown in a block diagram in below figure. These

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0.

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0. Range: This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version.. isclaimer The shapes of the reference glyphs used in these code charts

More information

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware.

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware. Department of Computer Science, Institute for System Architecture, Operating Systems Group Real-Time Systems '08 / '09 Hardware Marcus Völp Outlook Hardware is Source of Unpredictability Caches Pipeline

More information

Embedded Software TI2726 B. 7. Embedded software design. Koen Langendoen. Embedded Software Group

Embedded Software TI2726 B. 7. Embedded software design. Koen Langendoen. Embedded Software Group Embedded Software 7. Embedded software design TI2726 B Koen Langendoen Embedded Software Group Overview Timing services RTOS and ISRs Design of embedded systems General principles Timing Functionality

More information

K101: Embedded Linux Basics

K101: Embedded Linux Basics K101: Embedded Linux Basics Linux is widely used as an embedded operating system and its market share is continuously growing. Reasons as quality, reliability, and configurability make its use quite attractive.

More information

Designing, developing, debugging ARM Cortex-A and Cortex-M heterogeneous multi-processor systems

Designing, developing, debugging ARM Cortex-A and Cortex-M heterogeneous multi-processor systems Designing, developing, debugging ARM and heterogeneous multi-processor systems Kinjal Dave Senior Product Manager, ARM ARM Tech Symposia India December 7 th 2016 Topics Introduction System design Software

More information

Multi-protocol controller for Industry 4.0

Multi-protocol controller for Industry 4.0 Multi-protocol controller for Industry 4.0 Andreas Schwope, Renesas Electronics Europe With the R-IN Engine architecture described in this article, a device can process both network communications and

More information

SCope: Efficient HdS simulation for MpSoC with NoC

SCope: Efficient HdS simulation for MpSoC with NoC SCope: Efficient HdS simulation for MpSoC with NoC Eugenio Villar Héctor Posadas University of Cantabria Marcos Martínez DS2 Motivation The microprocessor will be the NAND gate of the integrated systems

More information

SE300 SWE Practices. Lecture 10 Introduction to Event- Driven Architectures. Tuesday, March 17, Sam Siewert

SE300 SWE Practices. Lecture 10 Introduction to Event- Driven Architectures. Tuesday, March 17, Sam Siewert SE300 SWE Practices Lecture 10 Introduction to Event- Driven Architectures Tuesday, March 17, 2015 Sam Siewert Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved. Four Common Types

More information

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology exam Embedded Software TI2726-B January 28, 2019 13.30-15.00 This exam (6 pages) consists of 60 True/False

More information

ASCII Code - The extended ASCII table

ASCII Code - The extended ASCII table ASCII Code - The extended ASCII table ASCII, stands for American Standard Code for Information Interchange. It's a 7-bit character code where every single bit represents a unique character. On this webpage

More information

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2.1 Real-Time and Control Computer based digital controllers typically have the ability to monitor a number of discrete and analog inputs, perform complex

More information

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM i SYLLABUS UNIT - 1 CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS Computer Types, Functional Units, Basic Operational Concepts, Bus Structures, Software, Performance, Multiprocessors and Multicomputers, Historical

More information

Computer Organization ECE514. Chapter 5 Input/Output (9hrs)

Computer Organization ECE514. Chapter 5 Input/Output (9hrs) Computer Organization ECE514 Chapter 5 Input/Output (9hrs) Learning Outcomes Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge

More information

An Incubator Project in the Apache Software Foundation. 13 July 2016

An Incubator Project in the Apache Software Foundation.  13 July 2016 An Incubator Project in the Apache Software Foundation http://mynewt.apache.org/ 13 July 2016 Apache Mynewt Open Source OS for Constrained IoT MCU / Hardware independent ARM Cortex-M*, AVR, MIPS, more...

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

Hardware/Software Co-design

Hardware/Software Co-design Hardware/Software Co-design Zebo Peng, Department of Computer and Information Science (IDA) Linköping University Course page: http://www.ida.liu.se/~petel/codesign/ 1 of 52 Lecture 1/2: Outline : an Introduction

More information

Stellaris Robotic Evaluation Board and Micriµm µc/os-iii

Stellaris Robotic Evaluation Board and Micriµm µc/os-iii Introductions Stellaris Robotic Evaluation Board and Micriµm µc/os-iii Jean J. Labrosse Founder, President and CEO of Micriµm Dexter Travis Stellaris ARM Cortex -M3 Applications Engineering Dexter Travis,

More information

Wireless Sensor Networks and RFIDs

Wireless Sensor Networks and RFIDs Wireless Sensor Networks and RFIDs Robert Dick http://robertdick.org/sensor-nets/ Department of Electrical Engineering and Computer Science Northwestern University L477 Tech. Typical Current Draw 1 sec

More information

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Computer Architecture Is the attributes of a [computing] system as seen by the programmer, i.e.,

More information

Overall Structure of RT Systems

Overall Structure of RT Systems Course Outline Introduction Characteristics of RTS Real Time Operating Systems (RTOS) OS support: scheduling, resource handling Real Time Programming Languages Language support, e.g. Ada tasking Scheduling

More information

ENGG4420 CHAPTER 2 LECTURE 6

ENGG4420 CHAPTER 2 LECTURE 6 CHAPTER 2 ucosiii Page 1 ENGG4420 CHAPTER 2 LECTURE 6 October 25 12 5:03 PM SEMAPHORE INTERNALS OS_SEM data type defined in os.h Semaphore services are enabled at compile time by setting the configuration

More information

Module Introduction! PURPOSE: The intent of this module, 68K to ColdFire Transition, is to explain the changes to the programming model and architectu

Module Introduction! PURPOSE: The intent of this module, 68K to ColdFire Transition, is to explain the changes to the programming model and architectu Module Introduction! PURPOSE: The intent of this module, 68K to ColdFire Transition, is to explain the changes to the programming model and architecture of ColdFire. This module also provides a description

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

即時控制系統設計 Design of Real-Time Control Systems

即時控制系統設計 Design of Real-Time Control Systems Introduction NTUEE-RTCS11-RTOS-2 SPRING 2010 即時控制系統設計 Design of Real-Time Control Systems Lecture 11 Real-Time Operating Systems Real-Time Control Systems Controlled by one Computer Processor Centralized

More information

Pointers & Arrays. CS2023 Winter 2004

Pointers & Arrays. CS2023 Winter 2004 Pointers & Arrays CS2023 Winter 2004 Outcomes: Pointers & Arrays C for Java Programmers, Chapter 8, section 8.12, and Chapter 10, section 10.2 Other textbooks on C on reserve After the conclusion of this

More information

FMCAD 2011 (Austin, Texas) Jonathan Kotker, Dorsa Sadigh, Sanjit Seshia University of California, Berkeley

FMCAD 2011 (Austin, Texas) Jonathan Kotker, Dorsa Sadigh, Sanjit Seshia University of California, Berkeley FMCAD 2011 (Austin, Texas) Jonathan Kotker, Dorsa Sadigh, Sanjit Seshia University of California, Berkeley 1 Cyber-Physical = Computation + Physical Processes Quantitative analysis of programs is crucial:

More information

USB-ASC232. ASCII RS-232 Controlled USB Keyboard and Mouse Cable. User Manual

USB-ASC232. ASCII RS-232 Controlled USB Keyboard and Mouse Cable. User Manual USB-ASC232 ASCII RS-232 Controlled USB Keyboard and Mouse Cable User Manual Thank you for purchasing the model USB-ASC232 Cable HAGSTROM ELECTRONICS, INC. is pleased that you have selected this product

More information

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 8. Hardware Components Lothar Thiele Computer Engineering and Networks Laboratory Do you Remember? 8 2 8 3 High Level Physical View 8 4 High Level Physical View 8 5 Implementation Alternatives

More information

6/20/2018. Lecture 2: Platforms & RTOS. Outline. Lab Setup (20 min) Labs work. Lecture: Platform + RTOS

6/20/2018. Lecture 2: Platforms & RTOS. Outline. Lab Setup (20 min) Labs work. Lecture: Platform + RTOS Lecture 2: Platforms & RTOS 1 Outline Lab Setup (20 min) Labs work Workbench + vxworks Documentations (15 min) Project Management (25 min) Host Shell (25 min) Lecture: Platform + RTOS 2 1 3 Microcomputer

More information

CPS 210: Operating Systems

CPS 210: Operating Systems CPS 210: Operating Systems Operating Systems: The Big Picture The operating system (OS) is the interface between user applications and the hardware. User Applications Operating System virtual machine interface

More information

The D igital Digital Logic Level Chapter 3 1

The D igital Digital Logic Level Chapter 3 1 The Digital Logic Level Chapter 3 1 Gates and Boolean Algebra (1) (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate. 2 Gates and Boolean Algebra (2) The symbols and functional behavior for the

More information

Embedded Systems. 6. Real-Time Operating Systems

Embedded Systems. 6. Real-Time Operating Systems Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1.

TinyOS. Lecture Overview. UC Berkeley Family of Motes. Mica2 and Mica2Dot. MTS300CA Sensor Board. Programming Board (MIB510) 1. Lecture Overview TinyOS Computer Network Programming Wenyuan Xu 1 2 UC Berkeley Family of Motes Mica2 and Mica2Dot ATmega128 CPU Self-programming 128KB Instruction EEPROM 4KB Data EEPROM Chipcon CC1000

More information

Embedded Computation

Embedded Computation Embedded Computation What is an Embedded Processor? Any device that includes a programmable computer, but is not itself a general-purpose computer [W. Wolf, 2000]. Commonly found in cell phones, automobiles,

More information

PD215 Mechatronics. Week 3/4 Interfacing Hardware and Communication Systems

PD215 Mechatronics. Week 3/4 Interfacing Hardware and Communication Systems PD215 Mechatronics Week 3/4 Interfacing Hardware and Communication Systems Interfacing with the physical world A compute device (microprocessor) in mechatronic system needs to accept input information

More information

HotChips An innovative HD video and digital image processor for low-cost digital entertainment products. Deepu Talla.

HotChips An innovative HD video and digital image processor for low-cost digital entertainment products. Deepu Talla. HotChips 2007 An innovative HD video and digital image processor for low-cost digital entertainment products Deepu Talla Texas Instruments 1 Salient features of the SoC HD video encode and decode using

More information

Blackfin Optimizations for Performance and Power Consumption

Blackfin Optimizations for Performance and Power Consumption The World Leader in High Performance Signal Processing Solutions Blackfin Optimizations for Performance and Power Consumption Presented by: Merril Weiner Senior DSP Engineer About This Module This module

More information

RISC-V based core as a soft processor in FPGAs Chowdhary Musunuri Sr. Director, Solutions & Applications Microsemi

RISC-V based core as a soft processor in FPGAs Chowdhary Musunuri Sr. Director, Solutions & Applications Microsemi Power Matters. TM RISC-V based core as a soft processor in FPGAs Chowdhary Musunuri Sr. Director, Solutions & Applications Microsemi chowdhary.musunuri@microsemi.com RIC217 1 Agenda A brief introduction

More information

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4 EE445M Midterm Study Guide (Spring 2017) (updated February 25, 2017): Instructions: Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please be sure that your answers

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

CS 341l Fall 2008 Test #4 NAME: Key

CS 341l Fall 2008 Test #4 NAME: Key CS 341l all 2008 est #4 NAME: Key CS3411 est #4, 21 November 2008. 100 points total, number of points each question is worth is indicated in parentheses. Answer all questions. Be as concise as possible

More information

ECE 3055: Final Exam

ECE 3055: Final Exam ECE 3055: Final Exam Instructions: You have 2 hours and 50 minutes to complete this quiz. The quiz is closed book and closed notes, except for one 8.5 x 11 sheet. No calculators are allowed. Multiple Choice

More information

The Embedded System Design Process. Wolf Text - Chapter 1.3

The Embedded System Design Process. Wolf Text - Chapter 1.3 The Embedded System Design Process Wolf Text - Chapter 1.3 Design methodologies A procedure for designing a system. Understanding your methodology helps you ensure you didn t skip anything. Compilers,

More information

CEVA-X1 Lightweight Multi-Purpose Processor for IoT

CEVA-X1 Lightweight Multi-Purpose Processor for IoT CEVA-X1 Lightweight Multi-Purpose Processor for IoT 1 Cellular IoT for The Massive Internet of Things Narrowband LTE Technologies Days Battery Life Years LTE-Advanced LTE Cat-1 Cat-M1 Cat-NB1 >10Mbps Up

More information

DSP/BIOS Kernel Scalable, Real-Time Kernel TM. for TMS320 DSPs. Product Bulletin

DSP/BIOS Kernel Scalable, Real-Time Kernel TM. for TMS320 DSPs. Product Bulletin Product Bulletin TM DSP/BIOS Kernel Scalable, Real-Time Kernel TM for TMS320 DSPs Key Features: Fast, deterministic real-time kernel Scalable to very small footprint Tight integration with Code Composer

More information

Operating Systems (2INC0) 2018/19. Introduction (01) Dr. Tanir Ozcelebi. Courtesy of Prof. Dr. Johan Lukkien. System Architecture and Networking Group

Operating Systems (2INC0) 2018/19. Introduction (01) Dr. Tanir Ozcelebi. Courtesy of Prof. Dr. Johan Lukkien. System Architecture and Networking Group Operating Systems (2INC0) 20/19 Introduction (01) Dr. Courtesy of Prof. Dr. Johan Lukkien System Architecture and Networking Group Course Overview Introduction to operating systems Processes, threads and

More information

Module 1. Introduction. Version 2 EE IIT, Kharagpur 1

Module 1. Introduction. Version 2 EE IIT, Kharagpur 1 Module 1 Introduction Version 2 EE IIT, Kharagpur 1 Lesson 3 Embedded Systems Components Part I Version 2 EE IIT, Kharagpur 2 Structural Layout with Example Instructional Objectives After going through

More information

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System?

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System? Chapter 2: Computer-System Structures Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure of a computer system and understanding

More information

Uniprocessor Computer Architecture Example: Cray T3E

Uniprocessor Computer Architecture Example: Cray T3E Chapter 2: Computer-System Structures MP Example: Intel Pentium Pro Quad Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure

More information

ReconOS: An RTOS Supporting Hardware and Software Threads

ReconOS: An RTOS Supporting Hardware and Software Threads ReconOS: An RTOS Supporting Hardware and Software Threads Enno Lübbers and Marco Platzner Computer Engineering Group University of Paderborn marco.platzner@computer.org Overview the ReconOS project programming

More information

Digital System Design

Digital System Design Digital System Design by Dr. Lesley Shannon Email: lshannon@ensc.sfu.ca Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350 Simon Fraser University i Slide Set: 15 Date: March 30, 2009 Slide

More information

Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction

Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction Operating Systems Course 2 nd semester 2016/2017 Chapter 1: Introduction Lecturer: Eng. Mohamed B. Abubaker Note: Adapted from the resources of textbox Operating System Concepts, 9 th edition What is an

More information

CprE 288 Introduction to Embedded Systems (Project and Platform Overview)

CprE 288 Introduction to Embedded Systems (Project and Platform Overview) CprE 288 Introduction to Embedded Systems (Project and Platform Overview) Instructor: Dr. Phillip Jones http://class.ece.iastate.edu/cpre288 1 Overview of Today s Lecture Announcements What are Embedded

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

Putting it All Together

Putting it All Together EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Commercial RTOS, Final Exam, Review 1 Putting it All Together Micrium μcos-ii Reference: www.micrium.com Application Note

More information

Handling Challenges of Multi-Core Technology in Automotive Software Engineering

Handling Challenges of Multi-Core Technology in Automotive Software Engineering Model Based Development Tools for Embedded Multi-Core Systems Handling Challenges of Multi-Core Technology in Automotive Software Engineering VECTOR INDIA CONFERENCE 2017 Timing-Architects Embedded Systems

More information

Embedded Systems: Architecture

Embedded Systems: Architecture Embedded Systems: Architecture Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Learning Module 9. Managing the Sensor: Embedded Computing. Paul Flikkema. Department of Electrical Engineering Northern Arizona University

Learning Module 9. Managing the Sensor: Embedded Computing. Paul Flikkema. Department of Electrical Engineering Northern Arizona University Learning Module 9 Managing the Sensor: Embedded Computing Paul Flikkema Department of Electrical Engineering Northern Arizona University Outline Networked Embedded Systems Hardware Software Languages Operating

More information

FCQ2 - P2020 QorIQ implementation

FCQ2 - P2020 QorIQ implementation Formation P2020 QorIQ implementation: This course covers NXP QorIQ P2010 and P2020 - Processeurs PowerPC: NXP Power CPUs FCQ2 - P2020 QorIQ implementation This course covers NXP QorIQ P2010 and P2020 Objectives

More information

Cortex-A9 MPCore Software Development

Cortex-A9 MPCore Software Development Cortex-A9 MPCore Software Development Course Description Cortex-A9 MPCore software development is a 4 days ARM official course. The course goes into great depth and provides all necessary know-how to develop

More information

Efficient Power Estimation Techniques for HW/SW Systems

Efficient Power Estimation Techniques for HW/SW Systems Efficient Power Estimation Techniques for HW/SW Systems Marcello Lajolo Anand Raghunathan Sujit Dey Politecnico di Torino NEC USA, C&C Research Labs UC San Diego Torino, Italy Princeton, NJ La Jolla, CA

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 22 Title: and Extended

More information

Summer 2003 Lecture 21 07/15/03

Summer 2003 Lecture 21 07/15/03 Summer 2003 Lecture 21 07/15/03 Simple I/O Devices Simple i/o hardware generally refers to simple input or output ports. These devices generally accept external logic signals as input and allow the CPU

More information

Kevin Meehan Stephen Moskal Computer Architecture Winter 2012 Dr. Shaaban

Kevin Meehan Stephen Moskal Computer Architecture Winter 2012 Dr. Shaaban Kevin Meehan Stephen Moskal Computer Architecture Winter 2012 Dr. Shaaban Contents Raspberry Pi Foundation Raspberry Pi overview & specs ARM11 overview ARM11 cache, pipeline, branch prediction ARM11 vs.

More information

ERNST. Environment for Redaction of News Sub-Titles

ERNST. Environment for Redaction of News Sub-Titles ERNST Environment for Redaction of News Sub-Titles Introduction ERNST (Environment for Redaction of News Sub-Titles) is a software intended for preparation, airing and sequencing subtitles for news or

More information

System Architecture Directions for Networked Sensors[1]

System Architecture Directions for Networked Sensors[1] System Architecture Directions for Networked Sensors[1] Secure Sensor Networks Seminar presentation Eric Anderson System Architecture Directions for Networked Sensors[1] p. 1 Outline Sensor Network Characteristics

More information