Simulation Advances for RF, Microwave and Antenna Applications

Size: px
Start display at page:

Download "Simulation Advances for RF, Microwave and Antenna Applications"

Transcription

1 Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1

2 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics Solver in HFSS-IE Transient Finite Elements in HFSS New layout interface for HFSS: Solver on Demand in Designer Usability Enhancement Radiated fields.. Network installation improvements 3D modeler improvements CAD Integration in Workbench Improved Multiphysics flow 2

3 Advanced Solvers: Finite Arrays with DDM 3

4 Finite Arrays with Domain Decomposition Efficient solution for repeating geometries (array) with domain decomposition technique (DDM) 4

5 A Review: Domain Decomposition Distributed memory parallel solver technique Distributes mesh sub-domains to network of processors Significantly increases simulation capacity Highly scalable to large numbers of processors Automatic generation of domains by mesh partitioning User friendly Load balance Hybrid iterative & direct solver Multi-frontal direct solver for each subdomain Sub-domains exchange information iteratively via Robin s transmission conditions (RTC) Distributes mesh sub-domains to networked processors and memory 5

6 Finite Arrays Solve large finite array designs Efficient setup and solution Define unit cell and array dimensions Efficient geometry creation and representation Efficient Domain Decomposition solution Leverages repeating nature of array geometries Only mesh unit cell Virtually repeat mesh throughout array Post-process full S-parameter Couplings included Edge effects included 3D field visualization Far field patterns for full array Memory efficient Enabled with the HFSS HPC product 6

7 Finite Arrays by Domain Decomposition Each element in array treated as solution domain One compute engine can solve multiple elements/domains in series Distributes element sub-domains to networked processors and memory 7

8 Example: Skewed Waveguide Array 16X16 (256 elements and excitations) Skewed Rectangular Waveguide (WR90) Array 1.3M Matrix Size Using 8 cores 3 hrs. solution time 0.4GB Memory total Using 16 cores 2 hrs. solution time 0.8GB Memory total Additional Cores Faster solution time More memory. Unit cell shown with wireframe view of virtual array 8

9 Skewed Waveguide Array Patterns from 8X8 Array Dashed is idealized infinite array analysis Solid from finite array analysis Two simulations use identical mesh Note edge effects due to finite array size 9

10 Running Finite Array Use Master/Slave unit cell design to adapt the mesh Called Unit Cell for Adaptive Meshing in image Copy/Paste Design Called 8X8 Array in image Create a single pass setup in finite array design On Advanced tab use Setup Link to link mesh from unit cell design Doing adaptive meshing in finite array design will be time consuming and not as efficient 10

11 Efficient: 8X8 Array Patch Array Direct solver with 12 cores 5:05: GB RAM Finite Array DDM with 12 cores 00:44: GB 6.8X faster 33.8X less memory 11

12 HPC: Faster with additional cores Linux cluster 16X Dell PowerEdge R610 Dual six-core Xeon X5760, 8GB per core Same 8X8 array of probe feed patch antennas 3M+ matrix size, 64 excitations Study performed using 101, 51,26, 11, 6 and 3 engines.* 101 simulation time = 17 min., 20X faster than direct solver *Three engines used as baseline 12

13 Hybrid Solving: Finite Element- Boundary Integral 14

14 Finite Element-Boundary Integral Solving Larger Problems with Rigor Antenna Placement Study: UHF Antenna on Apache UH64 airframe Finite Elements with DDM Boundary Integral (3D Method of Moments) Hybrid Finite Element-Boundary Integral (FE-BI) 15

15 Hybrid Solving: Finite Element- Boundary Integral Apache helicopter UHF antenna placement 900 MHz Solution volume 1,250 m 3 33,750 λ 3 Solution Specs 72 engines Matrix size = 47M 6 adaptive passes 300 GB RAM 5 hr 30 min Finite Elements with DDM 16

16 Hybrid Solving: Finite Element- Boundary Integral Apache helicopter UHF antenna placement 900 MHz Solution surface 173 m λ 2 Solution Specs 12 core MP 680k unknowns 9 adaptive passes 83 GB RAM 5 hr 28 min Boundary Integral, 3D MoM with HFSS-IE 17

17 Hybrid Solving: Finite Element- Boundary Integral Apache helicopter UHF antenna placement 900 MHz FEM solution volume 69 m λ 3 IE solution surface 236 m λ 2 Solution Specs 12 cores total using DDM with MP Matrix Size = 2.9M 6 adaptive passes 21 GB RAM 1 hr 3 min Hybrid Finite Element Boundary Integral Compared to 72 core FEM solution 14X less memory, 5.5 times faster 18

18 Hybrid Finite Element-Integral Equation Method Finite Element Based Method HFSS Efficient handle complex material and geometries Volume based mesh and field solutions Airbox required to model free space radiation Conformal radiation volume with Integral Equations Integral Equation Based Method HFSS-IE Efficient solution technique for open radiation and scattering Surface only mesh and current solution Airbox not needed to model free space radiation This Finite Element-Boundary Integral hybrid method leverages the advantages of both Finite methods Elements to achieve vs. Integral the most Equations accurate and robust solution for radiating and scattering problems 19

19 Summary of FEBI performance Type Time, Ratio Memory, Ratio FEM + DDM 5hr 30min, 1 300GB, 1 IE 5hr 28min, 1 83GB, 3.6 FEBI 1hr 3min, GB,

20 HFSS Hybrid Solving Hybrid Solving introduced in HFSS 13 with FEBI A highly accurate solution for open boundary problems Accurate: Solves directly for equivalent surface currents on boundary conditions Efficient: Conformal arbitrary shape BC to reduce FEM solution domain Reflectionless: can be placed closed to radiating surface. Does not have to be continuous: provides possibility of physically separate FEM volumes 21

21 Example: Missile Launch 22

22 FE-BI and Distributed Solving Distributes mesh sub-domains to network of processors FEM volume can be subdivided into multiple domains IE Domain is distributed to second node in machine list Significantly increases simulation capacity Multi-processor nodes can be utilized HPC distributes mesh sub-domains, FEM and IE domains, to networked processors and memory 23 FEM Domain 1 FEM Domain 2 FEM Domain 3 FEM Domain 4 IE Domain

23 Hybrid Solving: IE Regions 24

24 FEBI and Physically Separate Domains Reflector with multiple FE-BI domains Conducting reflector and feed horn each surrounded by air with FEBI applied to surface of air volumes Provides integral equation link between FEM domains But the 3D MoM solution from integral equations could be applied directly to conducting surface only 1meter 10λ 1meter 20λ 1meter 30λ Frequency Memory Required Frequency Memory Required Frequency Memory Required 3 GHz 2GB 6 GHz 10GB 9GHz 30GB 25

25 HFSS Hybrid Solving IE Regions Parallelized IE regions solved in parallel. Analogous to FEM domains Rigorous Multiple reflection Automated 26

26 IE Dielectric Regions Solve large homogeneous blocks of dielectric with a boundary condition Replace enclosed arbitrary dielectrics Solve with multiple open or enclosed IE regions Conducting IE regions may be inside dielectric IE regions Antenna Ground Penetrating Radar Air Surface Soil Mine FEM Enclosed IE Conducting IE Different solution domains may be solved in parallel with DDM 27

27 HFSS IE Regions - Example 28

28 Physical Optics 29

29 HFSS-IE PO Asymptotic solver for extremely large problems In HFSS-IE Solves electrically huge problems Currents are approximated in illuminated regions Set to zero in shadow regions No ray tracing or multiple bounces Target applications: Large reflector antennas RCS of large objects such as satellites Option in solution setup for HFSS-IE. Sourced by incident wave excitations Plane waves or linked HFSS designs as a source 30

30 Physical Optics (PO) Recieve Handles object scattering using asymptotically derived currents. There is an edge effect but it does not yield the true diffracted fields. Scatterer Source Currents approximated as J 2nxH inc 31

31 PO Solver in HFSS-IE 14 PE C Where: J PO = 2(n x H inc ) PO assumes the fields on all illuminated surface are the incident fields Effects of the scatterers are included by assuming the incident fields are scattered at each point on the body as if it were reflected from an infinite tangent plane at that point; J~2(n x H inc ) for PEC. For non-illuminated surfaces the J are set to zero. 32

32 PO Examples Notice the shadowing of the gun barrel on the tank and the tank on the ground. 33

33 HFSS-IE PO - Example Offset reflector 50 λ 0 in diameter fed by a horn HFSS far field link Simulated with 8 cores IE: 48.3min and 11.9GB PO: 23S and 286MB Note > 120x speedup 34

34 HFSS Transient 35

35 Transient problems 36

36 Aircraft: Pulsed RCS 37

37 HFSS Transient Introduced in HFSS 13.0 Discontinuous Galerkin Time Domain (DGTD) Finite element solution Retains accuracy and reliability of adapted unstructured-mesh Arbitrary Geometries Supports higher order basis functions Efficient for geometries with a wide range of geometric detail Local time stepping Based on element size, order and material property mesh elements may advance in time with different time steps Waveform Input Flexibility Oblique Angles on Incident Waves 38

38 HFSS Transient: New in R14 Transient Network Analysis Separate Frequency and Time domain Edit Source settings Specify delay of TDR to synchronize rise times Handling of partial S due to passive ports Transient Scaling and delay of individual sources General Support for general frequency dependent materials 39

39 Solver on Demand 40

40 Designer RF with HFSS - Solver on Demand HFSS - Solver on Demand Intuitive PCB design entry for HFSS Chips, packages, channels, modules, Designer layouts simulated with HFSS Automated boundary and port setups Finite dielectrics and ground supported Wave and Lumped Gap Port Single ended and Differential Vertical and Horizontal Coaxial, CPW and Grounded CPW 41

41 Design Description Balanced Amplifier MMIC amplifiers in parallel Gain = 22dB Power = 30dBm P1dB = 11dBm F=10GHz 42

42 Usability Enhancements 43

43 General Enhancements Save Radiated field data only Reduces the amount of stored data Import list for Edit Sources Can include parametric variables ~10X Reduction Network Installation for clusters Improved reliability on Linux Non-graphical solves without product-links Solves are independent of Mainwin registry Installations on Windows Non-graphical solves without product-links New Registry Configurations Installation: Lowest precedence Defaults applicable to all users Machine: Defaults applicable to all users on a machine. User : Machine independent user specific default User and machine: Highest precedence Defaults specific to user + machine 44

44 Save Radiated Field Data Only Reduces the amount of data stored on hard drive for large antenna problems Setting in Solution Setup, Advanced Tab: discrete and fast sweeps ~10X Reduction 45

45 Import List Entry for Edit Sources Easy input for magnitude and phase from source list Can include parametric variables 46

46 Ansoft HPC Enhancements: Network Installation on clusters Improved reliability on Linux Non-graphical batch solves without product-links Solves are independent of Mainwin registry No hung mainwin services or corrupt mainwin registry Network installations on Windows for Non-graphical batch solves without product-links Need to install VC redistributables on nodes ANSYS Registry XML file 47

47 Registry Configuration Software settings can be defined at various levels (all operating systems): Installation: Lowest precedence Installation level defaults applicable to all users Machine: Machine specific defaults applicable to all users on a given machine. User : Machine independent user specific default User and machine: specific value Highest precedence Most specific value: Specific to user and machine Run: UpdateRegistry -help from the product installation directory for usage details. 48

48 IronPython To get started using IronPython (from any Desktop Product): Set the environment variable ANSOFT_ENABLE_COMMANDWINDOW_UI=1 From the user interface: Tools>Open Command Window 49

49 3D Modeler Enhancements View customization. 64-bit user interface Post process larger simulations Z-stretch Speed Improvements Faster geometry loading Improved solid modeler speed. Improvements for selecting complex objects. 50

50 CAD Integration on WB Improvements CAD integration in ANSYS Workbench provides direct link to 3 rd party CAD tools Such as ProEngineer, Catia, SpaceClaim Added support for parametric analysis and distributed solving of CAD parameter 51

51 Ansoft to ANSYS Geometry Transfer Geometry and material assignment transfer from Ansoft to ANSYS Consume geometry from multiple upstream CAD sources Source can be any of CAD, DesignModeler or Ansoft products Further geometry edits are possible in ANSYS Design Modeler Creates User Defined Model (UDM) for each geometry input. 52

52 Conclusions Advanced Integrated Solver Technologies Physical Optics Solver in HFSS-IE New Layout interface for HFSS: Solver on Demand in Designer Usability Enhancement Improved Multiphysics flow 53

Simulation Advances. Antenna Applications

Simulation Advances. Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition

More information

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc.

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. 1 ANSYS, Inc. September 21, Advanced Solvers: Finite Arrays with DDM 2 ANSYS, Inc. September 21, Finite Arrays

More information

HFSS 14 Update for SI and RF Applications. Presenter: Senior Application Engineer Jeff Tharp, Ph.D.

HFSS 14 Update for SI and RF Applications. Presenter: Senior Application Engineer Jeff Tharp, Ph.D. HFSS 14 Update for SI and RF Applications Presenter: Senior Application Engineer Jeff Tharp, Ph.D. 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving

More information

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012 Electromagnetics R14 Update Greg Pitner 1 HFSS Version 14 2 HFSS Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary HFSS 12.0 Ansys 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model UHF blade antenna on Joint Strike Fighter Inherent improvements in

More information

HFSS PO Hybrid Region

HFSS PO Hybrid Region HFSS PO Hybrid Region Introduction The design of electrically large systems poses many challenges. Electromagnetic simulations can relatively quickly assess options and trade-offs before any physical testing.

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

Realize Your Product Promise HFSS

Realize Your Product Promise HFSS Realize Your Product Promise HFSS Smart phone front view with electronic field displayed (left); back view with housing cut away to show internal geometry with electric field (right) Achieve high-frequency,

More information

HFSS: Optimal Phased Array Modeling Using Domain Decomposition

HFSS: Optimal Phased Array Modeling Using Domain Decomposition HFSS: Optimal Phased Array Modeling Using Domain Decomposition 15. 0 Release Authors: Dane Thompson Nick Hirth Irina Gordion Sara Louie Presenter: Dane Thompson Motivation Electronically scannable antenna

More information

Powerful features (1)

Powerful features (1) HFSS Overview Powerful features (1) Tangential Vector Finite Elements Provides only correct physical solutions with no spurious modes Transfinite Element Method Adaptive Meshing r E = t E γ i i ( x, y,

More information

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe) Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG www.remcom.com +44 870 351 7640 +44 870 351 7641 (fax) Aspects of RF Simulation and Analysis Software Methods

More information

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation Preface xi 1 Introduction 1 1.1 Numerical Simulation of Antennas 1 1.2 Finite Element Analysis Versus Other Numerical Methods 2 1.3 Frequency- Versus Time-Domain Simulations 5 1.4 Brief Review of Past

More information

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1 CECOS University Department of Electrical Engineering Wave Propagation and Antennas LAB # 1 Introduction to HFSS 3D Modeling, Properties, Commands & Attributes Lab Instructor: Amjad Iqbal 1. What is HFSS?

More information

Workshop 10-1: HPC for Finite Arrays

Workshop 10-1: HPC for Finite Arrays Workshop 10-1: HPC for Finite Arrays 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Getting Started Launching ANSYS Electronics Desktop 2015 Select Programs > ANSYS Electromagnetics >

More information

Package on Board Simulation with 3-D Electromagnetic Simulation

Package on Board Simulation with 3-D Electromagnetic Simulation White Paper Package on Board Simulation with 3-D Electromagnetic Simulation For many years, designers have taken into account the effect of package parasitics in simulation, from using simple first-order

More information

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel Simulation Model definition for FDTD DUT Port Simulation Box Graded Mesh six Boundary Conditions 1 FDTD Basics: Field components

More information

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

Outline. Darren Wang ADS Momentum P2

Outline. Darren Wang ADS Momentum P2 Outline Momentum Basics: Microstrip Meander Line Momentum RF Mode: RFIC Launch Designing with Momentum: Via Fed Patch Antenna Momentum Techniques: 3dB Splitter Look-alike Momentum Optimization: 3 GHz Band

More information

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer MRI Induced Heating of a Pacemaker Peter Krenz, Application Engineer 1 Problem Statement Electric fields generated during MRI exposure are dissipated in tissue of the human body resulting in a temperature

More information

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Electrical Interconnect and Packaging Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Jason Morsey Barry Rubin, Lijun Jiang, Lon Eisenberg, Alina Deutsch Introduction Fast

More information

Virtual EM Inc. Ann Arbor, Michigan, USA

Virtual EM Inc. Ann Arbor, Michigan, USA Functional Description of the Architecture of a Special Purpose Processor for Orders of Magnitude Reduction in Run Time in Computational Electromagnetics Tayfun Özdemir Virtual EM Inc. Ann Arbor, Michigan,

More information

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE CST MICROWAVE STUDIO Technical Specification 1 May 2015 Frontend Module For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE Transient Solver Module Fast and

More information

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY

New Technologies in CST STUDIO SUITE CST COMPUTER SIMULATION TECHNOLOGY New Technologies in CST STUDIO SUITE 2016 Outline Design Tools & Modeling Antenna Magus Filter Designer 2D/3D Modeling 3D EM Solver Technology Cable / Circuit / PCB Systems Multiphysics CST Design Tools

More information

Workshop 3-1: Coax-Microstrip Transition

Workshop 3-1: Coax-Microstrip Transition Workshop 3-1: Coax-Microstrip Transition 2015.0 Release Introduction to ANSYS HFSS 1 2015 ANSYS, Inc. Example Coax to Microstrip Transition Analysis of a Microstrip Transmission Line with SMA Edge Connector

More information

Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation

Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation Andreas Buhr, Alexander Langwost, Fabrizio Zanella CST (Computer Simulation Technology) Abstract Computer Simulation Technology (CST)

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

HFSS for ECAD: Package Modeling, MMIC and on-die extraction

HFSS for ECAD: Package Modeling, MMIC and on-die extraction HFSS for ECAD: Package Modeling, MMIC and on-die extraction Alain Michel Technical Director, Europe 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Agenda Introduction HFSS integrated Solver

More information

LAB # 3 Wave Port Excitation Radiation Setup & Analysis

LAB # 3 Wave Port Excitation Radiation Setup & Analysis COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 3 Wave Port Excitation Radiation Setup & Analysis Designed by Syed Muzahir Abbas 1 WAVE PORT 1. New

More information

HFSS 3D Components. Steve Rousselle, ANSYS. Build, Share, Conquer Release. Release ANSYS, Inc.

HFSS 3D Components. Steve Rousselle, ANSYS. Build, Share, Conquer Release. Release ANSYS, Inc. HFSS 3D Components Build, Share, Conquer 2015.0 Release Steve Rousselle, ANSYS 1 2015 ANSYS, Inc. What is a 3D Component? Exploded View Assembly of 3D Components Device 2 2015 ANSYS, Inc. Introduction

More information

Parallelization of a Electromagnetic Analysis Tool

Parallelization of a Electromagnetic Analysis Tool Parallelization of a Electromagnetic Analysis Tool Milissa Benincasa Black River Systems Co. 162 Genesee Street Utica, NY 13502 (315) 732-7385 phone (315) 732-5837 fax benincas@brsc.com United States Chris

More information

ANSYS HPC. Technology Leadership. Barbara Hutchings ANSYS, Inc. September 20, 2011

ANSYS HPC. Technology Leadership. Barbara Hutchings ANSYS, Inc. September 20, 2011 ANSYS HPC Technology Leadership Barbara Hutchings barbara.hutchings@ansys.com 1 ANSYS, Inc. September 20, Why ANSYS Users Need HPC Insight you can t get any other way HPC enables high-fidelity Include

More information

ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS

ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS PROJECT NAME: 04-161 SMART Antennas ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS SAR TOOL VALIDATION REPORT Project SMART - WP6 Task 6.5 Deliverable 6.5.3 Rubén Otín rotin@cimne.upc.edu CIMNE - International

More information

Radar Cross Section Analysis of Aircraft using CONCEPT-II

Radar Cross Section Analysis of Aircraft using CONCEPT-II Radar Cross Section Analysis of Aircraft using CONCEPT-II Arne Schröder University of Bern - Institute of Applied Physics Microwave Physics WS2, Modeling of EMC Problems Using CONCEPT-II Radar - Radio

More information

INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS

INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS M. Zhou 1, S. B. Sørensen 1, N. Vesterdal 1, R. Dickie 2, R. Cahill 2, and G. Toso 3 1 TICRA,

More information

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY Jason R. Miller, Gustavo J. Blando, Roger Dame, K. Barry A. Williams and Istvan Novak Sun Microsystems, Burlington, MA 1 AGENDA Introduction

More information

Realize Your Product Promise. DesignerRF

Realize Your Product Promise. DesignerRF Realize Your Product Promise DesignerRF Four-element antenna array showing current distribution and far-field gain, created in DesignerRF using layout editor and solved via HFSS with Solver on Demand technology

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Yao-Jiang Zhang, Jun Fan and James L. Drewniak Electromagnetic Compatibility (EMC) Laboratory, Missouri University of Science &Technology

More information

Introduction to the FEKO Suite

Introduction to the FEKO Suite Introduction to the FEKO Suite FEKO is a suite of tools that is used for electromagnetic field analysis of 3D structures. It offers several state-of-the-art numerical methods for the solution of Maxwell

More information

Plane wave in free space Exercise no. 1

Plane wave in free space Exercise no. 1 Plane wave in free space Exercise no. 1 The exercise is focused on numerical modeling of plane wave propagation in ANSYS HFSS. Following aims should be met: 1. A numerical model of a plane wave propagating

More information

Comparison of TLM and FDTD Methods in RCS Estimation

Comparison of TLM and FDTD Methods in RCS Estimation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 3 (2011), pp. 283-287 International Research Publication House http://www.irphouse.com Comparison of TLM and FDTD Methods

More information

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department

FEKO Tutorial I. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department Mohammad S. Sharawi, Ph.D. Electrical Engineering Department This tutorial will get you started with FEKO. FEKO is a full-wave electromagnetic field simulator that is based on the Method of Moments (MoM).

More information

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities Abhinav Bharat, M L Meena, S. Sunil Kumar, Neha Sangwa, Shyam Rankawat Defence Laboratory, DRDO Jodhpur, India-342011 Abstract

More information

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide Contents Contents 1 Creating a Simulation 7 Introduction 8 Data Files for Examples 8 Software Organization 9 Constructing the Geometry 10 Creating the Mesh 11 Defining Run Parameters 13 Requesting Results

More information

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD STUDY OF SCATTERING & RESULTANT RADIATION PATTERN: INFINITE LINE CURRENT SOURCE POSITIONED HORIZONTALLY OVER A PERFECTLY CONDUCTING INFINITE GROUND PLANE IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL

More information

Engineers can be significantly more productive when ANSYS Mechanical runs on CPUs with a high core count. Executive Summary

Engineers can be significantly more productive when ANSYS Mechanical runs on CPUs with a high core count. Executive Summary white paper Computer-Aided Engineering ANSYS Mechanical on Intel Xeon Processors Engineer Productivity Boosted by Higher-Core CPUs Engineers can be significantly more productive when ANSYS Mechanical runs

More information

Simulating Reflector Antenna Performance with GRASP9

Simulating Reflector Antenna Performance with GRASP9 Simulating Reflector Antenna Performance with GRASP9 Bruce Veidt National Research Council of Canada bruce.veidt@nrc.ca and Walter Brisken NRAO Socorro wbrisken@aoc.nrao.edu September 2011 Opening Remarks

More information

Open source software tools for powertrain optimisation

Open source software tools for powertrain optimisation Open source software tools for powertrain optimisation Paolo Geremia Eugene de Villiers TWO-DAY MEETING ON INTERNAL COMBUSTION ENGINE SIMULATIONS USING OPENFOAM TECHNOLOGY 11-12 July, 2011 info@engys.eu

More information

CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS

CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS 107 CHAPTER 6 MICROSTRIP RECTANGULAR PATCH ARRAY WITH FINITE GROUND PLANE EFFECTS 6.1 INTRODUCTION The finite ground plane effects of microstrip antennas are one of the issues for the wireless mobile communication

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc.

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc. Electromagnetic & Acoustic Simulation Technologies ave Computation Technologies, Inc. Mission Wave Computation Technologies, Inc. (WCT) was founded in 2005 at the Research Triangle Area, North Carolina,

More information

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction INTRODUCTION TO The Uniform Geometrical Theory of Diffraction D.A. McNamara, C.W.I. Pistorius J.A.G. Malherbe University of Pretoria Artech House Boston London CONTENTS Preface xiii Chapter 1 The Nature

More information

Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits

Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits Genesys 2012 Tutorial - Using Momentum Analysis for Microwave Planar Circuits Create the following schematics in Figure 1 with Genesys s schematic editor, which depicts two sections of a cascaded microstrip

More information

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas Optimization of metallic biperiodic photonic crystals Application to compact directive antennas Nicolas Guérin Computational Optic Groups (COG) IFH, ETHZ, http://alphard.ethz.ch Keywords: 3D modeling,

More information

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Progress In Electromagnetics Research M, Vol. 68, 173 180, 2018 Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Jinyu Zhu, Yufa Sun *,

More information

Introduction to AWR Design Flow and New Features for V10

Introduction to AWR Design Flow and New Features for V10 Introduction to AWR Design Flow and New Features for V10 What s New In Version 10 imatch Matching Network Synthesis Matching Network Synthesis Tight integration with AWR tools Excellent starting point

More information

Antenna-Simulation of a Half-wave Dielectric Resonator filter

Antenna-Simulation of a Half-wave Dielectric Resonator filter Antenna-Simulation of a Half-wave Dielectric Resonator filter 1. Description A symmetric model of a dielectric resonator filter is analyzed using the Scattering parameters module of HFWorks to determine

More information

High Speed and High Power Connector Design

High Speed and High Power Connector Design High Speed and High Power Connector Design Taiwan User Conference 2014 Introduction High speed connector: Electrically small Using differential signaling Data rate >100Mbps High power connector: Static

More information

Module 3 Mesh Generation

Module 3 Mesh Generation Module 3 Mesh Generation 1 Lecture 3.1 Introduction 2 Mesh Generation Strategy Mesh generation is an important pre-processing step in CFD of turbomachinery, quite analogous to the development of solid

More information

Sorting Through EM Simulators

Sorting Through EM Simulators DesignFeature DAVE MORRIS Application Engineer Agilent Technologies, Lakeside, Cheadle Royal Business Park, Stockport 3K8 3GR, England; e-mail: david_morris@agilent.com, www.agilent.com. ELECTRONICALLY

More information

Specification of Diffraction Orders for Grating Regions

Specification of Diffraction Orders for Grating Regions Specification of Diffraction Orders for Grating Regions Abstract For the configuration of waveguide layouts VirtualLab offers the waveguide component. Within this component it is possible to define an

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

ELECTROMAGNETIC diffraction by perfectly conducting

ELECTROMAGNETIC diffraction by perfectly conducting IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1697 Oblique Scattering by a Pair of Conducting Half Planes: TM Case Jong-Won Yu and Noh-Hoon Myung Abstract An exact series

More information

Insights into EMC Chamber Design:

Insights into EMC Chamber Design: Insights into EMC Chamber Design: How to achieve an optimized chamber for accurate EMC Measurements Zubiao Xiong, PhD zubiao.xiong@ets-lindgren.com November 16, 2017 EMC Compliance Testing Emission (Disturbance)

More information

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansoft Designer Desktop Menu bar Toolbars Schematic

More information

Ansoft HFSS 3D Boundary Manager

Ansoft HFSS 3D Boundary Manager and Selecting Objects and s Menu Functional and Ansoft HFSS Choose Setup / to: Define the location of ports, conductive surfaces, resistive surfaces, and radiation (or open) boundaries. Define sources

More information

Enabling SI Productivity Part 2. Venkatesh Seetharam Aaron Edwards

Enabling SI Productivity Part 2. Venkatesh Seetharam Aaron Edwards Enabling SI Productivity Part 2 Venkatesh Seetharam Aaron Edwards 1 Problem Statement SI engineers use simulation software to squeeze the most performance out of their design. They will tend to focus on

More information

Optimization of HOM Couplers using Time Domain Schemes

Optimization of HOM Couplers using Time Domain Schemes Optimization of HOM Couplers using Time Domain Schemes Workshop on HOM Damping in Superconducting RF Cavities Carsten Potratz Universität Rostock October 11, 2010 10/11/2010 2009 UNIVERSITÄT ROSTOCK FAKULTÄT

More information

REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER)

REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER) Progress In Electromagnetics Research B, Vol. 29, 409 429, 2011 REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER) J. Moreno, M. J. Algar, I. González,

More information

FEKO Tutorial II. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department

FEKO Tutorial II. Mohammad S. Sharawi, Ph.D. Electrical Engineering Department Mohammad S. Sharawi, Ph.D. Electrical Engineering Department This tutorial will get you started with FEKO. FEKO is a full-wave electromagnetic field simulator that is based on the Method of Moments (MoM).

More information

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects RADIO SCIENCE, VOL. 38, NO. 2, 1028, doi:10.1029/2002rs002610, 2003 Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects Cai-Cheng Lu

More information

ANSYS HFSS: Layout Driven Assembly in ANSYS Electronics Desktop

ANSYS HFSS: Layout Driven Assembly in ANSYS Electronics Desktop Application Brief ANSYS HFSS: Layout Driven Assembly The ANSYS Electronics Desktop (AEDT) is an integrated environment with an easy-to-use interface that provides a streamlined workflow between ANSYS EM

More information

Keysight EEsof EDA EMPro

Keysight EEsof EDA EMPro Keysight EEsof EDA EMPro 3D Electromagnetic Modeling and Simulation Environment Integrated with your ADS Design Flow Brochure Introduction Electromagnetic Professional (EMPro) is a 3D modeling and simulation

More information

Pump Modeler Template Documentation

Pump Modeler Template Documentation Pump Modeler Template Documentation 2015 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited CONTENTS USER INTERFACE AND WORKFLOW... 4 STEP 1: IMPORT GEOMETRY...

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

EM Software & Systems GmbH

EM Software & Systems GmbH EM Software & Systems GmbH Otto-Lilienthal-Straße 36 D-71034 Böblingen GERMANY Telefon +49 7031 714 5200 Telefax +49 7031 714 5249 E-Mail Web info@emss.de http://www.emss.de FEKO Benchmark to handle big

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Overview 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 What is DesignXplorer? DesignXplorer (DX) is a tool that uses response surfaces and direct optimization

More information

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, *

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, * Progress In Electromagnetics Research Letters, Vol. 81, 133 139, 2019 Fast Calculation of Monostatic Radar Cross Section of Conducting Targets Using Hierarchical Characteristic Basis Function Method and

More information

Attila4MC. Software for Simplifying Monte Carlo. For more info contact or

Attila4MC. Software for Simplifying Monte Carlo. For more info contact or Attila4MC Software for Simplifying Monte Carlo For more info contact attila@varian.com or Gregory.Failla@varian.com MCNP and MCNP6 are trademarks of Los Alamos National Security, LLC, Los Alamos National

More information

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator High Frequency Structure Simulator 9.0 electronic design automation software user s guide High Frequency Structure Simulator ANSOFT CORPORATION Four Station Square Suite 200 Pittsburgh, PA 15219-1119 The

More information

Ansoft HFSS Version 7 Training Section 5: Boundary Module

Ansoft HFSS Version 7 Training Section 5: Boundary Module Ansoft HFSS Version 7 Training Section 5: Boundary Module 5-1 General Overview Synopsis Boundary Types, Definitions, and Parameters Source Types, Definitions, and Parameters Interface Layout Assigning

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

I. Meshing and Accuracy Settings

I. Meshing and Accuracy Settings Guidelines to Set CST Solver Accuracy and Mesh Parameter Settings to Improve Simulation Results with the Time Domain Solver and Hexahedral Meshing System illustrated with a finite length horizontal dipole

More information

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions If a structure has any symmetry (E or M i.e. Electric or Magnetic), the structure s physical size can be reduced symmetric plane boundary

More information

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014 ECE ILLINOIS ECE 451: Ansys HFSS Tutorial Simulate and Analyze an Example of Microstrip Line Drew Handler, Jerry Yang October 20, 2014 Introduction ANSYS HFSS is an industry standard tool for simulating

More information

Fast Electromagnetic Modeling of 3D Interconnects on Chip-package-board

Fast Electromagnetic Modeling of 3D Interconnects on Chip-package-board PIERS ONLINE, VOL. 6, NO. 7, 2010 674 Fast Electromagnetic Modeling of 3D Interconnects on Chip-package-board Boping Wu 1, Xin Chang 1, Leung Tsang 1, and Tingting Mo 2 1 Department of Electrical Engineering,

More information

Efficient Meshing in Sonnet

Efficient Meshing in Sonnet Efficient Meshing in Sonnet Purpose of this document: In this document, we will discuss efficient meshing in Sonnet, based on a wide variety of application examples. It will be shown how manual changes

More information

Workshop 5-1: Dynamic Link

Workshop 5-1: Dynamic Link Workshop 5-1: Dynamic Link 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Overview Linear Circuit Overview Dynamic Link Push Excitations Dynamic Link Example: Impedance Matching of Log-Periodic

More information

Workshop 3-1: Antenna Post-Processing

Workshop 3-1: Antenna Post-Processing Workshop 3-1: Antenna Post-Processing 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Example Antenna Post-Processing Analysis of a Dual Polarized Probe Fed Patch Antenna This example is

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Phased Array Antennas with Optimized Element Patterns

Phased Array Antennas with Optimized Element Patterns Phased Array Antennas with Optimized Element Patterns Sergei P. Skobelev ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface Introduction xi xiii CHAPTER 1 General Concepts and Relations 1 1.1

More information

Progress In Electromagnetics Research, PIER 43, , 2003

Progress In Electromagnetics Research, PIER 43, , 2003 Progress In Electromagnetics Research, PIER 43, 123 142, 2003 2D CAVITY MODELING USING METHOD OF MOMENTS AND ITERATIVE SOLVERS C.-F. Wang and Y.-B. Gan Temasek Laboratories National University of Singapore

More information

SPARCS tool for GEO S/C charging analysis : Brief presentation and planned evolutions

SPARCS tool for GEO S/C charging analysis : Brief presentation and planned evolutions : Brief presentation and planned evolutions Jean-paul Dudon SPINE meeting, 28 sept. 2009 Brief presentation of SPARCS (SPAce charging Software) Planned evolutions 2 Industrial needs and goals (2001/2002)

More information

Using Sonnet in a Cadence Virtuoso Design Flow

Using Sonnet in a Cadence Virtuoso Design Flow Using Sonnet in a Cadence Virtuoso Design Flow Purpose of this document: This document describes the Sonnet plug-in integration for the Cadence Virtuoso design flow, for silicon accurate EM modelling of

More information

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences 1 This is just a taste Note that full 14.0 update webinars of an hour per product will be scheduled closer to the release This presentation

More information

INFN - Thermal analysis of crate with motherboards, daughterboards and AM chips

INFN - Thermal analysis of crate with motherboards, daughterboards and AM chips INFN - Thermal analysis of crate with motherboards, daughterboards and AM chips intermediate report Jan Bienstman Phone: +32 16 28 77 81 E-mail: Jan.Bienstman@imec.be IMEC, Kapeldreef 75 B3001 Heverlee

More information

New Modelling Capabilities in Commercial Software for High-Gain Antennas

New Modelling Capabilities in Commercial Software for High-Gain Antennas 6th European Conference on Antennas and Propagation (EUCAP) New Modelling Capabilities in Commercial Software for High-Gain Antennas Erik Jørgensen, Michael Lumholt, Peter Meincke, Min Zhou, Stig B. Sørensen,

More information

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules Optimization of Via onnections between Transmission Lines in Multilayer LT-Modules Optimization of Via onnections between Transmission Lines in Multilayer LT- Modules Torsten Thelemann, Heiko Thust, and

More information