A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data

Size: px
Start display at page:

Download "A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data"

Transcription

1 A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data Elham Sakhaee, Alireza Entezari University of Florida, Gainesville, FL 1

2 Uncertainty visualization is important in final decision making. With no indication of uncertainty, a perception of accuracy is created. No indication of discretization error Discretized data visualized with uncertainty Low-resolution data Our Method 2

3 Propagating Uncertainty through the Rendering Pipeline Dataset courtesy of [Gröller et al., 2005] m 2 m 4 m 1 m 3 m m 6 m 7 m 5 m 8 Transfer Func/on m m 1 m 2 m 3 m 4 N = 2 4 n 1 n 2 m 6 n 3 m 7 m 5 m Acquisition Reconstruction/ Filtering Transfer Function Classification Shading Compositing Noise Downsampling Quantization Ensemble of Simulations Transfer Func/on uncertainty Our Method 3

4 Contribution: Uncertainty Propagation Acquisition Reconstruction/ Filtering Transfer Function Classification Shading Compositing A framework that: propagates uncertainty throughout the rendering pipeline is independent of the source of uncertainty allows real-time uncertainty visualization can be leveraged for different applications can be extended to non-parametric models [work in progress] 4

5 Previous Work Visualizing uncertainty in ensembles [Sanyal et al., 2010; Whitaker et al., 2013] Uncertain iso-surface extraction [Grigoryan & Rheingans, 2004; Pöthkow & Hege, 2011, 2013] Uncertainty in data processing [Pang et al., 1997; Brodlie et al., 2012; Fout and Ma, 2012] Visualization of large-scale data [Schlegel et al., 2012] interpolation of normally distributed data Rendering probable iso-surfaces [Thompson et al., 2011] Hixels as a representation for bricks of large-scale data Visualizing likelihood of presence of an iso-surface 5

6 Interpolation of Probability Distributions Acquisition Reconstruction/ Filtering Transfer Function Classification Shading Compositing X = X i w i X i with weights w i = '(p v i ) v 1 v 2 v 3 v 4 p v 6 v 8 Assuming independent random variables: v 5 v 7 pdf X (x) =pdf w1 X 1 (x) pdf w2 X 2 (x) pdf wk X K (x) 6

7 How to represent uncertainty? Box-splines are a suitable choice: The space of box-splines is closed under convolution. Convolution can be computed analytically (and efficiently). Box-splines can represent non-parametric distributions. Compact-support of box-splines avoid introducing additional uncertainty. 7

8 Box-splines 1 : A Brief Overview Box-splines are generalization of B-splines projection of hyper-cubes in R n onto lower dimensional space R s R 2! R 1 R 3! R 2 defined by n direction vectors in R s M [x1,x 2 ] M [x1,x 2,x 3 ] [1] C. de Boor, et al, Box Splines,

9 Box-splines: Statistical Viewpoint 1-D box-spline with one direction vector = 1 st order B-spline = Uniform Distribution Example: Linear interpolation of 1D box-splines: pdf X (x) =pdf w1 X 1 (x) pdf w2 X 2 (x) M [0.5,0.5] M [1] M [1] X 1 0.5X X 2 X 2 M [0.8,0.2] M [0.3,0.7] 0.8X X 2 0.3X X 2 9

10 Bilinear Interpolation of Histograms Histogram: superposition of (scaled) elementary box-splines v 1 v 2 p v 3 v 4 Higher-degree box-splines allow for modeling more general distributions, such as kernel density estimation 10

11 Uncertain Post-Classification Acquisition Reconstruction/ Filtering Transfer Function Classification Shading Compositing Traditional post-classification (table-lookup): Z ( ) = (t) (t )dt Transfer Func/on Distribu/on of certain data intensity Expected optical properties: opacity, color, texture, etc. regardless of how pdf is computed: E( ) = Z (t)pdf X (t)dt Transfer Func/on τ Distribu/on of uncertain data intensity 11

12 Shading Uncertain Data Acquisition Reconstruction/ Filtering Transfer Function Classification Shading Compositing Uncertain volume X = X i interpolate distributions with interpolation weights w i X i with weights w i = '(p v i ) Uncertain gradient field weights interpolate distributions with derivative filters 2 Y x 3 4Y y 5 = X Y z i i i i 5 X i with weights i i i 5 = (v v i ) 12

13 Sample Applications for Evaluation of the Proposed Framework Visualizing large datasets at reduced scale Iso-surface extraction in low-resolution volumes Ensemble visualization Visualization of noisy volumes 13

14 Visualizing Large Datasets at Reduced Scale b=8 b = 32 b = 16 Mean field 1 value/brick of size b3 29 : : : 1 [Thompson et al., 2011] 2b2 values/brick of size b3 29 : : : 211 Proposed: 2 values/brick of size b3 (min, max) 29 : : :2

15 Visualizing large datasets at reduced scale Representing uncertainty with non-compactly-supported distributions introduces additional uncertainty due to modeling. Ground truth Mean field Gaussian distributed random field Uniformly distributed random field 15

16 Iso-surface Extraction in Low-resolution Volumes Visualization of a synthetic scalar field 1 : f(x) = ( 1, 0, 0) x (1, 0, 0) x at iso-value 1 High-resolution field, synthesized on a grid low-resolution field, synthesized on a grid P (f <1) = 50% Proposed statistical rendering on uniformly-distributed random field at resolution Gaussian Process Regression on normally-distributed random field at resolution [1] [1] Schlegel et al., On the interpola/on of data with normally distributed uncertainty for visualiza/on,

17 Interactive Uncertainty Exploration The interface allows for interactively changing the amount of uncertainty at each grid point Data values ± 3/255 Data values ± 4/255 Data values ± 5/255 17

18 Iso-surface extraction in low-resolution volumes Low-resolution field Low-resolution field with uniform uncertainty 18

19 Ensemble Visualization Propagating ensemble uncertainty through the rendering pipeline results in a representative depiction of the underlying data. Original Fuel Dataset Statistical Rendering of an ensemble of 50 realizations of noise 19

20 Visualizing Noisy Volumes Original Fuel Dataset One sample of zero-mean uniform noise is added to each data point Statistical Rendering of the noisy volume 20

21 Conclusion Box-splines provide analytical representation for interpolating (non-parametric) probability distributions Efficient computation Real-time uncertainty visualization Computing expected optical properties, by redefining the transfer function classification, helps propagating uncertainty within the pipeline 21

22 Conclusion: A Framework for Uncertainty Propagation Box-splines provide an analytical representation for interpolating (nonparametric) probability distributions. Efficient computations allow for interactive uncertainty visualization. Expected optical properties can be computed via the redefined postclassification. 22

23 Future Research Directions Modeling uncertainty with correlations (box-splines with zonotope support) Rendering with multi-dimensional transfer functions Extension to uncertainty represented by multi-bin histograms 23

24 Thank You! Questions?? 24

25 Ensemble Visualization (iso-contour extraction) Mean field visualization for an ensemble of temperature field with 63 ensembles [1] Statistical rendering overlaid with mean field visualization [1] T. Palmer et al., Development of a European mul/-model ensemble system for seasonal to inter-annual predic/on (demeter),

Isosurface Visualization of Data with Nonparametric Models for Uncertainty

Isosurface Visualization of Data with Nonparametric Models for Uncertainty Isosurface Visualization of Data with Nonparametric Models for Uncertainty Tushar Athawale, Elham Sakhaee, and Alireza Entezari Department of Computer & Information Science & Engineering University of

More information

AS a growing number of application areas rely on visualization

AS a growing number of application areas rely on visualization 1 A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data Elham Sakhaee, Alireza Entezari, Senior Member, IEEE Abstract With uncertainty present in almost all modalities of

More information

Isosurface Visualization of Data with Nonparametric Models for Uncertainty

Isosurface Visualization of Data with Nonparametric Models for Uncertainty 777 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 1, JANUARY 2016 Isosurface Visualization of Data with Nonparametric Models for Uncertainty Tushar Athawale, Elham Sakhaee, and

More information

Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data

Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019 1163 Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D

More information

Volume Graphics Introduction

Volume Graphics Introduction High-Quality Volume Graphics on Consumer PC Hardware Volume Graphics Introduction Joe Kniss Gordon Kindlmann Markus Hadwiger Christof Rezk-Salama Rüdiger Westermann Motivation (1) Motivation (2) Scientific

More information

Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours

Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours Approximate Level-Crossing Probabilities Kai Pöthkow, Christoph Petz & Hans-Christian Hege Working with Uncertainty Workshop, VisWeek 2011 Zuse Institute Berlin Previous Work Pfaffelmoser, Reitinger &

More information

GPU-based Volume Rendering. Michal Červeňanský

GPU-based Volume Rendering. Michal Červeňanský GPU-based Volume Rendering Michal Červeňanský Outline Volume Data Volume Rendering GPU rendering Classification Speed-up techniques Other techniques 2 Volume Data Describe interior structures Liquids,

More information

Bring umbrella? Uncertainty Visualization. Hurricane Katrina. Go sailing? Ambiguity in fiber tracks 9/13/2012

Bring umbrella? Uncertainty Visualization. Hurricane Katrina. Go sailing? Ambiguity in fiber tracks 9/13/2012 Bring umbrella? Uncertainty Visualization Alex Pang University of California, Santa Cruz Go sailing? Hurricane Katrina From NOAA Ambiguity in fiber tracks Policy & news uncertainty index (Baker and Bloom,

More information

AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping. Markus Hadwiger, KAUST

AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping. Markus Hadwiger, KAUST AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping Markus Hadwiger, KAUST Reading Assignment #5 (until Oct. 8) Read (required): Real-Time Volume Graphics, Chapter 2 (GPU Programming)

More information

Volume Visualization

Volume Visualization Volume Visualization Part 1 (out of 3) Overview: Volume Visualization Introduction to volume visualization On volume data Surface vs. volume rendering Overview: Techniques Simple methods Slicing, cuberille

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized?

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized? Volume Data Volume Visualization Part 1 (out of 3) Where do the data come from? Medical Application Computed Tomographie (CT) Magnetic Resonance Imaging (MR) Materials testing Industrial-CT Simulation

More information

Visualisation of uncertainty. Kai-Mikael Jää-Aro

Visualisation of uncertainty. Kai-Mikael Jää-Aro Visualisation of uncertainty Kai-Mikael Jää-Aro Why is this important? Visualising uncertainty Means and Methods Scalar data Vector data Volume data Generic methods Let us talk about the weather A weather

More information

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Illumination Visualisation Lecture 11 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-0) Isosurfaces & Volume Rendering Dr. David Koop Fields & Grids Fields: - Values come from a continuous domain, infinitely many values - Sampled at certain positions

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

[Programming Assignment] (1)

[Programming Assignment] (1) http://crcv.ucf.edu/people/faculty/bagci/ [Programming Assignment] (1) Computer Vision Dr. Ulas Bagci (Fall) 2015 University of Central Florida (UCF) Coding Standard and General Requirements Code for all

More information

Three-Dimensional Computer Vision

Three-Dimensional Computer Vision \bshiaki Shirai Three-Dimensional Computer Vision With 313 Figures ' Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Table of Contents 1 Introduction 1 1.1 Three-Dimensional Computer Vision

More information

Scalar Data. Alark Joshi

Scalar Data. Alark Joshi Scalar Data Alark Joshi Announcements Pick two papers to present Email me your top 3/4 choices. FIFO allotment Contact your clients Blog summaries: http://cs.boisestate.edu/~alark/cs564/participants.html

More information

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Balázs Csébfalvi bfalvi,, Lukas Mroz, Helwig Hauser, Andreas König, Eduard Gröller Institute of Computer Graphics and Algorithms

More information

QstatLab: software for statistical process control and robust engineering

QstatLab: software for statistical process control and robust engineering QstatLab: software for statistical process control and robust engineering I.N.Vuchkov Iniversity of Chemical Technology and Metallurgy 1756 Sofia, Bulgaria qstat@dir.bg Abstract A software for quality

More information

Volume Rendering. Lecture 21

Volume Rendering. Lecture 21 Volume Rendering Lecture 21 Acknowledgements These slides are collected from many sources. A particularly valuable source is the IEEE Visualization conference tutorials. Sources from: Roger Crawfis, Klaus

More information

Image Processing Lecture 10

Image Processing Lecture 10 Image Restoration Image restoration attempts to reconstruct or recover an image that has been degraded by a degradation phenomenon. Thus, restoration techniques are oriented toward modeling the degradation

More information

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm 6.801/6.866 Machine Vision Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm Problem 1 Line Fitting through Segmentation (Matlab) a) Write a Matlab function to generate noisy line segment data with

More information

Volume Rendering - Introduction. Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology

Volume Rendering - Introduction. Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology Volume Rendering - Introduction Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology Volume Visualization 2D visualization: slice images (or multi-planar reformation:

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Digital Image Fundamentals

Digital Image Fundamentals Digital Image Fundamentals Image Quality Objective/ subjective Machine/human beings Mathematical and Probabilistic/ human intuition and perception 6 Structure of the Human Eye photoreceptor cells 75~50

More information

Robert Collins CSE598G. Robert Collins CSE598G

Robert Collins CSE598G. Robert Collins CSE598G Recall: Kernel Density Estimation Given a set of data samples x i ; i=1...n Convolve with a kernel function H to generate a smooth function f(x) Equivalent to superposition of multiple kernels centered

More information

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions Category: Research Figure 1: Modeling, evaluation and visualization of uncertain geometry. a) Modeling

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Analysis and Synthesis of Texture

Analysis and Synthesis of Texture Analysis and Synthesis of Texture CMPE 264: Image Analysis and Computer Vision Spring 02, Hai Tao 31/5/02 Extracting image structure by filter banks Q Represent image textures using the responses of a

More information

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions

Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions Modeling and Visualization of Uncertainty-aware Geometry using Multi-variate Normal Distributions Christina Gillmann * University of Kaiserslautern Thomas Wischgoll Wright State University Bernd Hamann

More information

Sampling Theory in 1D. Point Lattices in Sampling Theory Multidimensional Sampling Theory. Sampling in 1D. Reconstruction in 1D

Sampling Theory in 1D. Point Lattices in Sampling Theory Multidimensional Sampling Theory. Sampling in 1D. Reconstruction in 1D Sampling heory in 1D Point Lattices in Sampling heory Multidimensional Sampling heory Alireza Entezari aentezar@cs.sfu.ca Computing Science, Simon Fraser University Continuous-domain function Fourier domain

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

One image is worth 1,000 words

One image is worth 1,000 words Image Databases Prof. Paolo Ciaccia http://www-db. db.deis.unibo.it/courses/si-ls/ 07_ImageDBs.pdf Sistemi Informativi LS One image is worth 1,000 words Undoubtedly, images are the most wide-spread MM

More information

Rendering Smoke & Clouds

Rendering Smoke & Clouds Rendering Smoke & Clouds Game Design Seminar 2007 Jürgen Treml Talk Overview 1. Introduction to Clouds 2. Virtual Clouds based on physical Models 1. Generating Clouds 2. Rendering Clouds using Volume Rendering

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Image Analysis - Lecture 1

Image Analysis - Lecture 1 General Research Image models Repetition Image Analysis - Lecture 1 Magnus Oskarsson General Research Image models Repetition Lecture 1 Administrative things What is image analysis? Examples of image analysis

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data CMPT 467/767 Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification

More information

Spline-based Sparse Tomographic Reconstruction with Besov Priors

Spline-based Sparse Tomographic Reconstruction with Besov Priors Spline-based Sparse Tomographic Reconstruction with Besov Priors Elham Sakhaee a and Alireza Entezari a a Department of CISE, University of Florida, Gainesville, FL ABSTRACT Tomographic reconstruction

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

A Topology Based Visualization for Exploring Data with Uncertainty. Keqin Wu, 10/24/2011 Mississippi state University

A Topology Based Visualization for Exploring Data with Uncertainty. Keqin Wu, 10/24/2011 Mississippi state University A Topology Based Visualization for Exploring Data with Uncertainty Keqin Wu, 10/24/2011 Mississippi state University Outline Introduction Related Work Method - Contour Tree Layout and Tree View Graph Design

More information

Nonparametric Clustering of High Dimensional Data

Nonparametric Clustering of High Dimensional Data Nonparametric Clustering of High Dimensional Data Peter Meer Electrical and Computer Engineering Department Rutgers University Joint work with Bogdan Georgescu and Ilan Shimshoni Robust Parameter Estimation:

More information

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71 Display Introduction page 67 2D Images page 68 All Orientations page 69 Single Image page 70 3D Images page 71 Intersecting Sections page 71 Cube Sections page 72 Render page 73 1. Tissue Maps page 77

More information

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment Visualisatie BMT Lecture overview Assignment Arjan Kok a.j.f.kok@tue.nl 1 Makes it possible to see inside or behind objects Complement of transparency is opacity Opacity defined by alpha value with range

More information

Vector Visualization

Vector Visualization Vector Visualization Vector Visulization Divergence and Vorticity Vector Glyphs Vector Color Coding Displacement Plots Stream Objects Texture-Based Vector Visualization Simplified Representation of Vector

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Data Visualization (CIS/DSC 468)

Data Visualization (CIS/DSC 468) Data Visualization (CIS/DSC 46) Volume Rendering Dr. David Koop Visualizing Volume (3D) Data 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or surface-shaded

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2 Visualisatie BMT Fundamental algorithms Arjan Kok a.j.f.kok@tue.nl Lecture overview Classification of algorithms Scalar algorithms Vector algorithms Tensor algorithms Modeling algorithms 1 2 Visualization

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Direct Volume Rendering. Overview

Direct Volume Rendering. Overview Direct Volume Rendering Department of Computer Science University of New Hampshire Durham, NH 03824 Based on: Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics 2000 State

More information

Overview. Direct Volume Rendering. Volume Rendering Integral. Volume Rendering Integral Approximation

Overview. Direct Volume Rendering. Volume Rendering Integral. Volume Rendering Integral Approximation Overview Direct Volume Rendering Department of Computer Science University of New Hampshire Durham, NH 03824 Based on: Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics

More information

Interactive Non-Linear Image Operations on Gigapixel Images

Interactive Non-Linear Image Operations on Gigapixel Images Interactive Non-Linear Image Operations on Gigapixel Images Markus Hadwiger, Ronell Sicat, Johanna Beyer King Abdullah University of Science and Technology Display-Aware Image Operations goal: perform

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Using Hierarchical Warp Stereo for Topography. Introduction

Using Hierarchical Warp Stereo for Topography. Introduction Using Hierarchical Warp Stereo for Topography Dr. Daniel Filiberti ECE/OPTI 531 Image Processing Lab for Remote Sensing Introduction Topography from Stereo Given a set of stereoscopic imagery, two perspective

More information

Introduction to Scientific Visualization

Introduction to Scientific Visualization Visualization Definition Introduction to Scientific Visualization Stefan Bruckner visualization: to form a mental vision, image, or picture of (something not visible or present to the sight, or of an abstraction);

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II 26.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

Introduction to 3D Graphics

Introduction to 3D Graphics Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors Texture The most fundamental question is: How can we measure texture, i.e., how can we quantitatively distinguish between different textures? Of course it is not enough to look at the intensity of individual

More information

First Steps in Hardware Two-Level Volume Rendering

First Steps in Hardware Two-Level Volume Rendering First Steps in Hardware Two-Level Volume Rendering Markus Hadwiger, Helwig Hauser Abstract We describe first steps toward implementing two-level volume rendering (abbreviated as 2lVR) on consumer PC graphics

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Optimal 3D Lattices in Scientific Visualization and Computer Graphics

Optimal 3D Lattices in Scientific Visualization and Computer Graphics Optimal 3D Lattices in Scientific Visualization and Computer Graphics School of Computing Science Simon Fraser University Jan, 2007 Outline Visualization and Graphics 1 Visualization and Graphics 2 3 Further

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and Reconstruction Sampling and Reconstruction Sampling and Spatial Resolution Spatial Aliasing Problem: Spatial aliasing is insufficient sampling of data along the space axis, which occurs because

More information

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1 Wavelet Applications Texture analysis&synthesis Gloria Menegaz 1 Wavelet based IP Compression and Coding The good approximation properties of wavelets allow to represent reasonably smooth signals with

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/602-01: Data Visualization Vector Field Visualization Dr. David Koop Fields Tables Networks & Trees Fields Geometry Clusters, Sets, Lists Items Items (nodes) Grids Items Items Attributes Links

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2018 Localization II Localization I 16.04.2018 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

CLASSIFICATION AND CHANGE DETECTION

CLASSIFICATION AND CHANGE DETECTION IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING With Algorithms for ENVI/IDL and Python THIRD EDITION Morton J. Canty CRC Press Taylor & Francis Group Boca Raton London NewYork CRC

More information

The K-modes and Laplacian K-modes algorithms for clustering

The K-modes and Laplacian K-modes algorithms for clustering The K-modes and Laplacian K-modes algorithms for clustering Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://faculty.ucmerced.edu/mcarreira-perpinan

More information

Scientific Visualization. CSC 7443: Scientific Information Visualization

Scientific Visualization. CSC 7443: Scientific Information Visualization Scientific Visualization Scientific Datasets Gaining insight into scientific data by representing the data by computer graphics Scientific data sources Computation Real material simulation/modeling (e.g.,

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Cycle of Visualization Storage De noising/filtering Down sampling

More information

Calculating the Distance Map for Binary Sampled Data

Calculating the Distance Map for Binary Sampled Data MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Calculating the Distance Map for Binary Sampled Data Sarah F. Frisken Gibson TR99-6 December 999 Abstract High quality rendering and physics-based

More information

Edge Detection. Today s reading. Cipolla & Gee on edge detection (available online) From Sandlot Science

Edge Detection. Today s reading. Cipolla & Gee on edge detection (available online) From Sandlot Science Edge Detection From Sandlot Science Today s reading Cipolla & Gee on edge detection (available online) Project 1a assigned last Friday due this Friday Last time: Cross-correlation Let be the image, be

More information

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida Learning Splines for Sparse Tomographic Reconstruction Elham Sakhaee and Alireza Entezari University of Florida esakhaee@cise.ufl.edu 2 Tomographic Reconstruction Recover the image given X-ray measurements

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Semi-Automatic Transcription Tool for Ancient Manuscripts

Semi-Automatic Transcription Tool for Ancient Manuscripts The Venice Atlas A Digital Humanities atlas project by DH101 EPFL Students Semi-Automatic Transcription Tool for Ancient Manuscripts In this article, we investigate various techniques from the fields of

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information