Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering

Size: px
Start display at page:

Download "Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering"

Transcription

1 Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Balázs Csébfalvi bfalvi,, Lukas Mroz, Helwig Hauser, Andreas König, Eduard Gröller Institute of Computer Graphics and Algorithms

2 Motivation Visualize preferably all the internal structures at the same time No a priori knowledge about the data Avoid time-consuming specification of an appropriate transfer function Interactive frame rates on a low-end PC 2/ 17

3 Traditional methods Indirect volume rendering - Marching Cubes computationally expensive preprocessing which iso-surface surface represents the data best? 3D graphics HW is required for fast rendering Direct volume rendering time-demanding transfer function specification HW acceleration is required for fast rendering 3/ 17

4 Non-photorealistic volume rendering (NPVR) Real-Time Volume Previewing [Saito, 1994] Principal Direction-Driven Driven 3D LIC [Interrante,, 1997] Pen-and and-ink Rendering in Volume Visualization [Treavett[ & Chen, 2000] Volume Illustration: NPR of Volume Data [Ebert & Rheingans,, 2000] 4/ 17

5 Contour projection Emphasize the surface voxels (the gradient magnitude represents the surfaceness ) View-dependent intensity calculation - contour enhancement Maximum intensity projection (MIP) 5/ 17

6 Contour enhancement View-dependent intensity function: n controls the sharpness g( f(p) ) is a windowing function In order to keep the depth information: Depth cueing Local maximum intensity projection (LMIP) Alpha-blending compositing, where color: g( f(p) ),, opacity: I(p,v) 6/ 17 f f ( p) I( p, v) = (1 v ) ( p) n g( f ( p) )

7 Variations of contour projection Maximum Intensity Projection (MIP) MIP using depth cueing 7/ 17

8 Variations of contour projection Local Maximum Intensity Projection Alpha-blending compositing 8/ 17

9 Adding level lines CT head with level lines Engine block with level lines 9/ 17

10 Visualization of internal structures Human lungs with the bronchia Human vertebrae with screws 10 / 17

11 How to make it interactive? Gradient quantization (12 bit representation) View-dependent components of the intensity function are stored in a LUT Preprocessing - voxels are sorted according to the view-independent independent component Fast rendering using an efficient shear-warp projection 11 / 17

12 Preprocessing for MIP For efficient rendering the voxels should be ordered according to their intensities Global sorting is not possible because of the view-dependence Decompose the domain of gradient directions into finite number of regions and voxels are grouped by their quantized gradients Skip the regions which have a low contribution because of the low view-dependent scaling factor 12 / 17

13 Preprocessing for alpha-blending compositing For efficient rendering the voxels should be ordered according to their distance from the intermediate image plane Voxels are ordered separately for each principal viewing direction Within a slice voxels are sorted according to the gradient magnitude Skip homogeneous regions (low gradient magnitude) 13 / 17

14 Shear-warp projection 14 / 17

15 Combination with traditional volume rendering Combination with a shaded isosurface Combination with Phong shading 15 / 17

16 Rendering times Volume Head Vertebrae Resolution Model MIP Blending MIP Blending Rendered voxels 102k 366k 337k 942k Rendering time 85ms 150ms 130ms 270ms 16 / 17

17 Conclusion Visualization of internal structures without transfer function specification The intensity function does not directly depend on the densities no a priori knowledge about the data is required Simplified NPR model data reduction no visual overload interactive rendering even on a low-end PC 17 / 17

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering EUROGRAPHICS 200 / A. Chalmers and T.-M. Rhyne (Guest Editors) Volume 20 (200), Number 3 Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Balázs Csébfalvi, Vienna University

More information

First Steps in Hardware Two-Level Volume Rendering

First Steps in Hardware Two-Level Volume Rendering First Steps in Hardware Two-Level Volume Rendering Markus Hadwiger, Helwig Hauser Abstract We describe first steps toward implementing two-level volume rendering (abbreviated as 2lVR) on consumer PC graphics

More information

Volume Visualization

Volume Visualization Volume Visualization Part 1 (out of 3) Overview: Volume Visualization Introduction to volume visualization On volume data Surface vs. volume rendering Overview: Techniques Simple methods Slicing, cuberille

More information

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized?

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized? Volume Data Volume Visualization Part 1 (out of 3) Where do the data come from? Medical Application Computed Tomographie (CT) Magnetic Resonance Imaging (MR) Materials testing Industrial-CT Simulation

More information

Interactive Volume Illustration and Feature Halos

Interactive Volume Illustration and Feature Halos Interactive Volume Illustration and Feature Halos Nikolai A. Svakhine Purdue University svakhine@purdue.edu David S.Ebert Purdue University ebertd@purdue.edu Abstract Volume illustration is a developing

More information

Non-Photorealistic Volume Visualization

Non-Photorealistic Volume Visualization Non-Photorealistic Volume Visualization Caroline Langer Martin Artner Seminar of Computer Science Institute of Computer Graphics and Algorithms Vienna University of Technology / Austria Abstract This paper

More information

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Illumination Visualisation Lecture 11 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

GPU-based Volume Rendering. Michal Červeňanský

GPU-based Volume Rendering. Michal Červeňanský GPU-based Volume Rendering Michal Červeňanský Outline Volume Data Volume Rendering GPU rendering Classification Speed-up techniques Other techniques 2 Volume Data Describe interior structures Liquids,

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71 Display Introduction page 67 2D Images page 68 All Orientations page 69 Single Image page 70 3D Images page 71 Intersecting Sections page 71 Cube Sections page 72 Render page 73 1. Tissue Maps page 77

More information

Volume Illumination & Vector Field Visualisation

Volume Illumination & Vector Field Visualisation Volume Illumination & Vector Field Visualisation Visualisation Lecture 11 Institute for Perception, Action & Behaviour School of Informatics Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

Data Visualization (CIS/DSC 468)

Data Visualization (CIS/DSC 468) Data Visualization (CIS/DSC 46) Volume Rendering Dr. David Koop Visualizing Volume (3D) Data 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or surface-shaded

More information

Direct Volume Rendering

Direct Volume Rendering Direct Volume Rendering Balázs Csébfalvi Department of Control Engineering and Information Technology Budapest University of Technology and Economics Classification of Visualization Algorithms Indirect

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

User Documentation for IDVR (Importance driven volume rendering)

User Documentation for IDVR (Importance driven volume rendering) User Documentation for IDVR (Importance driven volume rendering) Bernhard Pflugfelder e0027467 Christopher Thurnher e0125913 Institute of Computer Graphics and Algorithms Loading a Dataset... - 4 - Loading

More information

Interactive Volume Illustration

Interactive Volume Illustration Interactive Volume Illustration Zoltán Nagy, Jens Schneider, Rüdiger Westermann Scientific Visualization & Imaging Group University of Technology Aachen Abstract In this paper we describe non-photorealistic

More information

Hot Topics in Visualization

Hot Topics in Visualization Hot Topic 1: Illustrative visualization 12 Illustrative visualization: computer supported interactive and expressive visualizations through abstractions as in traditional illustrations. Hot Topics in Visualization

More information

Hot Topics in Visualization. Ronald Peikert SciVis Hot Topics 12-1

Hot Topics in Visualization. Ronald Peikert SciVis Hot Topics 12-1 Hot Topics in Visualization Ronald Peikert SciVis 2007 - Hot Topics 12-1 Hot Topic 1: Illustrative visualization Illustrative visualization: computer supported interactive and expressive visualizations

More information

A Survey of Volumetric Visualization Techniques for Medical Images

A Survey of Volumetric Visualization Techniques for Medical Images International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 4, April 2015, PP 34-39 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

1 State of The Art for Volume Rendering

1 State of The Art for Volume Rendering 1 State of The Art for Volume Rendering Technical Report Jianlong Zhou and Klaus D. Tönnies Institute for Simulation and Graphics University of Magdeburg, 39106 Magdeburg, Germany Email: {Zhou,Klaus}@isg.cs.uni-magdeburg.de

More information

INTERACTIVE VOLUME ILLUSTRATION USING WANG CUBES

INTERACTIVE VOLUME ILLUSTRATION USING WANG CUBES Purdue University Purdue e-pubs ECE Technical Reports Electrical and Computer Engineering 10-1-2004 INTERACTIVE VOLUME ILLUSTRATION USING WANG CUBES Aidong Lu David S. Ebert Wei Qiao Martin Kraus Benjamin

More information

Feature Enhancement using Locally Adaptive Volume Rendering

Feature Enhancement using Locally Adaptive Volume Rendering Volume Graphics (2007) H. - C. Hege, R. Machiraju (Editors) Feature Enhancement using Locally Adaptive Volume Rendering Stéphane Marchesin and Jean-Michel Dischler and Catherine Mongenet LSIIT Louis Pasteur

More information

2. Review of current methods

2. Review of current methods Transfer Functions for Direct Volume Rendering Gordon Kindlmann gk@cs.utah.edu http://www.cs.utah.edu/~gk Scientific Computing and Imaging Institute School of Computing University of Utah Contributions:

More information

Interactivity is the Key to Expressive Visualization

Interactivity is the Key to Expressive Visualization VlSFILES Interactivity is the Key to Expressive Visualization Eric B. Lum and Kwan-Liu Ma University of California, Davis Scientific visualization is widely used for gaining insight into phenomena through

More information

cs6630 November TRANSFER FUNCTIONS Alex Bigelow University of Utah

cs6630 November TRANSFER FUNCTIONS Alex Bigelow University of Utah cs6630 November 14 2014 TRANSFER FUNCTIONS Alex Bigelow University of Utah 1 cs6630 November 13 2014 TRANSFER FUNCTIONS Alex Bigelow University of Utah slide acknowledgements: Miriah Meyer, University

More information

Shear-Warp Volume Rendering. Volume Rendering Overview

Shear-Warp Volume Rendering. Volume Rendering Overview Shear-Warp Volume Rendering R. Daniel Bergeron Department of Computer Science University of New Hampshire Durham, NH 03824 From: Lacroute and Levoy, Fast Volume Rendering Using a Shear-Warp- Factorization

More information

Importance-Driven Volume Rendering

Importance-Driven Volume Rendering Importance-Driven Volume Rendering Ivan Viola Armin Kanitsar Meister Eduard Gröller Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria Figure 1: Leopard Gecko dataset:

More information

ITS 102: Visualize This! Lecture 7: Illustrative Visualization. Introduction

ITS 102: Visualize This! Lecture 7: Illustrative Visualization. Introduction Introduction ITS 102: Visualize This! Lecture 7: Illustrative Visualization Illustrative rendering is also often called non-photorealistic rendering (NPR) we shall use these terms here interchangeably

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-0) Isosurfaces & Volume Rendering Dr. David Koop Fields & Grids Fields: - Values come from a continuous domain, infinitely many values - Sampled at certain positions

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment Visualisatie BMT Lecture overview Assignment Arjan Kok a.j.f.kok@tue.nl 1 Makes it possible to see inside or behind objects Complement of transparency is opacity Opacity defined by alpha value with range

More information

Emissive Clip Planes for Volume Rendering Supplement.

Emissive Clip Planes for Volume Rendering Supplement. Emissive Clip Planes for Volume Rendering Supplement. More material than fit on the one page version for the SIGGRAPH 2003 Sketch by Jan Hardenbergh & Yin Wu of TeraRecon, Inc. Left Image: The clipped

More information

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification Segmentation

More information

Data Visualization (CIS/DSC 468)

Data Visualization (CIS/DSC 468) Data Visualization (CIS/DSC 468) Vector Visualization Dr. David Koop Visualizing Volume (3D) Data 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or

More information

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences Hardware Accelerated Volume Visualization Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences A Real-Time VR System Real-Time: 25-30 frames per second 4D visualization: real time input of

More information

Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn

Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn Hatching 2 Hatching Motivation: Hatching in principle curvature direction Interrante et al. 1995 3 Hatching Hatching

More information

3D Surface Reconstruction of the Brain based on Level Set Method

3D Surface Reconstruction of the Brain based on Level Set Method 3D Surface Reconstruction of the Brain based on Level Set Method Shijun Tang, Bill P. Buckles, and Kamesh Namuduri Department of Computer Science & Engineering Department of Electrical Engineering University

More information

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data CMPT 467/767 Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification

More information

Aspects of 3-D Seismic Data Volume Rendering

Aspects of 3-D Seismic Data Volume Rendering Aspects of 3-D Seismic Data Volume Rendering by André Gerhardt, Anselmo Paiva, Ana Elisa Schmidt, Luiz Fernando Martha, Paulo Cezar Carvalho, and Marcelo Gattass June 5,1998 Topics Aspects of 3-D Seismic

More information

Raycasting. Ronald Peikert SciVis Raycasting 3-1

Raycasting. Ronald Peikert SciVis Raycasting 3-1 Raycasting Ronald Peikert SciVis 2007 - Raycasting 3-1 Direct volume rendering Volume rendering (sometimes called direct volume rendering) stands for methods that generate images directly from 3D scalar

More information

THROUGHOUT history, archaeologists, surgeons, engineers,

THROUGHOUT history, archaeologists, surgeons, engineers, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003 1 Illustrative Interactive Stipple Rendering Aidong Lu, Student Member, IEEE Computer Society, Christopher J. Morris,

More information

A view-dependent approach to MIP for very large data

A view-dependent approach to MIP for very large data A view-dependent approach to MIP for very large data Naeem Shareef and Roger Crawfis Dept. of CIS, The Ohio State University, Columbus, OH ABSTRACT A simple and yet useful approach to visualize a variety

More information

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Rendering Computer Animation and Visualisation Lecture 9 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Volume Data Usually, a data uniformly distributed

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Direct Volume Rendering

Direct Volume Rendering Direct Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or surface-shaded

More information

Monte Carlo Volume Rendering

Monte Carlo Volume Rendering Monte Carlo Volume Rendering Balázs Csébfalvi László Szirmay-Kalos Department of Control Engineering and Information Technology Technical University of Budapest (a) 1M samples. (b) 4M samples. (c) 16M

More information

GPU-Accelerated Deep Shadow Maps

GPU-Accelerated Deep Shadow Maps GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering Markus Hadwiger, Andrea Kratz, Christian Sigg*, Katja Bühler VRVis Research Center, Vienna *ETH Zurich Andrea Kratz Motivation High-quality

More information

Introduction to 3D Graphics

Introduction to 3D Graphics Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is

More information

byte offset LUT bit offset

byte offset LUT bit offset Fast Volume Rotation using Binary Shear-Warp Factorization Balazs Csebfalvi Department of Control Engineering and Information Technology, Technical University of Budapest, Budapest, Muegyetem rkp. 11,

More information

Volume Rendering - Introduction. Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology

Volume Rendering - Introduction. Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology Volume Rendering - Introduction Markus Hadwiger Visual Computing Center King Abdullah University of Science and Technology Volume Visualization 2D visualization: slice images (or multi-planar reformation:

More information

The VesselGlyph: Focus & Context Visualization in CT-Angiography

The VesselGlyph: Focus & Context Visualization in CT-Angiography The VesselGlyph: Focus & Context Visualization in CT-Angiography Matúš Straka M. Šrámek, A. La Cruz E. Gröller, D. Fleischmann Contents Motivation:» Why again a new visualization method for vessel data?

More information

Exploiting Eigenvalues of the Hessian Matrix for Volume Decimation

Exploiting Eigenvalues of the Hessian Matrix for Volume Decimation Exploiting Eigenvalues of the Hessian Matrix for Volume Decimation Jiří Hladůvka, Andreas König, and Eduard Gröller Institute of Computer Graphics and Algorihms Vienna University of Technology Karlsplatz

More information

Interactive Volume Visualization of Complex Flow Semantics

Interactive Volume Visualization of Complex Flow Semantics Interactive Volume Visualization of Complex Flow Semantics Helwig Hauser and Matej Mlejnek VRVis Research Center Vienna, Austria Figure 1: Volume visualization representing a user s interest in a back-flow

More information

12/3/2007. Non-Photorealistic Rendering (NPR) What is NPR exactly? What is NPR exactly? What is NPR exactly? What is NPR exactly?

12/3/2007. Non-Photorealistic Rendering (NPR) What is NPR exactly? What is NPR exactly? What is NPR exactly? What is NPR exactly? Non-Photorealistic Rendering (NPR) aka. Stylized rendering, artistic rendering, expressive graphics Covers any area of graphics where the point is to consciously not produce an image that is as photorealistic

More information

Non Photorealistic Techniques with Focus and Context Volume Rendering

Non Photorealistic Techniques with Focus and Context Volume Rendering Non Photorealistic Techniques with Focus and Context Volume Rendering Peter Benilov Supervisor: John Dingliana School of Computer Science and Statistics Trinity College Dublin M.A.I. Computer Engineering

More information

Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis

Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis Žiga Lesar, Ciril Bohak, Matija Marolt Faculty of Computer and Information Science, University of Ljubljana, Slovenia

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Volume Rendering. Lecture 21

Volume Rendering. Lecture 21 Volume Rendering Lecture 21 Acknowledgements These slides are collected from many sources. A particularly valuable source is the IEEE Visualization conference tutorials. Sources from: Roger Crawfis, Klaus

More information

Medical Visualization - Volume Rendering. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Volume Rendering. J.-Prof. Dr. Kai Lawonn Medical Visualization - Volume Rendering J.-Prof. Dr. Kai Lawonn Medical Visualization Pipeline Acquisition Filtering/Enhancement Mapping Rendering Data are given Data are processed e.g., feature extraction

More information

University of West Bohemia in Pilsen Faculty of Applied Sciences Department of Computer Science and Engineering DIPLOMA THESIS

University of West Bohemia in Pilsen Faculty of Applied Sciences Department of Computer Science and Engineering DIPLOMA THESIS University of West Bohemia in Pilsen Faculty of Applied Sciences Department of Computer Science and Engineering DIPLOMA THESIS Pilsen, 2002 Petr Š ereda University of West Bohemia in Pilsen Faculty of

More information

Visualizer An implicit surface rendering application

Visualizer An implicit surface rendering application June 01, 2004 Visualizer An implicit surface rendering application Derek Gerstmann - C1405511 MSc Computer Animation NCCA Bournemouth University OVERVIEW OF APPLICATION Visualizer is an interactive application

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

8. Tensor Field Visualization

8. Tensor Field Visualization 8. Tensor Field Visualization Tensor: extension of concept of scalar and vector Tensor data for a tensor of level k is given by t i1,i2,,ik (x 1,,x n ) Second-order tensor often represented by matrix Examples:

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

TECHNICAL REPORT. Enhancing Depth-Perception with Flexible Volumetric Halos

TECHNICAL REPORT. Enhancing Depth-Perception with Flexible Volumetric Halos Institut für Computergraphik und Algorithmen Technische Universität Wien Karlsplatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18601 Fax: +43 (1) 58801-18698 Institute of Computer Graphics and Algorithms

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 02 130124 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Basics Image Formation Image Processing 3 Intelligent

More information

New Method for Opacity Correction in Oversampled Volume Ray Casting

New Method for Opacity Correction in Oversampled Volume Ray Casting New Method for Opacity Correction in Oversampled Volume Ray Casting Jong Kwan Lee Department of Computer Science University of Alabama in Huntsville Huntsville, AL 35899 USA jlee@cs.uah.edu Timothy S.

More information

Volume Graphics Introduction

Volume Graphics Introduction High-Quality Volume Graphics on Consumer PC Hardware Volume Graphics Introduction Joe Kniss Gordon Kindlmann Markus Hadwiger Christof Rezk-Salama Rüdiger Westermann Motivation (1) Motivation (2) Scientific

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Scientific Visualization. CSC 7443: Scientific Information Visualization

Scientific Visualization. CSC 7443: Scientific Information Visualization Scientific Visualization Scientific Datasets Gaining insight into scientific data by representing the data by computer graphics Scientific data sources Computation Real material simulation/modeling (e.g.,

More information

Non-Photo Realistic Rendering. Jian Huang

Non-Photo Realistic Rendering. Jian Huang Non-Photo Realistic Rendering Jian Huang P and NP Photo realistic has been stated as the goal of graphics during the course of the semester However, there are cases where certain types of non-photo realistic

More information

Nonphotorealistic Rendering of Medical Volume Data

Nonphotorealistic Rendering of Medical Volume Data Nonphotorealistic Rendering of Medical Volume Data Nonphotorealistic rendering, which produces images in the manner of traditional styles such as painting or drawing, is proving to be a useful alternative

More information

Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction

Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction Gordon Kindlmann Scientific Computing and Imaging Institute School of Computing University of Utah gk@cs.utah.edu A principle

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

TECHNICAL REPORT. Style Transfer Functions for Illustrative Volume Rendering

TECHNICAL REPORT. Style Transfer Functions for Illustrative Volume Rendering Institut für Computergraphik und Algorithmen Technische Universität Wien Karlsplatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18601 Fax: +43 (1) 58801-18698 Institute of Computer Graphics and Algorithms

More information

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization Volume visualization Volume visualization Volumes are special cases of scalar data: regular 3D grids of scalars, typically interpreted as density values. Each data value is assumed to describe a cubic

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

advanced visualization algorithm based on surfaces SMURF arbitrary surface, e.g., iso-surface, analytic surface, etc.

advanced visualization algorithm based on surfaces SMURF arbitrary surface, e.g., iso-surface, analytic surface, etc. Smurf { a Smart surface model for advanced visualization techniques Helwig Loelmann, Thomas Theul, Andreas Konig, and Eduard Groller Institute of Computer Graphics, Vienna University of Technology, Karlsplatz

More information

Direct Volume Rendering

Direct Volume Rendering Direct Volume Rendering CMPT 467/767 Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Volume rendering equation Compositing schemes Ray casting Acceleration techniques for ray casting Texture-based

More information

Visualisierung W, VU, 2.0h, 3.0EC

Visualisierung W, VU, 2.0h, 3.0EC Visualisierung 1 2014W, VU, 2.0h, 3.0EC 186.827 Eduard Gröller Johanna Schmidt Oana Moraru Institute of Computer Graphics and Algorithms (ICGA), VUT Austria Visualization Examples VolVis InfoVis FlowVis

More information

Multidimensional Transfer Functions in Volume Rendering of Medical Datasets. Master thesis. Tor Øyvind Fluør

Multidimensional Transfer Functions in Volume Rendering of Medical Datasets. Master thesis. Tor Øyvind Fluør UNIVERSITY OF OSLO Department of Informatics Multidimensional Transfer Functions in Volume Rendering of Medical Datasets Master thesis Tor Øyvind Fluør February 2006 Abstract In volume rendering, transfer

More information

VOLUME PAINTING: INCORPORATING VOLUMETRIC RENDERING WITH LINE INTEGRAL CONVOLUTION (LIC)

VOLUME PAINTING: INCORPORATING VOLUMETRIC RENDERING WITH LINE INTEGRAL CONVOLUTION (LIC) VOLUME PAINTING: INCORPORATING VOLUMETRIC RENDERING WITH LINE INTEGRAL CONVOLUTION (LIC) A Thesis by JAEWOOK LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

VolumeShop: An Interactive System for Direct Volume Illustration

VolumeShop: An Interactive System for Direct Volume Illustration VolumeShop: An Interactive System for Direct Volume Illustration Stefan Bruckner M. Eduard Gröller Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria (a) (b) Figure

More information

Interactive Exploration of Remote Isosurfaces with Point-Based Non-Photorealistic Rendering

Interactive Exploration of Remote Isosurfaces with Point-Based Non-Photorealistic Rendering Interactive Exploration of Remote Isosurfaces with Point-Based Non-Photorealistic Rendering Guangfeng Ji, Han-Wei Shen and Jinzhu Gao Department of Computer Science and Engineering The Ohio State University

More information

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Jian Wang 1,2, Anja Borsdorf 2, Joachim Hornegger 1,3 1 Pattern Recognition Lab, Friedrich-Alexander-Universität

More information

Artistic Rendering of Functionally Defined Volumetric Objects

Artistic Rendering of Functionally Defined Volumetric Objects Artistic Rendering of Functionally Defined Volumetric Objects by Masashi Mizota Graduate School of Computer and Information Sciences Hosei University i04t0018@k.hosei.ac.jp Supervisor: Alexander Pasko

More information

Perception-Based Transfer Function Design

Perception-Based Transfer Function Design Perception-Based Transfer Function Design Huamin Qu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Outline Introduction Transfer Function Design Based

More information

AMCS / CS 247 Scientific Visualization Lecture 4: Data Representation, Pt. 1. Markus Hadwiger, KAUST

AMCS / CS 247 Scientific Visualization Lecture 4: Data Representation, Pt. 1. Markus Hadwiger, KAUST AMCS / CS 247 Scientific Visualization Lecture 4: Data Representation, Pt. 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Sep 1) Read (required): Data Visualization book, finish Chapter 2 Data Visualization

More information

Feature-Enhanced Visualization of Multidimensional, Multivariate Volume Data Using Non-photorealistic Rendering Techniques

Feature-Enhanced Visualization of Multidimensional, Multivariate Volume Data Using Non-photorealistic Rendering Techniques Feature-Enhanced Visualization of Multidimensional, Multivariate Volume Data Using Non-photorealistic Rendering Techniques Aleksander Stompel Eric B. Lum Kwan-Liu Ma University of California at Davis fastompel,lume,mag@cs.ucdavis.edu

More information

A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data

A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data Elham Sakhaee, Alireza Entezari University of Florida, Gainesville, FL 1 Uncertainty visualization is important in final

More information

Interactive Methods in Scientific Visualization

Interactive Methods in Scientific Visualization Interactive Methods in Scientific Visualization GPU Volume Raycasting Christof Rezk-Salama University of Siegen, Germany Volume Rendering in a Nutshell Image Plane Eye Data Set Back-to-front iteration

More information

Lighting Transfer Functions Using Gradient Aligned Sampling

Lighting Transfer Functions Using Gradient Aligned Sampling Lighting Transfer Functions Using Gradient Aligned Sampling Eric B. Lum Kwan-Liu Ma University of California Davis (a) (b) (c) (d) Figure 1: With the absence of lighting in the brown region in (a), very

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research Applications of Explicit Early-Z Z Culling Jason Mitchell ATI Research Outline Architecture Hardware depth culling Applications Volume Ray Casting Skin Shading Fluid Flow Deferred Shading Early-Z In past

More information