Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Size: px
Start display at page:

Download "Multi-Atlas Segmentation of the Cardiac MR Right Ventricle"

Transcription

1 Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University of Pennsylvania Abstract. As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels from multiple atlases into final segmentation. In the challenge dataset, we observe different imaging fields-of-view (FOVs), different structures around cardiac structures, and as such, registration and label fusion become quite difficult. We propose to drive both components by an attribute-based similarity metric and a mutual-saliency-based reliability metric. The fundamental idea is to improve registration and label fusion by looking for corresponding voxels that are similar (as measured by their Gabor attributes in the neighborhood), and more importantly, reliably similar (as measured by the mutual-saliency of their matching) between atlas and target images. 1 Introduction In MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, participants are provided with training MR images from 15 subjects, each having expert-defined segmentation of the right ventricle (RV) on the End Diastole (ED) and End Systole (ES) cardiac-phase images. The task is to segment right ventricle on ED and ES cardiac-phase images from 16 testing subjects. The major difficulty of the segmentation task lies in the difference of the RV structure / shape / size among different subjects. A further complication is that different cardiac images cover different fields-of-view. Traditionally, this RV segmentation can be approached by two major branches of methods: deformable model based methods (e.g., [1]), and registration-based methods (e.g., [2]). The former branch trains a shape / curve model of the RV, and lets the curve model evolve in new subjects until it converges to RV boundaries. It takes advantage of the fact that different RV will have similar shape information. But the difficulty is how to define a proper energy function to drive the curve evolution towards to right boundary, which is usually not completely clear. Our proposed method belongs to the second major approach, which is to use image registration for the segmentation.

2 2 Ou, Doshi, Erus, Davatzikos We present a multi-atlas-registration framework for the segmentation. The central idea is to transfer those expert-segmentations in training images (i.e., atlases) onto target image through image registration, and then fuse the transferred segmentations to derive an ultimate segmentation. Multi-atlas segmentation has gained increasing interest in recent years [3 7]. One premise in this approach is that it allows using a priori knowledge, as encoded in atlas segmentations, to infer segmentation in target image via atlas-to-target image registration. Another premise is that it allows different atlases to correct each other s errors in a process often known as label fusion. The fused segmentation has shown remarkable improvement over single-atlas-based segmentation in various brain, cardiac and prostate structures. Recently, multi-atlas approaches have been applied to cardiac structural segmentations and obtained very promising results [8]. Despite exciting research in recent years, both image registration and label fusion are not without challenges. In registration, a fundamental question is how to find reliable correspondences across images, especially when different subjects cardiac image are usually taken at different fields-of-view (FOVs), containing different structures around heart, and exhibiting largely variable shape/size of the hearts. As a result, the registration, affine or deformable, may often times result in significant errors. In this paper, we propose to improve both registration and label fusion by attribute-based similarity and mutual-saliency-based reliability metrics. The main idea is the following: When registering an atlas to target, we rely more on those regions, compared to other regions, that can establish reliable matching. When fusing labels, we assign higher confidence / weight to those atlases, compared to other atlases, that are more reliably similar to the target at each voxel. We applied our method on cardiac images from 20 subjects. We obtained average dice scores of (±0.254) and (±0.246) for the segmentation of the endocardial and epicardial volumes respectively. 2 Methods 2.1 Registration We use image registration from multiple atlases to the target image in order to segment the right ventricle. Due to large variations in imaging protocols, structures, anatomies and even pathology conditions among different subjects, registration from an atlas to the target is a very difficult task. A recently-developed non-rigid registration algorithm is used for warping atlas images to the target. This algorithm, termed DRAMMS registration [9], finds voxel correspondences by using a rich set of geometric texture features at each voxel, other than by image intensity alone. The high dimensional multi-scale and multi-orientation image features are used to make each imaging voxel more distinctive and therefore better identifiable during search for correspondence. Furthermore, when registering an atlas to the target image, this algorithm relies more on the regions

3 Multi-Atlas-Based Segmentation of the Cardiac MR Right Ventricle 3 that can establish a more reliable matching compared to other regions. Such an approach is particularly well suited to the registration of cardiac images, where the two images may have significant differences, or even missing correspondence (i.e., some structures present in one image but not the other). In DRAMMS, voxels are matched by their geometric context other than intensity, and the whole registration is mainly driven by regions/voxels that can reliably match across images. We describe each voxel x by the geometric context of this voxel, in a d-dimensional multi-scale and multi-orientation Gabor attribute vector A(x). This attribute descriptor renders each voxel more distinctive than intensity information alone [9]. Then the similarity between two voxels x and y from two images is defined as 1 sim(x, y) = [0, 1] (1) d A(x) A(y) 2 A pair of voxels x, y in two images is said mutually-salient, if they are similar to each other and meanwhile less similar to any other voxels in the neighborhood. In this case, the matching between those two voxels are reliable, because no other voxel in the neighborhood of y can replace it with higher similarity. The similarity and mutual-saliency values are used to modulate registration. Specifically, DRAMMS seeks a non-rigid transformation T, based on free form deformation (FFD) model [10], that minimizes the mutual-saliency-weighted attribute differences over target image domain Ω R 3, With DRAMMS registration, segmentation labels from all atlases can be mapped to the same target image space. The next sub-section describes how to fuse those multiple segmentation labels into a single segmentation in the target image. 2.2 Label Fusion Let N atlases, indexed by n, be each registered to the same target image via a deformation T n. A voxel u in the target image space Ω will tentatively have N segmentation labels propagated from all those N atlases, denoted as {label(tn 1 To fuse them into a single segmentation label, we use a similarity and mutualsaliency weighted voting strategy. Specifically, we first calculate the probability of this voxel having each of all L segmentation labels {1, 2,..., L}, i.e., l 1, 2,..., L Pr(label(u) = l) = n (u))} N n=1. 1 sim(tn (u), u) ms(tn 1 (u), u) 1(label(Tn 1 (u)) = l) 1 sim(tn (u), u) ms(tn 1 (2) (u), u) n Then, we assign the most likely label l to this voxel u, i.e., label(u) = l s.t. l = arg max Pr(label(u) = l) (3) l In equation 2, if we have sim(, ) 1 and ms(, ) 1, then the proposed label fusion scheme becomes the classic majority voting algorithm.

4 4 Ou, Doshi, Erus, Davatzikos 3 Results Cardiac images of ED and ES phases from 15 subjects, on which endocardial and epicardial volumes were manually segmented by an expert radiologist, are used as the training set. A set of cardiac images from 20 subjects is provided for testing the method. The method is applied on each test image using all training samples as templates. From the final segmentation, contour points of the endocardial and epicardial regions have been extracted and submitted for the evaluation. The technical performance of the method is quantitatively assessed through overlap measure (Dice metric, DM) and a distance-based measurement (Hausdorff distance, HD). Tables 1 and 2 show the average DM and HD values obtained. Table 1. Average Dice Scores Phase All Endocardial Epicardial µ σ µ σ µ σ ED and ES ED ES Table 2. Average Hausdorff distances Phase All Endocardial Epicardial µ σ µ σ µ σ ED and ES ED ES The average Dice scores for each subject are given in figure 2. We observed that the registration-based approach could fairly detect the right ventricle for most of the subjects. One of the subjects had a very low Dice score. According to our visual evaluation, it seems that the subject has significantly smaller ventricles that have been incorrectly matched to the training templates (Figure??). 4 Discussion We used a multi-atlas registration based method for segmenting the right ventricle on cardiac MRI. A similarity- weighted label fusion strategy is then used for combining the warped labels. A voxelwise weighting is used for combining

5 Multi-Atlas-Based Segmentation of the Cardiac MR Right Ventricle 5 Fig. 1. Average dice scores per subject. Fig. 2. A sample case with low Dice score. Segmented endo and epicardiac regions overlaid on the ED image atlas labels. We obtained promising results from a purely registration based perspective. An inconvenience of this approach is that the final segmentation might not preserve the mostly regular boundaries of the ground-truth masks. Applying morphological operations combined with an intensity-based correction step could significantly improve the final segmentation. Alternatively, a template selection approach, e.g. selecting a few templates that are the most similar to the target image after registration, might be applied. Finally, one of our perspectives is to use the segmentations as an initialization to a curve evolution approach like level sets.

6 6 Ou, Doshi, Erus, Davatzikos References 1. Robert M. Lapp, Maria Lorenzo-Valdes and Daniel Rueckert, 3D/4D Cardiac Segmentation Using Active Appearance Models, Non-rigid Registration, and the Insight Toolkit, MICCAI, , (2004). 2. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S. A Registration- Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. Medical Imaging, IEEE Transactions on, , (2010). 3. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A., Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage. 15;33(1):115-26, (2006). 4. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C., Combination strategies in multi-atlas image segmentation: application to brain MR data, IEEE Trans Med Imaging. 28(8): , (2009). 5. Sabuncu MR, Yeo BT, Van Leemput K, Fischl B, Golland P., A generative model for image segmentation based on label fusion. IEEE TMI 29(10): , (2010). 6. Warfield SK, Zou KH, Wells WM, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE Trans Med Imag 23(7), (2004). 7. Asman AJ, and Landman BA, Robust Statistical Label Fusion Through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE), IEEE Trans Med Imag, 30(10), (2011). 8. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B. Multi-Atlas-Based Segmentation With Local Decision Fusion Application to Cardiac and Aortic Segmentation in CT Scans , (2009). 9. Ou Y, Sotiras A, Paragios N, Davatzikos C, DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. MedIA 15(4):622-39, (2011). 10. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 18(8): (1999).

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department

More information

Prototype of Silver Corpus Merging Framework

Prototype of Silver Corpus Merging Framework www.visceral.eu Prototype of Silver Corpus Merging Framework Deliverable number D3.3 Dissemination level Public Delivery data 30.4.2014 Status Authors Final Markus Krenn, Allan Hanbury, Georg Langs This

More information

Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion

Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion Maria A. Zuluaga, M. Jorge Cardoso, Marc Modat, and Sébastien Ourselin Centre

More information

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Eva M. van Rikxoort, Ivana Isgum, Marius Staring, Stefan Klein and Bram van Ginneken Image Sciences Institute,

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

Multi-atlas spectral PatchMatch: Application to cardiac image segmentation

Multi-atlas spectral PatchMatch: Application to cardiac image segmentation Multi-atlas spectral PatchMatch: Application to cardiac image segmentation W. Shi 1, H. Lombaert 3, W. Bai 1, C. Ledig 1, X. Zhuang 2, A. Marvao 1, T. Dawes 1, D. O Regan 1, and D. Rueckert 1 1 Biomedical

More information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Subrahmanyam Gorthi 1, Alireza Akhondi-Asl 1, Jean-Philippe Thiran 2, and Simon K.

More information

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting Yangming Ou, Christos Davatzikos Section of Biomedical Image Analysis (SBIA) University of Pennsylvania Outline 1. Background

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Tobias Gass, Gabor Szekely, and Orcun Goksel Computer Vision Lab, Dep. of Electrical Engineering, ETH Zurich, Switzerland.

More information

Non-rigid Image Registration using Electric Current Flow

Non-rigid Image Registration using Electric Current Flow Non-rigid Image Registration using Electric Current Flow Shu Liao, Max W. K. Law and Albert C. S. Chung Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering,

More information

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach STIC AmSud Project Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach Caroline Petitjean A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD October 22,

More information

Discrete Multi Atlas Segmentation using Agreement Constraints

Discrete Multi Atlas Segmentation using Agreement Constraints Discrete Multi Atlas Segmentation using Agreement Constraints Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios To cite this version: Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios. Discrete

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images Overview 1. Part 1: Theory 1. 2. Learning 2. Part 2: Applications ernst.schwartz@meduniwien.ac.at

More information

3D Brain Segmentation Using Active Appearance Models and Local Regressors

3D Brain Segmentation Using Active Appearance Models and Local Regressors 3D Brain Segmentation Using Active Appearance Models and Local Regressors K.O. Babalola, T.F. Cootes, C.J. Twining, V. Petrovic, and C.J. Taylor Division of Imaging Science and Biomedical Engineering,

More information

DRAMMS: deformable registration via attribute matching and mutual-saliency weighting

DRAMMS: deformable registration via attribute matching and mutual-saliency weighting University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 7-2009 DRAMMS: deformable registration via attribute matching and mutual-saliency weighting Yangming Ou

More information

Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery

Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery Inês Machado 1,2(&), Matthew Toews 3, Jie Luo 1,4, Prashin Unadkat 5, Walid Essayed

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

Multi-atlas labeling with population-specific template and non-local patch-based label fusion

Multi-atlas labeling with population-specific template and non-local patch-based label fusion Multi-atlas labeling with population-specific template and non-local patch-based label fusion Vladimir Fonov, Pierrick Coupé, Simon Eskildsen, Jose Manjon, Louis Collins To cite this version: Vladimir

More information

Available online at ScienceDirect. Procedia Computer Science 90 (2016 ) 87 92

Available online at  ScienceDirect. Procedia Computer Science 90 (2016 ) 87 92 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 90 (2016 ) 87 92 International Conference On Medical Imaging Understanding and Analysis 2016, MIUA 2016, 6-8 July 2016,

More information

Regional Manifold Learning for Deformable Registration of Brain MR Images

Regional Manifold Learning for Deformable Registration of Brain MR Images Regional Manifold Learning for Deformable Registration of Brain MR Images Dong Hye Ye, Jihun Hamm, Dongjin Kwon, Christos Davatzikos, and Kilian M. Pohl Department of Radiology, University of Pennsylvania,

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Automated Cerebellar Lobule Segmentation using Graph Cuts

Automated Cerebellar Lobule Segmentation using Graph Cuts Automated Cerebellar Lobule Segmentation using Graph Cuts Zhen Yang 1, John A. Bogovic 2, Chuyang Ye 1, Aaron Carass 1, Sarah Ying 3, and Jerry L. Prince 1 1 Johns Hopkins University, Baltimore, USA 2

More information

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Christian Wasserthal 1, Karin Engel 1, Karsten Rink 1 und André Brechmann

More information

Segmentation of Brain MR Images via Sparse Patch Representation

Segmentation of Brain MR Images via Sparse Patch Representation Segmentation of Brain MR Images via Sparse Patch Representation Tong Tong 1, Robin Wolz 1, Joseph V. Hajnal 2, and Daniel Rueckert 1 1 Department of Computing, Imperial College London, London, UK 2 MRC

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

A Review on Label Image Constrained Multiatlas Selection

A Review on Label Image Constrained Multiatlas Selection A Review on Label Image Constrained Multiatlas Selection Ms. VAIBHAVI NANDKUMAR JAGTAP 1, Mr. SANTOSH D. KALE 2 1PG Scholar, Department of Electronics and Telecommunication, SVPM College of Engineering,

More information

Pictorial Multi-atlas Segmentation of Brain MRI

Pictorial Multi-atlas Segmentation of Brain MRI Pictorial Multi-atlas Segmentation of Brain MRI Cheng-Yi Liu 1, Juan Eugenio Iglesias 1,2, Zhuowen Tu 1 1 University of California, Los Angeles, Laboratory of Neuro Imaging 2 Athinoula A. Martinos Center

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net

Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net Marc-Michel Rohé, Maxime Sermesant, Xavier Pennec To cite this version: Marc-Michel Rohé, Maxime Sermesant, Xavier Pennec. Automatic Multi-Atlas

More information

Correspondence Detection Using Wavelet-Based Attribute Vectors

Correspondence Detection Using Wavelet-Based Attribute Vectors Correspondence Detection Using Wavelet-Based Attribute Vectors Zhong Xue, Dinggang Shen, and Christos Davatzikos Section of Biomedical Image Analysis, Department of Radiology University of Pennsylvania,

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size Suyash P. Awate, Peihong Zhu, and Ross T. Whitaker Scientific Computing

More information

Multi-Atlas Brain MRI Segmentation with Multiway Cut

Multi-Atlas Brain MRI Segmentation with Multiway Cut Multi-Atlas Brain MRI Segmentation with Multiway Cut Duygu Sarikaya, Liang Zhao, and Jason J. Corso SUNY Buffalo, Computer Science and Engineering Department, 338 Davis Hall- Buffalo, New York, USA 14260-2500

More information

Sampling-Based Ensemble Segmentation against Inter-operator Variability

Sampling-Based Ensemble Segmentation against Inter-operator Variability Sampling-Based Ensemble Segmentation against Inter-operator Variability Jing Huo 1, Kazunori Okada, Whitney Pope 1, Matthew Brown 1 1 Center for Computer vision and Imaging Biomarkers, Department of Radiological

More information

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Fahdi Kanavati 1, Tong Tong 1, Kazunari Misawa 2, Michitaka Fujiwara 3, Kensaku Mori 4, Daniel Rueckert 1, and Ben Glocker

More information

A multi-atlas approach for prostate segmentation in MR images

A multi-atlas approach for prostate segmentation in MR images A multi-atlas approach for prostate segmentation in MR images Geert Litjens, Nico Karssemeijer, and Henkjan Huisman Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, Nijmegen,

More information

Shape-Aware Multi-Atlas Segmentation

Shape-Aware Multi-Atlas Segmentation Shape-Aware Multi-Atlas Segmentation Jennifer Alvén, Fredrik Kahl, Matilda Landgren, Viktor Larsson and Johannes Ulén Department of Signals and Systems, Chalmers University of Technology, Sweden Email:

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Albert Gubern-Mérida 1, Michiel Kallenberg 2, Robert Martí 1, and Nico Karssemeijer 2 1 University of Girona, Spain {agubern,marly}@eia.udg.edu

More information

Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation

Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation M. HEINRICH et al.: MULTIMODAL REGISTRATION USING GRADIENT ORIENTATION 1 Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation Mattias P. Heinrich 1 mattias.heinrich@eng.ox.ac.uk

More information

Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification

Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification Annegreet van Opbroek 1, Fedde van der Lijn 1 and Marleen de Bruijne 1,2 1 Biomedical Imaging Group Rotterdam, Departments of Medical

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

4D Cardiac Reconstruction Using High Resolution CT Images

4D Cardiac Reconstruction Using High Resolution CT Images 4D Cardiac Reconstruction Using High Resolution CT Images Mingchen Gao 1, Junzhou Huang 1, Shaoting Zhang 1, Zhen Qian 2, Szilard Voros 2, Dimitris Metaxas 1, and Leon Axel 3 1 CBIM Center, Rutgers University,

More information

Ground Truth Estimation by Maximizing Topological Agreements in Electron Microscopy Data

Ground Truth Estimation by Maximizing Topological Agreements in Electron Microscopy Data Ground Truth Estimation by Maximizing Topological Agreements in Electron Microscopy Data Huei-Fang Yang and Yoonsuck Choe Department of Computer Science and Engineering Texas A&M University College Station,

More information

A fully automatic multi-atlas based segmentation method for prostate MR images

A fully automatic multi-atlas based segmentation method for prostate MR images A fully automatic multi-atlas based segmentation method for prostate MR images Zhiqiang Tian, Emory University Lizhi Liu, Emory University Baowei Fei, Emory University Journal Title: Proceedings of SPIE

More information

arxiv: v1 [cs.cv] 20 Apr 2017

arxiv: v1 [cs.cv] 20 Apr 2017 End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network Bob D. de Vos 1, Floris F. Berendsen 2, Max A. Viergever 1, Marius Staring 2, and Ivana Išgum 1 1 Image Sciences

More information

Subcortical Structure Segmentation using Probabilistic Atlas Priors

Subcortical Structure Segmentation using Probabilistic Atlas Priors Subcortical Structure Segmentation using Probabilistic Atlas Priors Sylvain Gouttard 1, Martin Styner 1,2, Sarang Joshi 3, Brad Davis 2, Rachel G. Smith 1, Heather Cody Hazlett 1, Guido Gerig 1,2 1 Department

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Burak Erem 1, Gregory C. Sharp 2, Ziji Wu 2, and David Kaeli 1 1 Department of Electrical and Computer Engineering,

More information

Analysis of CMR images within an integrated healthcare framework for remote monitoring

Analysis of CMR images within an integrated healthcare framework for remote monitoring Analysis of CMR images within an integrated healthcare framework for remote monitoring Abstract. We present a software for analyzing Cardiac Magnetic Resonance (CMR) images. This tool has been developed

More information

Ensemble registration: Combining groupwise registration and segmentation

Ensemble registration: Combining groupwise registration and segmentation PURWANI, COOTES, TWINING: ENSEMBLE REGISTRATION 1 Ensemble registration: Combining groupwise registration and segmentation Sri Purwani 1,2 sri.purwani@postgrad.manchester.ac.uk Tim Cootes 1 t.cootes@manchester.ac.uk

More information

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Marcel Prastawa 1 and Guido Gerig 1 Abstract July 17, 2008 1 Scientific Computing and Imaging

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Algorithms for medical image registration and segmentation

Algorithms for medical image registration and segmentation Algorithms for medical image registration and segmentation Multi-atlas methods ernst.schwartz@meduniwien.ac.at www.cir.meduniwien.ac.at Overview Medical imaging hands-on Data formats: DICOM, NifTI Software:

More information

Quadrilateral Meshes for Finite Element-Based Image Registration

Quadrilateral Meshes for Finite Element-Based Image Registration Quadrilateral Meshes for Finite Element-Based Image Registration Marcelo Siqueira 1, Tessa Sundaram 1, Suneeta Ramaswami 2, Jean Gallier 1,and James Gee 1 1 University of Pennsylvania, Philadelphia, PA

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Image Registration Driven by Combined Probabilistic and Geometric Descriptors

Image Registration Driven by Combined Probabilistic and Geometric Descriptors Image Registration Driven by Combined Probabilistic and Geometric Descriptors Linh Ha 1, Marcel Prastawa 1, Guido Gerig 1, John H. Gilmore 2, Cláudio T. Silva 1, Sarang Joshi 1 1 Scientific Computing and

More information

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Jinzhong Yang, Yongbin Zhang, Lifei Zhang, and Lei Dong Department of Radiation Physics, University of Texas MD Anderson Cancer Center

More information

Auto-contouring the Prostate for Online Adaptive Radiotherapy

Auto-contouring the Prostate for Online Adaptive Radiotherapy Auto-contouring the Prostate for Online Adaptive Radiotherapy Yan Zhou 1 and Xiao Han 1 Elekta Inc., Maryland Heights, MO, USA yan.zhou@elekta.com, xiao.han@elekta.com, Abstract. Among all the organs under

More information

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration = optimisation C t x t y 1 Registration = optimisation C t x t y

More information

Learning-Based Atlas Selection for Multiple-Atlas Segmentation

Learning-Based Atlas Selection for Multiple-Atlas Segmentation Learning-Based Atlas Selection for Multiple-Atlas Segmentation Gerard Sanroma, Guorong Wu, Yaozong Gao, Dinggang Shen Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA

More information

Comparison of Vessel Segmentations Using STAPLE

Comparison of Vessel Segmentations Using STAPLE Comparison of Vessel Segmentations Using STAPLE Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab, The University of North Carolina at Chapel Hill, Department

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Balci

More information

NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01.

NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01. NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01. Published in final edited form as: Conf Comput Vis Pattern Recognit Workshops.

More information

Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model

Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model Stephen O Brien, Ovidiu Ghita, and Paul F. Whelan Centre for Image Processing and Analysis, Dublin City University,

More information

Auxiliary Anatomical Labels for Joint Segmentation and Atlas Registration

Auxiliary Anatomical Labels for Joint Segmentation and Atlas Registration Auxiliary Anatomical Labels for Joint Segmentation and Atlas Registration Tobias Gass, Gabor Szekely and Orcun Goksel Computer Vision Lab, ETH Zurich, Switzerland. {gasst, szekely, ogoksel}@vision.ee.ethz.ch

More information

Registration Using Sparse Free-Form Deformations

Registration Using Sparse Free-Form Deformations Registration Using Sparse Free-Form Deformations Wenzhe Shi 1, Xiahai Zhuang 2, Luis Pizarro 1,WenjiaBai 1, Haiyan Wang 1, Kai-Pin Tung 1, Philip Edwards 1, and Daniel Rueckert 1 1 Biomedical Image Analysis

More information

Using Probability Maps for Multi organ Automatic Segmentation

Using Probability Maps for Multi organ Automatic Segmentation Using Probability Maps for Multi organ Automatic Segmentation Ranveer Joyseeree 1,2, Óscar Jiménez del Toro1, and Henning Müller 1,3 1 University of Applied Sciences Western Switzerland (HES SO), Sierre,

More information

A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl, and Polina Golland

A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl, and Polina Golland 1714 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 10, OCTOBER 2010 A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl,

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration Serdar K. Balci 1, Polina Golland 1, Martha Shenton 2, and William M. Wells 2 1 CSAIL, MIT, Cambridge, MA, USA, 2 Brigham & Women s Hospital,

More information

Graph-based Deformable Image Registration

Graph-based Deformable Image Registration Graph-based Deformable Image Registration Aristeidis Sotiras, Yangming Ou, Nikos Paragios and Christos Davatzikos Abstract Deformable image registration is a field that has received considerable attention

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

Simultaneous Model-based Segmentation of Multiple Objects

Simultaneous Model-based Segmentation of Multiple Objects Simultaneous Model-based Segmentation of Multiple Objects Astrid Franz 1, Robin Wolz 1, Tobias Klinder 1,2, Cristian Lorenz 1, Hans Barschdorf 1, Thomas Blaffert 1, Sebastian P. M. Dries 1, Steffen Renisch

More information

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral PBSI: A symmetric probabilistic extension of the Boundary Shift Integral Christian Ledig 1, Robin Wolz 1, Paul Aljabar 1,2, Jyrki Lötjönen 3, Daniel Rueckert 1 1 Department of Computing, Imperial College

More information

Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations

Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations Christian Payer 1,, Darko Štern2, Horst Bischof 1, and Martin Urschler 2,3 1 Institute for Computer Graphics and Vision,

More information

Non-Rigid Registration of Medical Images: Theory, Methods and Applications

Non-Rigid Registration of Medical Images: Theory, Methods and Applications Non-Rigid Registration of Medical Images: Theory, Methods and Applications Daniel Rueckert Paul Aljabar Medical mage registration [1] plays an increasingly important role in many clinical applications

More information

Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study

Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study F. Javier Sánchez Castro a, Claudio Pollo a,b, Jean-Guy Villemure b, Jean-Philippe Thiran a a École Polytechnique

More information

Automatic Vascular Tree Formation Using the Mahalanobis Distance

Automatic Vascular Tree Formation Using the Mahalanobis Distance Automatic Vascular Tree Formation Using the Mahalanobis Distance Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab, Department of Radiology The University

More information

Comparison of Vessel Segmentations using STAPLE

Comparison of Vessel Segmentations using STAPLE Comparison of Vessel Segmentations using STAPLE Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab The University of North Carolina at Chapel Hill, Department

More information

Using K-means Clustering and MI for Non-rigid Registration of MRI and CT

Using K-means Clustering and MI for Non-rigid Registration of MRI and CT Using K-means Clustering and MI for Non-rigid Registration of MRI and CT Yixun Liu 1,2 and Nikos Chrisochoides 2 1 Department of Computer Science, College of William and Mary, enjoywm@cs.wm.edu 2 Department

More information

Non-rigid Image Registration

Non-rigid Image Registration Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Learning Coupled Prior Shape and Appearance Models for Segmentation

Learning Coupled Prior Shape and Appearance Models for Segmentation Learning Coupled Prior Shape and Appearance Models for Segmentation Xiaolei Huang, Zhiguo Li, and Dimitris Metaxas Center for Computational iomedicine Imaging and Modeling, Division of Computer and Information

More information

Neighbourhood Approximation Forests

Neighbourhood Approximation Forests Neighbourhood Approximation Forests Ender Konukoglu, Ben Glocker, Darko Zikic and Antonio Criminisi Microsoft Research Cambridge Abstract. Methods that leverage neighbourhood structures in highdimensional

More information

Atlas-Based Under-Segmentation

Atlas-Based Under-Segmentation Atlas-Based Under-Segmentation Christian Wachinger 1,2 and Polina Golland 1 1 Computer Science and Artificial Intelligence Lab, MIT 2 Massachusetts General Hospital, Harvard Medical School Abstract. We

More information

Automatic Generation of Shape Models Using Nonrigid Registration with a Single Segmented Template Mesh

Automatic Generation of Shape Models Using Nonrigid Registration with a Single Segmented Template Mesh Automatic Generation of Shape Models Using Nonrigid Registration with a Single Segmented Template Mesh Geremy Heitz, Torsten Rohlfing, and Calvin R. Maurer, Jr. Image Guidance Laboratories Department of

More information

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration D. Rueckert 1, A.F. Frangi 2,3, and J.A. Schnabel 4 1 Visual Information Processing, Department of Computing, Imperial

More information

SUPER RESOLUTION RECONSTRUCTION OF CARDIAC MRI USING COUPLED DICTIONARY LEARNING

SUPER RESOLUTION RECONSTRUCTION OF CARDIAC MRI USING COUPLED DICTIONARY LEARNING SUPER RESOLUTION RECONSTRUCTION OF CARDIAC MRI USING COUPLED DICTIONARY LEARNING Abstract M. Vinod Kumar (M.tech) 1 V. Gurumurthy Associate Professor, M.Tech (Ph.D) 2 Dr.M. Narayana, Professor, Head of

More information

Keypoint Transfer Segmentation

Keypoint Transfer Segmentation Keypoint Transfer Segmentation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Wachinger, C.; Toews,

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

Rule-Based Ventral Cavity Multi-organ Automatic Segmentation in CT Scans

Rule-Based Ventral Cavity Multi-organ Automatic Segmentation in CT Scans Rule-Based Ventral Cavity Multi-organ Automatic Segmentation in CT Scans Assaf B. Spanier (B) and Leo Joskowicz The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans

LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans Author manuscript, published in "MICCAI07-10th International Conference on Medical Image Computing and Computer Assisted Intervention, Brisbane : Australia (2007)" DOI : 10.1007/978-3-540-75757-3_27 LOCUS:

More information

Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling.

Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. Tong Tong, Robin Wolz, Pierrick Coupé, Joseph V Hajnal, Daniel Rueckert To cite

More information