Algorithms for medical image registration and segmentation

Size: px
Start display at page:

Download "Algorithms for medical image registration and segmentation"

Transcription

1 Algorithms for medical image registration and segmentation Multi-atlas methods

2 Overview Medical imaging hands-on Data formats: DICOM, NifTI Software: OsiriX, Slicer, ITK, Convert3D Image Registration Deformation Models Software: ElastiX Multi-Atlas Segmentation Joint Label Fusion Software: PICSL MALF Example Application: Label Neonatal Brains on MR

3 Medical Image Data DICOM: Digital Imaging and Communication in Medicine Standard in clinical applications Very good for data/patient management Very bad for anything else first step: transform your data

4 Medical Image Data NIfTI: Neuroimaging Informatics Technology Initiative Much more compact file format Retains information about patient orientation Removes everything else

5 (Open Source) Software DICOM viewers OsiriX (mac only )

6 (Open Source) Software DICOM viewers OsiriX (mac only )

7 (Open Source) Software DICOM viewers OsiriX (mac only )

8 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform)

9 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform)

10 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform)

11 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform) Toolkits ITK: MIRTK:

12 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform) Toolkits ITK: MIRTK: The Swiss army knife ITK Snap & Convert3D:

13 (Open Source) Software DICOM viewers OsiriX (mac only ) Slicer (cross-platform) Toolkits ITK: MIRTK: The Swiss army knife ITK Snap & Convert3D:

14 Image Registration The task of aligning two images or volumes different modalities different time-points different patients

15 [Sotiras 2013] Image Registration? Source Target

16 [Sotiras 2013] Image Registration W Source Target

17 [Sotiras 2013] Image Registration S W T

18 [Sotiras 2013] Image Registration S W T

19 [Sotiras 2013] Image Registration S W T arg min E(W )=M(S W, T )+R(W ) W

20 [Sotiras 2013] Image Registration S W T arg min E(W )=M(S W, T )+R(W ) W matching term regularisation term

21 [Sotiras 2013] Image Registration S W T arg min E(W W )=M(S W, W T )+R(W W) W

22 [Sotiras 2013] Image Registration sx 0 0 tx 0 sy 0 ty 0 0 sz tz W Rigid: rotation + scaling

23 Image Registration sx.. tx. sy. ty.. sz tz... 1 W Affine: rotation + scaling + shearing

24 Image Registration W Non-rigid

25 Image Registration W non-diffeomorphic

26 [Sotiras 2013] Image Registration S W T arg min E(W )=M(S W, T )+R(W R ) W

27 Image Registration with ElastiX implements rigid, affine and important non-rigid algorithms 2-4D easy configuration database of configuration files for different applications: Parameter_file_database

28 Atlas-based Segmentation Atlas : a volume with a manual annotation of the structure of interest Atlas-based segmentation: use registration to map annotation onto new case & use for segmentation MALF: Multi Atlas Label Fusion

29 Atlas-based Segmentation Main questions: Which atlases to use? How to combine labels?

30 Atlas selection in MALF Take nearest neighbours Intensities distance Registration distance external knowledge

31 Atlas selection in MALF Take nearest neighbours Intensities distance Registration distance external knowledge Learning in atlas space clustering distribution shape; manifold

32 Label fusion in MALF Average selected atlases Weighted average globally locally Weighted average + statistics

33 Idea: We can learn many things about our atlases Most importantly: their correlation with image intensities with each other

34 A1 = (F1, S1 ) Given n matched atlases How to determine target segmentation? S T =? An = (Fn, Sn )

35 A1 = (F1, S1 ) Majority vote at each position x S T (x) = argmax l 2 {1... L} l Si (x) = n X Sil (x) i=1 1 if Si (x) = l 0 otherwise An = (Fn, Sn )

36 A1 = (F1, S1 ) Weighted vote at each position x S T (x) = n X i=1 n X i=1 wi (x)sil (x) wi (x) = 1 An = (Fn, Sn )

37 A1 = (F1, S1 ) Weighted vote at each position x S T (x) = n X wi (x)sil (x) i=1 1 wi (x) = e Z(x) P 2 [F (y) F (y)] / i T y2n (x) An = (Fn, Sn )

38 A1 = (F1, S1 ) Formulate as statistical learning problem Consider possibly correlated labeling errors An = (Fn, Sn )

39 ST (x) = Si (X) + i (x) label difference i (x) 2 { 1, 0} when Si (x) = 1 i (x) 2 {0, 1} when Si (x) = 0 note: this formulation considers only two labels - but can easily be extended argmin E FT X n i=1 i wi (x) (x) 2 FT, F1,... Fn

40 argmin E F T apple n X i=1 w i (x) i (x) 2 F T,F 1,...F n = nx i=1 nx j=1 w i (x)w j (x)e[ i (x) j (x) F T,F 1...F n ] = w > x M x w x w x = M 1 estimates how likely two atlases both produce wrong segmentation closed form solution x 1 n 1 > n Mx 1 1 n

41 M x (i, j) / w > x (M x + I)w subject to apple find w by minimizing nx i=1 find M from image intensities X y2n(x) w x (i) =1 F T (y) F i (Y ) F T (y) F j (y)

42

43 Label Voting with PICSL MALF picsl_malf/

44 References A. Sotiras, C. Davatzikos, N. Paragios, Deformable medical image registration: a survey, IEEE Transactions on Medical Imaging 32 (7), (2013), J. E. Iglesias, M. R. Sabuncu, Multi-atlas segmentation of biomedical images: a survey. Medical image analysis, 24(1), (2015), H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, P. A. Yushkevich, Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), (2013),

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration

Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images Overview 1. Part 1: Theory 1. 2. Learning 2. Part 2: Applications ernst.schwartz@meduniwien.ac.at

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department

More information

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration = optimisation C t x t y 1 Registration = optimisation C t x t y

More information

Introduction to Medical Image Registration

Introduction to Medical Image Registration Introduction to Medical Image Registration Sailesh Conjeti Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany sailesh.conjeti@tum.de Partially adapted from slides by: 1.

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

The Insight Toolkit. Image Registration Algorithms & Frameworks

The Insight Toolkit. Image Registration Algorithms & Frameworks The Insight Toolkit Image Registration Algorithms & Frameworks Registration in ITK Image Registration Framework Multi Resolution Registration Framework Components PDE Based Registration FEM Based Registration

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

A multi-atlas approach for prostate segmentation in MR images

A multi-atlas approach for prostate segmentation in MR images A multi-atlas approach for prostate segmentation in MR images Geert Litjens, Nico Karssemeijer, and Henkjan Huisman Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, Nijmegen,

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Subrahmanyam Gorthi 1, Alireza Akhondi-Asl 1, Jean-Philippe Thiran 2, and Simon K.

More information

A Review on Label Image Constrained Multiatlas Selection

A Review on Label Image Constrained Multiatlas Selection A Review on Label Image Constrained Multiatlas Selection Ms. VAIBHAVI NANDKUMAR JAGTAP 1, Mr. SANTOSH D. KALE 2 1PG Scholar, Department of Electronics and Telecommunication, SVPM College of Engineering,

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates

Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates Johannes Hofmanninger 1, Bjoern Menze 2, Marc-André Weber 3,4 and Georg Langs 1 1 Department of Biomedical imaging

More information

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde MRI Segmentation MRI Bootcamp, 14 th of January 2019 Segmentation Segmentation Information Segmentation Algorithms Approach Types of Information Local 4 45 100 110 80 50 76 42 27 186 177 120 167 111 56

More information

Preprocessing I: Within Subject John Ashburner

Preprocessing I: Within Subject John Ashburner Preprocessing I: Within Subject John Ashburner Pre-processing Overview Statistics or whatever fmri tie-series Anatoical MRI Teplate Soothed Estiate Spatial Nor Motion Correct Sooth Coregister 11 21 31

More information

3D Slicer. NA-MIC National Alliance for Medical Image Computing 4 February 2011

3D Slicer. NA-MIC National Alliance for Medical Image Computing  4 February 2011 NA-MIC http://na-mic.org 3D Slicer 4 February 2011 Andrey Fedorov, PhD Steve Pieper, PhD Ron Kikinis, MD Surgical Planning Lab Brigham and Women's Hospital Acknowledgments Picture courtesy Kapur, Jakab,

More information

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Image Registration Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Introduction Visualize objects inside the human body Advances in CS methods to diagnosis, treatment planning and medical

More information

Non-rigid Image Registration

Non-rigid Image Registration Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration

More information

Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images

Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images Slicer3 Training Compendium Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images Vidya Rajagopalan Christopher Wyatt BioImaging Systems Lab Dept. of Electrical Engineering Virginia

More information

Atlas of Classifiers for Brain MRI Segmentation

Atlas of Classifiers for Brain MRI Segmentation Atlas of Classifiers for Brain MRI Segmentation B. Kodner 1,2, S. H. Gordon 1,2, J. Goldberger 3 and T. Riklin Raviv 1,2 1 Department of Electrical and Computer Engineering, 2 The Zlotowski Center for

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

REGISTRATION AND NORMALIZATION OF MRI/PET IMAGES 1. INTRODUCTION

REGISTRATION AND NORMALIZATION OF MRI/PET IMAGES 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 Jacek RUMIŃSKI *, Marek SUCHOWIRSKI * image registration, image normalization, PET, MRI, parametric imaging REGISTRATION AND NORMALIZATION

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

3D Slicer Overview. Andras Lasso, PhD PerkLab, Queen s University

3D Slicer Overview. Andras Lasso, PhD PerkLab, Queen s University 3D Slicer Overview Andras Lasso, PhD PerkLab, Queen s University Right tool for the job Technological prototype Research tool Clinical tool Can it be done? Jalopnik.com Innovative, not robust, usually

More information

Image segmentation with a statistical shape prior

Image segmentation with a statistical shape prior Image segmentation with a statistical shape prior Arturo Mendoza Quispe & Caroline Petitjean October 26, 2015 Shape prior based image segmentation Foulonneau 04 Sans a priori Avec a priori Etyngier 07

More information

Multi-atlas spectral PatchMatch: Application to cardiac image segmentation

Multi-atlas spectral PatchMatch: Application to cardiac image segmentation Multi-atlas spectral PatchMatch: Application to cardiac image segmentation W. Shi 1, H. Lombaert 3, W. Bai 1, C. Ledig 1, X. Zhuang 2, A. Marvao 1, T. Dawes 1, D. O Regan 1, and D. Rueckert 1 1 Biomedical

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Sarah Parisot 1,2,3, Hugues Duffau 4, Stéphane Chemouny 3, Nikos Paragios 1,2 1. Center for Visual Computing, Ecole Centrale

More information

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Jue Wu and Brian Avants Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, USA Abstract.

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

Volumetry of hypothalamic substructures by multimodal morphological image registration

Volumetry of hypothalamic substructures by multimodal morphological image registration Volumetry of hypothalamic substructures by multimodal morphological image registration Dominik Löchel 14.09.2011 Institute for Applied and Numerical Mathematics KIT University of the State of Baden-Württemberg

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

EMSegmenter Tutorial (Advanced Mode)

EMSegmenter Tutorial (Advanced Mode) EMSegmenter Tutorial (Advanced Mode) Dominique Belhachemi Section of Biomedical Image Analysis Department of Radiology University of Pennsylvania 1/65 Overview The goal of this tutorial is to apply the

More information

Scene-Based Segmentation of Multiple Muscles from MRI in MITK

Scene-Based Segmentation of Multiple Muscles from MRI in MITK Scene-Based Segmentation of Multiple Muscles from MRI in MITK Yan Geng 1, Sebastian Ullrich 2, Oliver Grottke 3, Rolf Rossaint 3, Torsten Kuhlen 2, Thomas M. Deserno 1 1 Department of Medical Informatics,

More information

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Albert Gubern-Mérida 1, Michiel Kallenberg 2, Robert Martí 1, and Nico Karssemeijer 2 1 University of Girona, Spain {agubern,marly}@eia.udg.edu

More information

Virtual Phantoms for IGRT QA

Virtual Phantoms for IGRT QA TM Virtual Phantoms for IGRT QA Why ImSimQA? ImSimQA was developed to overcome the limitations of physical phantoms for testing modern medical imaging and radiation therapy software systems, when there

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Distance Transforms in Multi Channel MR Image Registration

Distance Transforms in Multi Channel MR Image Registration Distance Transforms in Multi Channel MR Image Registration Min Chen 1, Aaron Carass 1, John Bogovic 1, Pierre-Louis Bazin 2 and Jerry L. Prince 1 1 Image Analysis and Communications Laboratory, 2 The Laboratory

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

Slicer3 Tutorial: Registration Library Case 14. Intra-subject Brain PET-MRI fusion

Slicer3 Tutorial: Registration Library Case 14. Intra-subject Brain PET-MRI fusion NA-MIC Slicer3 Tutorial: Registration Library Case 14 Intra-subject Brain PET-MRI fusion Dominik Meier, Ron Kikinis March 2010 Overview 1. Introduction 2. Prerequisites 3. Modules Used takes how long to

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database

Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database Bo Wang 1,2,, Marcel Prastawa 1,2, Avishek Saha 1,2, Suyash P. Awate 1,2, Andrei Irimia

More information

White Matter Lesion Segmentation (WMLS) Manual

White Matter Lesion Segmentation (WMLS) Manual White Matter Lesion Segmentation (WMLS) Manual 1. Introduction White matter lesions (WMLs) are brain abnormalities that appear in different brain diseases, such as multiple sclerosis (MS), head injury,

More information

A Unified Framework for Atlas Matching using Active Appearance Models

A Unified Framework for Atlas Matching using Active Appearance Models A Unified Framework for Atlas Matching using Active Appearance Models T.F. Cootes, C. Beeston, G.J. Edwards and C.J. Taylor Imaging Science and Biomedical Engineering, University of Manchester, Manchester

More information

Multimodal Elastic Image Matching

Multimodal Elastic Image Matching Research results based on my diploma thesis supervised by Prof. Witsch 2 and in cooperation with Prof. Mai 3. 1 February 22 nd 2011 1 Karlsruhe Institute of Technology (KIT) 2 Applied Mathematics Department,

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares Biomedical Image Analysis based on Computational Registration Methods João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial Registration of (2D

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

Software for ABSORB: An algorithm for effective groupwise registration

Software for ABSORB: An algorithm for effective groupwise registration Software Release (1.0.5) Last updated: Sep. 01, 2010. Software for ABSORB: An algorithm for effective groupwise registration Hongjun Jia 1, Guorong Wu 1, Qian Wang 1,2 and Dinggang Shen 1 1 Image Display,

More information

SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab

SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab Introduction Medical Imaging and Application CGV 3D Organ Modeling Model-based Simulation Model-based Quantification

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Computer Science 336 Fall 2017 Homework 2

Computer Science 336 Fall 2017 Homework 2 Computer Science 336 Fall 2017 Homework 2 Use the following notation as pseudocode for standard 3D affine transformation matrices. You can refer to these by the names below. There is no need to write out

More information

3D Brain Segmentation Using Active Appearance Models and Local Regressors

3D Brain Segmentation Using Active Appearance Models and Local Regressors 3D Brain Segmentation Using Active Appearance Models and Local Regressors K.O. Babalola, T.F. Cootes, C.J. Twining, V. Petrovic, and C.J. Taylor Division of Imaging Science and Biomedical Engineering,

More information

Data Loading & 3D Visualization

Data Loading & 3D Visualization Neuroimage Analysis Center Data Loading & 3D Visualization Sonia Pujol, Ph.D. Surgical Planning Laboratory Harvard Medical School Leonardo da Vinci (1452-1519), Virgin and Child Alte Pinakothek, München

More information

Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration

Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration Dieter Hahn 1, Gabriele Wolz 2, Yiyong Sun 3, Frank Sauer 3, Joachim Hornegger 1, Torsten Kuwert 2 and Chenyang Xu 3 1

More information

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging Prof. Daniel Cremers 8. Boosting and Bagging Repetition: Regression We start with a set of basis functions (x) =( 0 (x), 1(x),..., M 1(x)) x 2 í d The goal is to fit a model into the data y(x, w) =w T

More information

Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database

Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database Bo Wang 1,2,, Marcel Prastawa 1,2, Avishek Saha 1,2, Suyash P. Awate 1,2, Andrei Irimia

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

Brain Extraction, Registration & EPI Distortion Correction

Brain Extraction, Registration & EPI Distortion Correction Brain Extraction, Registration & EPI Distortion Correction What use is Registration? Some common uses of registration: Combining across individuals in group studies: including fmri & diffusion Quantifying

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Concurrent Visualization of and Mapping between 2D and 3D Medical Images for Disease Pattern Analysis

Concurrent Visualization of and Mapping between 2D and 3D Medical Images for Disease Pattern Analysis Concurrent Visualization of and Mapping between 2D and 3D Medical Images for Disease Pattern Analysis Mei Xiao 1, Jung Soh 1, Thao Do 1, Oscar Meruvia-Pastor 1 and Christoph W. Sensen 1 1 Department of

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Prototype of Silver Corpus Merging Framework

Prototype of Silver Corpus Merging Framework www.visceral.eu Prototype of Silver Corpus Merging Framework Deliverable number D3.3 Dissemination level Public Delivery data 30.4.2014 Status Authors Final Markus Krenn, Allan Hanbury, Georg Langs This

More information

NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01.

NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01. NIH Public Access Author Manuscript Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2012 May 01. Published in final edited form as: Conf Comput Vis Pattern Recognit Workshops.

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

A Generative Model for Probabilistic Label Fusion of Multimodal Data

A Generative Model for Probabilistic Label Fusion of Multimodal Data A Generative Model for Probabilistic Label Fusion of Multimodal Data Juan Eugenio Iglesias 1, Mert Rory Sabuncu 1,, and Koen Van Leemput 1,2,3, 1 Martinos Center for Biomedical Imaging, MGH, Harvard Medical

More information

Affine Transformation. Edith Law & Mike Terry

Affine Transformation. Edith Law & Mike Terry Affine Transformation Edith Law & Mike Terry Graphic Models vs. Images Computer Graphics: the creation, storage and manipulation of images and their models Model: a mathematical representation of an image

More information

Optimization of Image Registration for Medical Image Analysis

Optimization of Image Registration for Medical Image Analysis Optimization of Image Registration for Medical Image Analysis PN Maddaiah, PN Pournami, VK Govindan Department of Computer science and Engineering, National Institute of Technology Calicut, Kerala, India

More information

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang Deformable Segmentation using Sparse Shape Representation Shaoting Zhang Introduction Outline Our methods Segmentation framework Sparse shape representation Applications 2D lung localization in X-ray 3D

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Eva M. van Rikxoort, Ivana Isgum, Marius Staring, Stefan Klein and Bram van Ginneken Image Sciences Institute,

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration Serdar K. Balci 1, Polina Golland 1, Martha Shenton 2, and William M. Wells 2 1 CSAIL, MIT, Cambridge, MA, USA, 2 Brigham & Women s Hospital,

More information

2D Rigid Registration of MR Scans using the 1d Binary Projections

2D Rigid Registration of MR Scans using the 1d Binary Projections 2D Rigid Registration of MR Scans using the 1d Binary Projections Panos D. Kotsas Abstract This paper presents the application of a signal intensity independent registration criterion for 2D rigid body

More information

Efficient population registration of 3D data

Efficient population registration of 3D data Efficient population registration of 3D data Lilla Zöllei 1, Erik Learned-Miller 2, Eric Grimson 1, William Wells 1,3 1 Computer Science and Artificial Intelligence Lab, MIT; 2 Dept. of Computer Science,

More information

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach STIC AmSud Project Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach Caroline Petitjean A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD October 22,

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

A Physically-based Method for 2D and 3D Similarity and Affine Invariant Alignments

A Physically-based Method for 2D and 3D Similarity and Affine Invariant Alignments A Physically-based Method for 2D and D Similarity and Affine Invariant Alignments Jim X. Chen and Harry Wechsler Department of Computer Science, George Mason University {jchen, wechsler}@cs.gmu.edu Abstract

More information

2/7/18. For more info/gory detail. Lecture 8 Registration with ITK. Transform types. What is registration? Registration in ITK

2/7/18. For more info/gory detail. Lecture 8 Registration with ITK. Transform types. What is registration? Registration in ITK For more info/gory detail Lecture 8 Registration with ITK Methods in Medical Image Analysis - Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti Based in part on Damion Shelton s slides from

More information

Mississippi State University RFP Enterprise Imaging Informatics Solutions Questions and Answers September 13, 2017

Mississippi State University RFP Enterprise Imaging Informatics Solutions Questions and Answers September 13, 2017 Mississippi State University RFP 17-73 Enterprise Imaging Informatics Solutions Questions and Answers September 13, 2017 The list of questions below were received. Please use this information when preparing

More information

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 13 Theory of Registration ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Subcortical Structure Segmentation using Probabilistic Atlas Priors

Subcortical Structure Segmentation using Probabilistic Atlas Priors Subcortical Structure Segmentation using Probabilistic Atlas Priors Sylvain Gouttard 1, Martin Styner 1,2, Sarang Joshi 3, Brad Davis 2, Rachel G. Smith 1, Heather Cody Hazlett 1, Guido Gerig 1,2 1 Department

More information

NA-MIC National Alliance for Medical Image Computing Subject Hierarchy

NA-MIC National Alliance for Medical Image Computing   Subject Hierarchy NA-MIC Subject Hierarchy Csaba Pinter Queen s University, Canada csaba.pinter@queensu.ca NA-MIC Tutorial Contest: Winter 2016 Learning Objective This tutorial demonstrates the basic usage and potential

More information

A Practical Salient Region Feature Based 3D Multi-Modality Registration Method for Medical Images

A Practical Salient Region Feature Based 3D Multi-Modality Registration Method for Medical Images A Practical Salient Region Feature Based 3D Multi-Modality Registration Method for Medical Images Dieter A. Hahn a, Gabriele Wolz b, Yiyong Sun c, Joachim Hornegger a, Frank Sauer c, Torsten Kuwert b and

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Medical Image Analysis Active Shape Models

Medical Image Analysis Active Shape Models Medical Image Analysis Active Shape Models Mauricio Reyes, Ph.D. mauricio.reyes@istb.unibe.ch ISTB - Institute for Surgical Technology and Biomechanics University of Bern Lecture Overview! Statistical

More information

Geometric Transformations and Image Warping. Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah

Geometric Transformations and Image Warping. Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah Geometric Transformations and Image Warping Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion

More information

Slicer3 Minute Tutorial

Slicer3 Minute Tutorial Slicer3 Minute Tutorial Surgical Planning Laboratory Harvard Medical School Sonia Pujol, PhD Slicer3 Minute Tutorial This tutorial is a short introduction to the advanced 3D visualization capabilities

More information