Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Size: px
Start display at page:

Download "Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)"

Transcription

1 Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

2 Registration = optimisation C t x t y 1

3 Registration = optimisation C t x t y 1

4 Registration = optimisation C t x t y 1

5 Registration = optimisation C t x t y 1

6 Example 2

7 Example fixed image moving image 2

8 Example fixed image moving image 2

9 Example fixed image moving image 2

10 Math F(x) = fixed image, M(x) = moving image x = voxel coordinate Transformation function: T(x ; p) p = vector of transformation parameters Cost function: C( p ) measures similarity of fixed image F(x) and deformed moving image M( T(x; p) ) Find p that minimises C 3

11 Iterative optimisation p k+1 = p k + a k. d k d k = search direction a k = step size gradient descent: d C p k ( pk) g k 4

12 Gradient descent p k+1 = p k - a k. g k P 1 p 1 g 1 p 2 p 2 g 2 p 3 = p 3 - a k. g 3 : : : : : : k+1 k k 5

13 Gradient descent p k+1 = p k - a k. g k p 1 p 1 g 1 p 2 p 2 g 2 = C p 1 k p 3 = p 3 - a k. g 3 : : : : : : k+1 k k 5

14 6 Cost function derivative Example for mean of squared differences: x x x x p T p x T x p p x T x p p x T x p M )) ; ( M( ) F( N 2 M )) ; ( M( ) F( N 2 C )) ; ( M( ) F( N 1 ) C( t 2

15 Choice of d k p k+1 = p k + a k. d k 7

16 Choice of d k gradient descent C p 1 p 2 8

17 Choice of d k smarter steps C p 1 p 2 8

18 Choice of d k cheaper steps C p 1 p 2 8

19 Choice of d k p k+1 = p k + a k. d k gradient descent: Newton: quasi-newton: d k = - g k d k = - [H k ] -1 g k d k = - B k g k smarter steps conjugate gradient: d k = - g k + β k d k-1 stochastic gradient: d k - g k cheaper steps 9

20 Experimental comparison Cardiac CT, 97x97x97 voxels, artifically deformed 10

21 Experimental comparison Cardiac CT, 97x97x97 voxels, artifically deformed 11

22 Experimental comparison Error measure: e 1 N x T ( x) Tˆ( x) 12

23 Experimental comparison 3 gradient descent quasi-newton conjugate gradient stochastic gradient e [mm] computation time

24 Choice of a k p k+1 = p k + a k. d k 14

25 Choice of a k Too small steps C p 1 p 2 15

26 Choice of a k Too large steps C p 1 p 2 15

27 Choice of a k p k+1 = p k + a k. d k constant: a k = a slowly decaying: a k = f ( k ) = a / ( A + k ) a exact line search: a k = argmin a C ( p k + a d k ) inexact line search: a k argmin a C ( p k + a d k ) [Wolfe conditions] adaptive: a k = F ( progress in previous iterations ) 16

28 Stochastic gradient descent with adaptive strategy for a k p k1 p k f(t k ) g k 20 f(t k ) a/(a t k ) a t k1 t k sigmoid( g T k g k1 )

29 Stochastic gradient descent with adaptive strategy for a k p k1 p k f(t k ) g k 20 f(t k ) a/(a t k ) a t k1 t k sigmoid( g Choose a such that: T k g k1 max. voxel displacement per iteration < (with 95% probability) ) 1 0 [mm]

30 Experimental comparison 6 prostate MR image pairs: nonrigid registration evaluation measure: overlap of manual segmentations after registration 18

31 Experimental comparison [mm] A non-adaptive [mm] A adaptive non-adaptive adaptive 19

32 Experimental comparison Experiments with: brain, lung, prostate CT, MRI sum of squared differences, mutual information, normalized mutual information rigid, nonrigid A 20, voxelsize good results in all experiments! 20

33 Local similarity measures MI = mutual information assumes grey-value distribution does not vary over image domain LMI = localised mutual information = 1 MI ( x ) (aka: regional MI, conditional MI, spatial information encoded MI) x N 21

34 Local similarity measures MI = mutual information assumes grey-value distribution does not vary over image domain LMI = localised mutual information = 1 MI ( x ) (aka: regional MI, conditional MI, spatial information encoded MI) x N can be efficiently implemented with stochastic gradient descent! 21

35 Summary Parametric formulation can be solved by continuous optimisation Derivative-based methods: require Extensive literature C p Basic method: gradient descent Popular choice: quasi-newton or conjugate gradient icm inexact line search Recommended : stochastic gradient descent with adaptive step sizes 22

36 Literature Nocedal & Wright: Numerical Optimization IEEE Trans. Image Processing Klein, Staring, Pluim Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines Int. J. Computer Vision Klein, Pluim, Staring, Viergever Adaptive stochastic gradient descent optimisation for image registration IEEE Trans. Image Processing Thevenaz, Unser Optimization of mutual information for multiresolution image registration 23

37 Rigid and nonrigid registration Various cost functions, transformation models, multiresolution strategies etc. Many optimisation algorithms implemented Free: Based on Insight ToolKit (ITK): IEEE Trans. Medical Imaging Klein, Staring, Murphy, Viergever, Pluim elastix: a toolbox for intensity based medical image registration 24

Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field

Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field Marius Staring*, Stefan Klein and Josien P.W. Pluim Image Sciences Institute, University Medical Center Utrecht, P.O.

More information

A multi-atlas approach for prostate segmentation in MR images

A multi-atlas approach for prostate segmentation in MR images A multi-atlas approach for prostate segmentation in MR images Geert Litjens, Nico Karssemeijer, and Henkjan Huisman Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, Nijmegen,

More information

Nonrigid Registration Using a Rigidity Constraint

Nonrigid Registration Using a Rigidity Constraint Nonrigid Registration Using a Rigidity Constraint Marius Staring, Stefan Klein and Josien P.W. Pluim Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Room Q0S.459,

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Xiaofen Zheng, Jayaram K. Udupa, and Xinjian Chen Medical Image Processing Group, Department of Radiology 423 Guardian

More information

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Image Registration Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Introduction Visualize objects inside the human body Advances in CS methods to diagnosis, treatment planning and medical

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Eva M. van Rikxoort, Ivana Isgum, Marius Staring, Stefan Klein and Bram van Ginneken Image Sciences Institute,

More information

The Insight Toolkit. Image Registration Algorithms & Frameworks

The Insight Toolkit. Image Registration Algorithms & Frameworks The Insight Toolkit Image Registration Algorithms & Frameworks Registration in ITK Image Registration Framework Multi Resolution Registration Framework Components PDE Based Registration FEM Based Registration

More information

B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization

B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization Sven Kabus a,b, Thomas Netsch b, Bernd Fischer a, Jan Modersitzki a a Institute of Mathematics, University of Lübeck, Wallstraße

More information

Fast optimization methods for image registration in adaptive radiation therapy. Yuchuan Qiao

Fast optimization methods for image registration in adaptive radiation therapy. Yuchuan Qiao Fast optimization methods for image registration in adaptive radiation therapy Yuchuan Qiao Colophon About the covers: This is a pathway to find the summit (optimal value). Fast optimization methods for

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation M. HEINRICH et al.: MULTIMODAL REGISTRATION USING GRADIENT ORIENTATION 1 Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation Mattias P. Heinrich 1 mattias.heinrich@eng.ox.ac.uk

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Robust Linear Registration of CT images using Random Regression Forests

Robust Linear Registration of CT images using Random Regression Forests Robust Linear Registration of CT images using Random Regression Forests Ender Konukoglu a Antonio Criminisi a Sayan Pathak b Duncan Robertson a Steve White b David Haynor c Khan Siddiqui b a Microsoft

More information

Non-rigid Image Registration

Non-rigid Image Registration Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration

More information

Optimization of Image Registration for Medical Image Analysis

Optimization of Image Registration for Medical Image Analysis Optimization of Image Registration for Medical Image Analysis PN Maddaiah, PN Pournami, VK Govindan Department of Computer science and Engineering, National Institute of Technology Calicut, Kerala, India

More information

Introduction to Medical Image Registration

Introduction to Medical Image Registration Introduction to Medical Image Registration Sailesh Conjeti Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany sailesh.conjeti@tum.de Partially adapted from slides by: 1.

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Lung registration using the NiftyReg package

Lung registration using the NiftyReg package Lung registration using the NiftyReg package Marc Modat, Jamie McClelland and Sébastien Ourselin Centre for Medical Image Computing, University College London, UK Abstract. The EMPIRE 2010 grand challenge

More information

Algorithms for medical image registration and segmentation

Algorithms for medical image registration and segmentation Algorithms for medical image registration and segmentation Multi-atlas methods ernst.schwartz@meduniwien.ac.at www.cir.meduniwien.ac.at Overview Medical imaging hands-on Data formats: DICOM, NifTI Software:

More information

Using K-means Clustering and MI for Non-rigid Registration of MRI and CT

Using K-means Clustering and MI for Non-rigid Registration of MRI and CT Using K-means Clustering and MI for Non-rigid Registration of MRI and CT Yixun Liu 1,2 and Nikos Chrisochoides 2 1 Department of Computer Science, College of William and Mary, enjoywm@cs.wm.edu 2 Department

More information

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting Yangming Ou, Christos Davatzikos Section of Biomedical Image Analysis (SBIA) University of Pennsylvania Outline 1. Background

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis 14 (2010) 39 49 Contents lists available at ScienceDirect Medical Image Analysis journal homepage: www.elsevier.com/locate/media Adaptive local multi-atlas segmentation: Application

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

arxiv: v1 [cs.cv] 20 Apr 2017

arxiv: v1 [cs.cv] 20 Apr 2017 End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network Bob D. de Vos 1, Floris F. Berendsen 2, Max A. Viergever 1, Marius Staring 2, and Ivana Išgum 1 1 Image Sciences

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

BLUT : Fast and Low Memory B-spline Image Interpolation

BLUT : Fast and Low Memory B-spline Image Interpolation BLUT : Fast and Low Memory B-spline Image Interpolation David Sarrut a,b,c, Jef Vandemeulebroucke a,b,c a Université de Lyon, F-69622 Lyon, France. b Creatis, CNRS UMR 5220, F-69622, Villeurbanne, France.

More information

Variational Lung Registration With Explicit Boundary Alignment

Variational Lung Registration With Explicit Boundary Alignment Variational Lung Registration With Explicit Boundary Alignment Jan Rühaak and Stefan Heldmann Fraunhofer MEVIS, Project Group Image Registration Maria-Goeppert-Str. 1a, 23562 Luebeck, Germany {jan.ruehaak,stefan.heldmann}@mevis.fraunhofer.de

More information

Simultaneous Data Volume Reconstruction and Pose Estimation from Slice Samples

Simultaneous Data Volume Reconstruction and Pose Estimation from Slice Samples Simultaneous Data Volume Reconstruction and Pose Estimation from Slice Samples Manfred Georg *, Richard Souvenir, Andrew Hope, Robert Pless * Washington University in St. Louis * Saint Louis, MO 63130

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction

Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction 2015 ANNUAL MAC-AAPM CONFERENCE: Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction M J Riblett 1, E Weiss 1, G E Christensen 2, and G D Hugo 1

More information

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Albert Gubern-Mérida 1, Michiel Kallenberg 2, Robert Martí 1, and Nico Karssemeijer 2 1 University of Girona, Spain {agubern,marly}@eia.udg.edu

More information

4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct

4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct 4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct More info about this article: http://www.ndt.net/?id=20821 Thomas De Schryver 1, Jeroen Van Stappen²,

More information

l ealgorithms for Image Registration

l ealgorithms for Image Registration FAIR: exib Image Registration l F l ealgorithms for Jan Modersitzki Computing And Software, McMaster University 1280 Main Street West, Hamilton On, L8S 4K1, Canada modersit@cas.mcmaster.ca August 13, 2008

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications

Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications Oscar Camara, Gaspar Delso, and Isabelle Bloch Ecole Nationale Supérieure

More information

Multimodal image registration by edge attraction and regularization using a B-spline grid

Multimodal image registration by edge attraction and regularization using a B-spline grid Multimodal image registration by edge attraction and regularization using a B-spline grid Almar Klein a, Dirk-Jan Kroon a, Yvonne Hoogeveen b, Leo J. Schultze Kool b, W. Klaas Jan Renema b, Cornelis H.

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration Serdar K. Balci 1, Polina Golland 1, Martha Shenton 2, and William M. Wells 2 1 CSAIL, MIT, Cambridge, MA, USA, 2 Brigham & Women s Hospital,

More information

Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions

Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions Evaluation of optimization methods for intensity-based D-3D registration in x-ray guided interventions I.M.J. van der Bom a, S. Klein b, M. Staring c, R. Homan d, L.W. Bartels e, and J.P.W. Pluim e a Departments

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Balci

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

3D nonrigid medical image registration using a new information theoretic measure.

3D nonrigid medical image registration using a new information theoretic measure. 3D nonrigid medical image registration using a new information theoretic measure. Bicao Li, Guanyu Yang, Jean Louis Coatrieux, Baosheng Li, Huazhong Shu To cite this version: Bicao Li, Guanyu Yang, Jean

More information

Computed Tomography to Ultrasound 2D image registration evaluation for atrial fibrillation treatment

Computed Tomography to Ultrasound 2D image registration evaluation for atrial fibrillation treatment Computed Tomography to Ultrasound 2D image registration evaluation for atrial fibrillation treatment Zulma Sandoval, Jean-Louis Dillenseger To cite this version: Zulma Sandoval, Jean-Louis Dillenseger.

More information

Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data

Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data Gert Wollny 1, Peter Kellman 2, Andrés Santos 1,3, María-Jesus Ledesma 1,3 1 Biomedical Imaging Technologies, Department

More information

2D Rigid Registration of MR Scans using the 1d Binary Projections

2D Rigid Registration of MR Scans using the 1d Binary Projections 2D Rigid Registration of MR Scans using the 1d Binary Projections Panos D. Kotsas Abstract This paper presents the application of a signal intensity independent registration criterion for 2D rigid body

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Distance Transforms in Multi Channel MR Image Registration

Distance Transforms in Multi Channel MR Image Registration Distance Transforms in Multi Channel MR Image Registration Min Chen 1, Aaron Carass 1, John Bogovic 1, Pierre-Louis Bazin 2 and Jerry L. Prince 1 1 Image Analysis and Communications Laboratory, 2 The Laboratory

More information

3D Registration based on Normalized Mutual Information

3D Registration based on Normalized Mutual Information 3D Registration based on Normalized Mutual Information Performance of CPU vs. GPU Implementation Florian Jung, Stefan Wesarg Interactive Graphics Systems Group (GRIS), TU Darmstadt, Germany stefan.wesarg@gris.tu-darmstadt.de

More information

Image Registration with Local Rigidity Constraints

Image Registration with Local Rigidity Constraints Image Registration with Local Rigidity Constraints Jan Modersitzki Institute of Mathematics, University of Lübeck, Wallstraße 40, D-23560 Lübeck Email: modersitzki@math.uni-luebeck.de Abstract. Registration

More information

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 13 Theory of Registration ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Estimating 3D Respiratory Motion from Orbiting Views

Estimating 3D Respiratory Motion from Orbiting Views Estimating 3D Respiratory Motion from Orbiting Views Rongping Zeng, Jeffrey A. Fessler, James M. Balter The University of Michigan Oct. 2005 Funding provided by NIH Grant P01 CA59827 Motivation Free-breathing

More information

On the Adaptability of Unsupervised CNN-Based Deformable Image Registration to Unseen Image Domains

On the Adaptability of Unsupervised CNN-Based Deformable Image Registration to Unseen Image Domains On the Adaptability of Unsupervised CNN-Based Deformable Image Registration to Unseen Image Domains Enzo Ferrante 1, Ozan Oktay 2, Ben Glocker 2, Diego H. Milone 1 1 Research institute for signals, systems

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares Biomedical Imaging Registration Trends and Applications Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial Registration of (2D

More information

Image Registration in Hough Space Using Gradient of Images

Image Registration in Hough Space Using Gradient of Images Image Registration in Hough Space Using Gradient of Images Ramtin Shams Research School of Information Sciences and Engineering (RSISE) The Australian National University (ANU) Canberra, ACT 2 ramtin.shams@anu.edu.au

More information

CS664 Lecture #16: Image registration, robust statistics, motion

CS664 Lecture #16: Image registration, robust statistics, motion CS664 Lecture #16: Image registration, robust statistics, motion Some material taken from: Alyosha Efros, CMU http://www.cs.cmu.edu/~efros Xenios Papademetris http://noodle.med.yale.edu/~papad/various/papademetris_image_registration.p

More information

Image Registration with Automatic Computation of Gradients

Image Registration with Automatic Computation of Gradients Image Registration with Automatic Computation of Gradients Release 1.0 E. G. Kahn 1 and L. H. Staib 2 July 29, 2008 1 The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 2 Yale University,

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Non-rigid Registration using Discrete MRFs: Application to Thoracic CT Images

Non-rigid Registration using Discrete MRFs: Application to Thoracic CT Images Non-rigid Registration using Discrete MRFs: Application to Thoracic CT Images Ben Glocker 1, Nikos Komodakis 2, Nikos Paragios 3,4, and Nassir Navab 1 1 Computer Aided Medical Procedures (CAMP), TU Mï

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

2/7/18. For more info/gory detail. Lecture 8 Registration with ITK. Transform types. What is registration? Registration in ITK

2/7/18. For more info/gory detail. Lecture 8 Registration with ITK. Transform types. What is registration? Registration in ITK For more info/gory detail Lecture 8 Registration with ITK Methods in Medical Image Analysis - Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti Based in part on Damion Shelton s slides from

More information

Wavelet-Based Image Registration Techniques: A Study of Performance

Wavelet-Based Image Registration Techniques: A Study of Performance 188 Wavelet-Based Image Registration Techniques: A Study of Performance Nagham E. Mekky, F. E.-Z. Abou-Chadi, and S. Kishk, Misr Higher Institute for Engineering and Technology, Mansoura, Egypt Dept. of

More information

Landmark-based 3D Elastic Registration of Pre- and Postoperative Liver CT Data

Landmark-based 3D Elastic Registration of Pre- and Postoperative Liver CT Data Landmark-based 3D Elastic Registration of Pre- and Postoperative Liver CT Data An Experimental Comparison Thomas Lange 1, Stefan Wörz 2, Karl Rohr 2, Peter M. Schlag 3 1 Experimental and Clinical Research

More information

Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model

Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model Segmenting the Left Ventricle in 3D Using a Coupled ASM and a Learned Non-Rigid Spatial Model Stephen O Brien, Ovidiu Ghita, and Paul F. Whelan Centre for Image Processing and Analysis, Dublin City University,

More information

Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building.

Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building. Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building. Carole J. Twining a, T.F. Cootes a, S. Marsland b, V. Petrovic a, R. Schestowitz a, and C.J. Taylor a a Imaging

More information

AN APPROACH TO NONRIGID US-MRI REGISTRATION OF PELVIC ORGANS FOR ENDOMETRIOSIS DIAGNOSIS

AN APPROACH TO NONRIGID US-MRI REGISTRATION OF PELVIC ORGANS FOR ENDOMETRIOSIS DIAGNOSIS AN APPROACH TO NONRIGID US-MRI REGISTRATION OF PELVIC ORGANS FOR ENDOMETRIOSIS DIAGNOSIS Marius-Cristian URECHE Mircea-Florin VAIDA Stefan DRAGOS Loreta SUTA Alin VOINA Faculty of Electronics, Telecommunications

More information

Bildverarbeitung für die Medizin 2007

Bildverarbeitung für die Medizin 2007 Bildverarbeitung für die Medizin 2007 Image Registration with Local Rigidity Constraints Jan Modersitzki Institute of Mathematics, University of Lübeck, Wallstraße 40, D-23560 Lübeck 1 Summary Registration

More information

ELASTIC REGISTRATION OF MEDICAL IMAGES WITH GANS. Dwarikanath Mahapatra, Bhavna Antony, Suman Sedai, Rahil Garnavi

ELASTIC REGISTRATION OF MEDICAL IMAGES WITH GANS. Dwarikanath Mahapatra, Bhavna Antony, Suman Sedai, Rahil Garnavi ELASTIC REGISTRATION OF MEDICAL IMAGES WITH GANS Dwarikanath Mahapatra, Bhavna Antony, Suman Sedai, Rahil Garnavi IBM Research - Australia, Melbourne GANs are generative DL models trained to output many

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Surgery Simulation and Planning

Surgery Simulation and Planning Surgery Simulation and Planning S. H. Martin Roth Dr. Rolf M. Koch Daniel Bielser Prof. Dr. Markus Gross Facial surgery project in collaboration with Prof. Dr. Dr. H. Sailer, University Hospital Zurich,

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

Registration of Hyperspectral and Trichromatic Images via Cross Cumulative Residual Entropy Maximisation

Registration of Hyperspectral and Trichromatic Images via Cross Cumulative Residual Entropy Maximisation Registration of Hyperspectral and Trichromatic Images via Cross Cumulative Residual Entropy Maximisation Author Hasan, Mahmudul, Pickering, Mark, Robles-Kelly, Antonio, Zho Jun, Jia, Xiuping Published

More information

Intensity gradient based registration and fusion of multi-modal images

Intensity gradient based registration and fusion of multi-modal images Intensity gradient based registration and fusion of multi-modal images Eldad Haber 1 and Jan Modersitzki 2 1 Mathematics and Computer Science, Emory University, Atlanta, GA, USA, haber@mathcs.emory,edu

More information

Optical flow based interpolation of temporal image sequences

Optical flow based interpolation of temporal image sequences Optical flow based interpolation of temporal image sequences Jan Ehrhardt a, Dennis Säring a and Heinz Handels a a Department of Medical Informatics, University Medical Center Hamburg-Eppendorf, Germany

More information

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Julien Jomier and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab The University of North Carolina at Chapel

More information

Comparison of linear and non-linear 2D+T registration methods for DE-MRI cardiac perfusion studies

Comparison of linear and non-linear 2D+T registration methods for DE-MRI cardiac perfusion studies Comparison of linear and non-linear 2D+T registration methods for DE-MRI cardiac perfusion studies Gert Wollny and Maria-Jesus Ledesma-Carbayo BIT ETSI Telecomunicación, Universidad Politécnica de Madrid,

More information

Registration Techniques

Registration Techniques EMBO Practical Course on Light Sheet Microscopy Junior-Prof. Dr. Olaf Ronneberger Computer Science Department and BIOSS Centre for Biological Signalling Studies University of Freiburg Germany O. Ronneberger,

More information

Deformable Registration Using Scale Space Keypoints

Deformable Registration Using Scale Space Keypoints Deformable Registration Using Scale Space Keypoints Mehdi Moradi a, Purang Abolmaesoumi a,b and Parvin Mousavi a a School of Computing, Queen s University, Kingston, Ontario, Canada K7L 3N6; b Department

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis 15 (011) 71 84 Contents lists available at ScienceDirect Medical Image Analysis journal homepage: www.elsevier.com/locate/media Semi-automatic construction of reference standards

More information

SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab

SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab SIGMI Meeting ~Image Fusion~ Computer Graphics and Visualization Lab Image System Lab Introduction Medical Imaging and Application CGV 3D Organ Modeling Model-based Simulation Model-based Quantification

More information

Dense Image Registration through MRFs and Efficient Linear Programming

Dense Image Registration through MRFs and Efficient Linear Programming Revised Manuscript Dense Image Registration through MRFs and Efficient Linear Programming Ben Glocker a,b,, Nikos Komodakis a,c, Georgios Tziritas c, Nassir Navab b, Nikos Paragios a a GALEN Group, Laboratoire

More information

Image registration for motion estimation in cardiac CT

Image registration for motion estimation in cardiac CT Image registration for motion estimation in cardiac CT Bibo Shi a, Gene Katsevich b, Be-Shan Chiang c, Alexander Katsevich d, and Alexander Zamyatin c a School of Elec. Engi. and Comp. Sci, Ohio University,

More information

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data Xue Mei, Fatih Porikli TR-19 September Abstract We

More information

FUNCTIONAL localization is a concept for defining the location

FUNCTIONAL localization is a concept for defining the location IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 4, APRIL 2007 427 Brain Functional Localization: A Survey of Image Registration Techniques Ali Gholipour*, Nasser Kehtarnavaz, Senior Member, IEEE, Richard

More information

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems 2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems Yeny Yim 1*, Xuanyi Chen 1, Mike Wakid 1, Steve Bielamowicz 2, James Hahn 1 1 Department of Computer Science, The George Washington

More information

Speeding up Mutual Information Computation Using NVIDIA CUDA Hardware

Speeding up Mutual Information Computation Using NVIDIA CUDA Hardware Speeding up Mutual Information Computation Using NVIDIA CUDA Hardware Ramtin Shams Research School of Information Sciences and Engineering (RSISE) The Australian National University (ANU) Canberra, ACT

More information

A Duality Based Algorithm for TV-L 1 -Optical-Flow Image Registration

A Duality Based Algorithm for TV-L 1 -Optical-Flow Image Registration A Duality Based Algorithm for TV-L 1 -Optical-Flow Image Registration Thomas Pock 1, Martin Urschler 1, Christopher Zach 2, Reinhard Beichel 3, and Horst Bischof 1 1 Institute for Computer Graphics & Vision,

More information