Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration

Size: px
Start display at page:

Download "Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images. Overview. Image Registration"

Transcription

1 Population Modeling in Neuroscience Using Computer Vision and Machine Learning to learn from Brain Images Overview 1. Part 1: Theory Learning 2. Part 2: Applications Source Target Source Target S T S T

2 S T S T arg min E( )=M(S, T )+R( ) arg min E( )=M(S, T )+R() sx 0 0 tx 0 sy 0 ty 0 0 sz tz Rigid: rotation + scaling sx.. tx. sy. ty.. sz tz... 1 Affine: rotation + scaling + shearing Non-rigid non-diffeomorphic!

3 topological space that resembles Euclidean space near each point S T arg min E( )=M(S, T )+R( R ) topological space that resembles Euclidean space near each point Type A Mathematical Type A Mathematical Type A Mathematical of Diffeomorphisms of Diffeomorphisms

4 Type A Mathematical Type A Mathematical of Diffeomorphisms stay in group during optimization by picking an appropriate regularizer R of Diffeomorphisms Yields a distance between images Type A Mathematical Type B but only defined with respect to a template of Diffeomorphisms Yields a distance between images Type B Data-driven knn

5 -ball

6 ISOMAP [Tennenbaum 2000] Embedding ISOMAP [Tennenbaum 2000] Embedding Embedding representation in Euclidean space representation in Euclidean space allows for easier application of standard methods

7 Embedding Embedding representation in Euclidean space density estimation representation in Euclidean space regression Distance is only one possible property to maintain during mapping Many others have been used; local neighborhoods, curvature, tangent spaces,... Two schools: Graph people and Kernel people Questions? Applications a small, subjective selection of recent papers [Ying et al. 2014]

8 [Ying et al. 2014] [Ying et al. 2014] [Ying et al. 2014] [Gerber et al. 2009] [Gerber et al. 2009] [Gerber et al. 2010]

9 [Hamm et al. 2010] [Hamm et al. 2010] [Hamm et al. 2010] [olz et al. 2010] [olz et al. 2010] [olz et al. 2012]

10 [olz et al. 2012] [Yang et al. 2011] [Yang et al. 2011] [Yang et al. 2011] [Aljabar et al. 2011] [Aljabar et al. 2011]

11 [Aljabar et al. 2011] [Aljabar et al. 2011] Small excursion: Alignment [Bhatia et al. 2014] [Langs et al. 2010] Take-home messages Infinity +1 ways of comparing images First question to ask: is it useful? For data-driven methods, you need data (and lots of it) There is no free lunch: analytical methods are complex and computationally demanding [Bhatia et al. 2014]

12 References More questions? J. B. Tenenbaum, V. de Silva, J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290, (2000), A. Sotiras, C. Davatzikos, N. Paragios, Deformable Medical : A Survey, IEEE Trans. on Med. Imag. 32 (7), (2013), S. Gerber, T. Tasdizen, S. Joshi, R. hitaker, On the Structure of the Space of Brain Images, Proc. of MICCAI 2009 (1), J. Hamm, D.H. Ye, R. Verma, C. Davatzikos, GRAM: A framework for geodesic registration on anatomical manifolds, Medial Image Analysis 14, (2010), R. olz, P. Aljabar, J.B. Hajnal, A. Hammers, D. Rueckert & ADNI, LEAP: Learning embeddings for atlas propagation, NeuroImage 49, (2010), R. olz, P. Aljabar, J.V. Hajnal, J. Lötjönen, D. Rueckert & ADNI, Nonlinear dimensionality reduction combining MR imaging with non-imaging information, Medical Image Analysis 16, (2012), References X. Yang, A. Goh, A. Qiu, Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling, NeuroImage 56, (2011), S. Ying, G. QU, Q. ang, Hierarchical unbiased graph shrinkage (HUGS): A novel groupwise registration for large data set, NeuroImage 84, (2014), P. Aljabar, R. olz, L. Srinivasan, S.J. Counsell, M.A. Rutherford, A.D. Edwards, J.V. Hajnal and D. Rueckert, A combined manifold learning analysis of shape and appearance to characterize neonatal brain development, IEEE Trans. on Med. Imag. 30 (12), (2011), K.K. Bhatia, A. Rao, A.N. Price, R. olz, J. V. Hajnal, D. Rueckert & ADNI, Hierarchical Learning for Regional Image Analysis, IEEE Trans. on Med. Imag. 33 (2), (2014), G. Langs, Y. Tie, L. Rigolo, A. Golby, and P. Golland, Functional Geometry Alignment and Localization of Brain Areas, Advances in Neural Information Processing Systems NIPS 23, (2010), pp

Algorithms for medical image registration and segmentation

Algorithms for medical image registration and segmentation Algorithms for medical image registration and segmentation Multi-atlas methods ernst.schwartz@meduniwien.ac.at www.cir.meduniwien.ac.at Overview Medical imaging hands-on Data formats: DICOM, NifTI Software:

More information

Manifold Learning of Brain MRIs by Deep Learning

Manifold Learning of Brain MRIs by Deep Learning Manifold Learning of Brain MRIs by Deep Learning Tom Brosch 1,3 and Roger Tam 2,3 for the Alzheimer s Disease Neuroimaging Initiative 1 Department of Electrical and Computer Engineering 2 Department of

More information

Regional Manifold Learning for Deformable Registration of Brain MR Images

Regional Manifold Learning for Deformable Registration of Brain MR Images Regional Manifold Learning for Deformable Registration of Brain MR Images Dong Hye Ye, Jihun Hamm, Dongjin Kwon, Christos Davatzikos, and Kilian M. Pohl Department of Radiology, University of Pennsylvania,

More information

Hybrid Visualization of the Medical Images Data Sets

Hybrid Visualization of the Medical Images Data Sets Hybrid Visualization of the Medical Images Data Sets Safa A. Najim Computer Science Department College of Science Basrah University Widad Abdulsamad Mansour Biology Department College of Science Basrah

More information

On the Manifold Structure of the Space of Brain Images

On the Manifold Structure of the Space of Brain Images On the Manifold Structure of the Space of Brain Images Samuel Gerber, Tolga Tasdizen, Sarang Joshi, and Ross Whitaker Scientific Computing and Imaging Institute, University of Utah, USA, sgerber@cs.utah.edu

More information

Fast Shape-Based Nearest-Neighbor Search for Brain MRIs Using Hierarchical Feature Matching

Fast Shape-Based Nearest-Neighbor Search for Brain MRIs Using Hierarchical Feature Matching Fast Shape-Based Nearest-Neighbor Search for Brain MRIs Using Hierarchical Feature Matching Peihong Zhu, Suyash P. Awate, Samuel Gerber, and Ross Whitaker Scientific Computing and Imaging Institute, University

More information

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

Neighbourhood Approximation Forests

Neighbourhood Approximation Forests Neighbourhood Approximation Forests Ender Konukoglu, Ben Glocker, Darko Zikic and Antonio Criminisi Microsoft Research Cambridge Abstract. Methods that leverage neighbourhood structures in highdimensional

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis 14 (2010) 633 642 Contents lists available at ScienceDirect Medical Image Analysis journal homepage: www.elsevier.com/locate/media GRAM: A framework for geodesic registration on

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Manifold Learning-based Data Sampling for Model Training

Manifold Learning-based Data Sampling for Model Training Manifold Learning-based Data Sampling for Model Training Shuqing Chen 1, Sabrina Dorn 2, Michael Lell 3, Marc Kachelrieß 2,Andreas Maier 1 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg 2 German Cancer

More information

GRAM: A Framework for Geodesic Registration on Anatomical Manifolds

GRAM: A Framework for Geodesic Registration on Anatomical Manifolds GRAM: A Framework for Geodesic Registration on Anatomical Manifolds Jihun Hamm a, Dong Hye Ye b, Ragini Verma a,b, Christos Davatzikos a,b a Department of Radiology, University of Pennsylvania, 3600 Market

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

A Review on Label Image Constrained Multiatlas Selection

A Review on Label Image Constrained Multiatlas Selection A Review on Label Image Constrained Multiatlas Selection Ms. VAIBHAVI NANDKUMAR JAGTAP 1, Mr. SANTOSH D. KALE 2 1PG Scholar, Department of Electronics and Telecommunication, SVPM College of Engineering,

More information

Image Registration Driven by Combined Probabilistic and Geometric Descriptors

Image Registration Driven by Combined Probabilistic and Geometric Descriptors Image Registration Driven by Combined Probabilistic and Geometric Descriptors Linh Ha 1, Marcel Prastawa 1, Guido Gerig 1, John H. Gilmore 2, Cláudio T. Silva 1, Sarang Joshi 1 1 Scientific Computing and

More information

Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot

Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot Dong Hye Ye 1, Harold Litt 2,ChristosDavatzikos 1, and Kilian M. Pohl 1 1 SBIA, University of Pennsylvania, Philadelphia,

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Balci

More information

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial Image Similarities for Learning Video Manifolds Selen Atasoy MICCAI 2011 Tutorial Image Spaces Image Manifolds Tenenbaum2000 Roweis2000 Tenenbaum2000 [Tenenbaum2000: J. B. Tenenbaum, V. Silva, J. C. Langford:

More information

Non-linear dimension reduction

Non-linear dimension reduction Sta306b May 23, 2011 Dimension Reduction: 1 Non-linear dimension reduction ISOMAP: Tenenbaum, de Silva & Langford (2000) Local linear embedding: Roweis & Saul (2000) Local MDS: Chen (2006) all three methods

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration Serdar K. Balci 1, Polina Golland 1, Martha Shenton 2, and William M. Wells 2 1 CSAIL, MIT, Cambridge, MA, USA, 2 Brigham & Women s Hospital,

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Head Frontal-View Identification Using Extended LLE

Head Frontal-View Identification Using Extended LLE Head Frontal-View Identification Using Extended LLE Chao Wang Center for Spoken Language Understanding, Oregon Health and Science University Abstract Automatic head frontal-view identification is challenging

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Selecting Models from Videos for Appearance-Based Face Recognition

Selecting Models from Videos for Appearance-Based Face Recognition Selecting Models from Videos for Appearance-Based Face Recognition Abdenour Hadid and Matti Pietikäinen Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering P.O.

More information

Weighted Functional Boxplot with Application to Statistical Atlas Construction

Weighted Functional Boxplot with Application to Statistical Atlas Construction Weighted Functional Boxplot with Application to Statistical Atlas Construction Yi Hong 1, Brad Davis 3, J.S. Marron 1, Roland Kwitt 3, Marc Niethammer 1,2 1 University of North Carolina (UNC) at Chapel

More information

Image Atlas Construction via Intrinsic Averaging on the Manifold of Images

Image Atlas Construction via Intrinsic Averaging on the Manifold of Images Image Atlas Construction via Intrinsic Averaging on the Manifold of Images Yuchen Xie Jeffrey Ho Baba C. Vemuri Department of Computer and Information Sciences and Engineering University of Florida {yxie,jho,vemuri}@cise.ufl.edu

More information

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM Olga Kouropteva, Oleg Okun and Matti Pietikäinen Machine Vision Group, Infotech Oulu and Department of Electrical and

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents

Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents Template Estimation for Large Database : a Diffeomorphic Iterative Centroid Method Using Currents Claire Cury 12346, Olivier Colliot 1234, and Joan A. Glaunès 5 1 Université Pierre et Marie Curie-Paris

More information

3D Brain Segmentation Using Active Appearance Models and Local Regressors

3D Brain Segmentation Using Active Appearance Models and Local Regressors 3D Brain Segmentation Using Active Appearance Models and Local Regressors K.O. Babalola, T.F. Cootes, C.J. Twining, V. Petrovic, and C.J. Taylor Division of Imaging Science and Biomedical Engineering,

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm

Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm Lin Chen and Gudrun Wagenknecht Central Institute for Electronics, Research Center Jülich, Jülich, Germany Email: l.chen@fz-juelich.de

More information

Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates

Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates Johannes Hofmanninger 1, Bjoern Menze 2, Marc-André Weber 3,4 and Georg Langs 1 1 Department of Biomedical imaging

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Groupwise Morphometric Analysis Based on High Dimensional Clustering

Groupwise Morphometric Analysis Based on High Dimensional Clustering Groupwise Morphometric Analysis Based on High Dimensional Clustering Dong Hye Ye 1,*, Kilian M. Pohl 2, Harold Litt 1, and Christos Davatzikos 1 1 Department of Radiology, University of Pennsylvania, Philadelphia,

More information

Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery

Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery Deformable MRI-Ultrasound Registration via Attribute Matching and Mutual-Saliency Weighting for Image-Guided Neurosurgery Inês Machado 1,2(&), Matthew Toews 3, Jie Luo 1,4, Prashin Unadkat 5, Walid Essayed

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition Technical Report Title: Manifold learning and Random Projections for multi-view object recognition Authors: Grigorios Tsagkatakis 1 and Andreas Savakis 2 1 Center for Imaging Science, Rochester Institute

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde MRI Segmentation MRI Bootcamp, 14 th of January 2019 Segmentation Segmentation Information Segmentation Algorithms Approach Types of Information Local 4 45 100 110 80 50 76 42 27 186 177 120 167 111 56

More information

GLIRT: Groupwise and Longitudinal Image Registration Toolbox

GLIRT: Groupwise and Longitudinal Image Registration Toolbox Software Release (1.0.1) Last updated: March. 30, 2011. GLIRT: Groupwise and Longitudinal Image Registration Toolbox Guorong Wu 1, Qian Wang 1,2, Hongjun Jia 1, and Dinggang Shen 1 1 Image Display, Enhancement,

More information

Alternative Statistical Methods for Bone Atlas Modelling

Alternative Statistical Methods for Bone Atlas Modelling Alternative Statistical Methods for Bone Atlas Modelling Sharmishtaa Seshamani, Gouthami Chintalapani, Russell Taylor Department of Computer Science, Johns Hopkins University, Baltimore, MD Traditional

More information

Dimension Reduction of Image Manifolds

Dimension Reduction of Image Manifolds Dimension Reduction of Image Manifolds Arian Maleki Department of Electrical Engineering Stanford University Stanford, CA, 9435, USA E-mail: arianm@stanford.edu I. INTRODUCTION Dimension reduction of datasets

More information

Multi-atlas labeling with population-specific template and non-local patch-based label fusion

Multi-atlas labeling with population-specific template and non-local patch-based label fusion Multi-atlas labeling with population-specific template and non-local patch-based label fusion Vladimir Fonov, Pierrick Coupé, Simon Eskildsen, Jose Manjon, Louis Collins To cite this version: Vladimir

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages:

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Today Problems with visualizing high dimensional data Problem Overview Direct Visualization Approaches High dimensionality Visual cluttering Clarity of representation Visualization is time consuming Dimensional

More information

Learning a Manifold as an Atlas Supplementary Material

Learning a Manifold as an Atlas Supplementary Material Learning a Manifold as an Atlas Supplementary Material Nikolaos Pitelis Chris Russell School of EECS, Queen Mary, University of London [nikolaos.pitelis,chrisr,lourdes]@eecs.qmul.ac.uk Lourdes Agapito

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Label Space: A Multi-object Shape Representation

Label Space: A Multi-object Shape Representation Label Space: A Multi-object Shape Representation James Malcolm 1, Yogesh Rathi 2, and Allen Tannenbaum 1 1 Georgia Institute of Technology, Atlanta, GA {malcolm,tannenba}@ece.gatech.edu 2 Brigham and Women

More information

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 2D Shape Matching (and Object Recognition) Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 1 Outline What is a shape? Part 1: Matching/ Recognition Shape contexts

More information

Image segmentation with a statistical shape prior

Image segmentation with a statistical shape prior Image segmentation with a statistical shape prior Arturo Mendoza Quispe & Caroline Petitjean October 26, 2015 Shape prior based image segmentation Foulonneau 04 Sans a priori Avec a priori Etyngier 07

More information

Non-rigid Image Registration using Electric Current Flow

Non-rigid Image Registration using Electric Current Flow Non-rigid Image Registration using Electric Current Flow Shu Liao, Max W. K. Law and Albert C. S. Chung Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering,

More information

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Julien Jomier and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab The University of North Carolina at Chapel

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

Curvature guided surface registration using level sets

Curvature guided surface registration using level sets Curvature guided surface registration using level sets Marcel Lüthi, Thomas Albrecht, Thomas Vetter Department of Computer Science, University of Basel, Switzerland Abstract. We present a new approach

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

How to project circular manifolds using geodesic distances?

How to project circular manifolds using geodesic distances? How to project circular manifolds using geodesic distances? John Aldo Lee, Michel Verleysen Université catholique de Louvain Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium {lee,verleysen}@dice.ucl.ac.be

More information

Differential Structure in non-linear Image Embedding Functions

Differential Structure in non-linear Image Embedding Functions Differential Structure in non-linear Image Embedding Functions Robert Pless Department of Computer Science, Washington University in St. Louis pless@cse.wustl.edu Abstract Many natural image sets are samples

More information

Diffusion Tensor Processing and Visualization

Diffusion Tensor Processing and Visualization NA-MIC National Alliance for Medical Image Computing http://na-mic.org Diffusion Tensor Processing and Visualization Guido Gerig University of Utah Martin Styner, UNC NAMIC: National Alliance for Medical

More information

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans

Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Adaptive Local Multi-Atlas Segmentation: Application to Heart Segmentation in Chest CT Scans Eva M. van Rikxoort, Ivana Isgum, Marius Staring, Stefan Klein and Bram van Ginneken Image Sciences Institute,

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Shape analysis through geometric distributions

Shape analysis through geometric distributions Shape analysis through geometric distributions Nicolas Charon (CIS, Johns Hopkins University) joint work with B. Charlier (Université de Montpellier), I. Kaltenmark (CMLA), A. Trouvé, Hsi-Wei Hsieh (JHU)...

More information

Multi-subject Registration for Unbiased Statistical Atlas Construction

Multi-subject Registration for Unbiased Statistical Atlas Construction Multi-subject Registration for Unbiased Statistical Atlas Construction Mathieu De Craene 1,2,3, Aloys du Bois d Aische 1,2,3, Benoît Macq 1, and Simon K. Warfield 2,3 1 Communications and Remote Sensing

More information

Geodesic Based Ink Separation for Spectral Printing

Geodesic Based Ink Separation for Spectral Printing Geodesic Based Ink Separation for Spectral Printing Behnam Bastani*, Brian Funt**, *Hewlett-Packard Company, San Diego, CA, USA **Simon Fraser University, Vancouver, BC, Canada Abstract An ink separation

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Tobias Gass, Gabor Szekely, and Orcun Goksel Computer Vision Lab, Dep. of Electrical Engineering, ETH Zurich, Switzerland.

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Doan, H., Slabaugh, G.G., Unal, G.B. & Fang, T. (2006). Semi-Automatic 3-D Segmentation of Anatomical Structures of Brain

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI

AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI AUTO-ENCODING OF DISCRIMINATING MORPHOMETRY FROM CARDIAC MRI Dong Hye Ye 1, Benoit Desjardins 2, Victor Ferrari 2, Dimitris Metaxas 3, Kilian M. Pohl 4 Department of Electrical and Computer Engineering,

More information

Exponential Maps for Computer Vision

Exponential Maps for Computer Vision Exponential Maps for Computer Vision Nick Birnie School of Informatics University of Edinburgh 1 Introduction In computer vision, the exponential map is the natural generalisation of the ordinary exponential

More information

Segmentation of Brain MR Images via Sparse Patch Representation

Segmentation of Brain MR Images via Sparse Patch Representation Segmentation of Brain MR Images via Sparse Patch Representation Tong Tong 1, Robin Wolz 1, Joseph V. Hajnal 2, and Daniel Rueckert 1 1 Department of Computing, Imperial College London, London, UK 2 MRC

More information

Introduction to Medical Image Registration

Introduction to Medical Image Registration Introduction to Medical Image Registration Sailesh Conjeti Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany sailesh.conjeti@tum.de Partially adapted from slides by: 1.

More information

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size Suyash P. Awate, Peihong Zhu, and Ross T. Whitaker Scientific Computing

More information

Performance Issues in Shape Classification

Performance Issues in Shape Classification Performance Issues in Shape Classification Samson J. Timoner 1, Pollina Golland 1, Ron Kikinis 2, Martha E. Shenton 3, W. Eric L. Grimson 1, and William M. Wells III 1,2 1 MIT AI Laboratory, Cambridge

More information

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Mike Gashler, Dan Ventura, and Tony Martinez Brigham Young University Provo, UT 84604 Abstract Many algorithms have been recently developed

More information

Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields

Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields Torsten Rohlfing Neuroscience Program, SRI International, Menlo Park, CA, USA torsten@synapse.sri.com http://www.stanford.edu/

More information

Robust Pose Estimation using the SwissRanger SR-3000 Camera

Robust Pose Estimation using the SwissRanger SR-3000 Camera Robust Pose Estimation using the SwissRanger SR- Camera Sigurjón Árni Guðmundsson, Rasmus Larsen and Bjarne K. Ersbøll Technical University of Denmark, Informatics and Mathematical Modelling. Building,

More information

Feature-Based Non-Rigid Registration of Serial Section Images by Blending Rigid Transformations

Feature-Based Non-Rigid Registration of Serial Section Images by Blending Rigid Transformations Feature-Based Non-Rigid Registration of Serial Section Images by Blending Rigid Transformations Takehiro Kajihara Takuya Funatomi Hiroyuki Kubo Graduate School of Information Science Nara Institute of

More information

Software for ABSORB: An algorithm for effective groupwise registration

Software for ABSORB: An algorithm for effective groupwise registration Software Release (1.0.5) Last updated: Sep. 01, 2010. Software for ABSORB: An algorithm for effective groupwise registration Hongjun Jia 1, Guorong Wu 1, Qian Wang 1,2 and Dinggang Shen 1 1 Image Display,

More information

Manifold Learning Theory and Applications

Manifold Learning Theory and Applications Manifold Learning Theory and Applications Yunqian Ma and Yun Fu CRC Press Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents

More information

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Reed M. Williams and Horea T. Ilieş Department of Mechanical Engineering University of Connecticut Storrs, CT

More information

BrainPrint : Identifying Subjects by their Brain

BrainPrint : Identifying Subjects by their Brain BrainPrint : Identifying Subjects by their Brain Christian Wachinger 1,2, Polina Golland 1, Martin Reuter 1,2 1 Computer Science and Artificial Intelligence Lab, MIT 2 Massachusetts General Hospital, Harvard

More information

Medical Image Analysis Active Shape Models

Medical Image Analysis Active Shape Models Medical Image Analysis Active Shape Models Mauricio Reyes, Ph.D. mauricio.reyes@istb.unibe.ch ISTB - Institute for Surgical Technology and Biomechanics University of Bern Lecture Overview! Statistical

More information

Discrete Optimisation for Group-wise Cortical Surface Atlasing

Discrete Optimisation for Group-wise Cortical Surface Atlasing Discrete Optimisation for Group-wise Cortical Surface Atlasing Emma C. Robinson, Ben Glocker, Martin Rajchl, Daniel Rueckert Department of Computing, Imperial College London, South Kensington Campus, London.

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

Simultaneous Cortical Surface Labeling and Sulcal Curve Extraction

Simultaneous Cortical Surface Labeling and Sulcal Curve Extraction Simultaneous Cortical Surface Labeling and Sulcal Curve Extraction Zhen Yang a, Aaron Carass a, Chen Chen a, Jerry L Prince a,b a Electrical and Computer Engineering, b Biomedical Engineering, Johns Hopkins

More information

IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS. Hamid Dadkhahi and Marco F. Duarte

IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS. Hamid Dadkhahi and Marco F. Duarte IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS Hamid Dadkhahi and Marco F. Duarte Dept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 ABSTRACT We consider

More information

BrainPrint: Identifying Subjects by Their Brain

BrainPrint: Identifying Subjects by Their Brain BrainPrint: Identifying Subjects by Their Brain The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Wachinger,

More information

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem Indian Institute of Technology Kanpur Introduction to Cognitive Science SE367A Visuomotor Learning Using Image Manifolds: ST-GK Problem Author: Anurag Misra Department of Computer Science and Engineering

More information

Initialising Groupwise Non-rigid Registration Using Multiple Parts+Geometry Models

Initialising Groupwise Non-rigid Registration Using Multiple Parts+Geometry Models Initialising Groupwise Non-rigid Registration Using Multiple Parts+Geometry Models Pei Zhang 1,Pew-ThianYap 1, Dinggang Shen 1, and Timothy F. Cootes 2 1 Department of Radiology and Biomedical Research

More information

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15. NIH Public Access Author Manuscript Published in final edited form as: Proc IEEE Int Symp Biomed Imaging. 2013 December 31; 2013: 1396 1399. doi:10.1109/isbi. 2013.6556794. MODELING LONGITUDINAL MRI CHANGES

More information

Efficient population registration of 3D data

Efficient population registration of 3D data Efficient population registration of 3D data Lilla Zöllei 1, Erik Learned-Miller 2, Eric Grimson 1, William Wells 1,3 1 Computer Science and Artificial Intelligence Lab, MIT; 2 Dept. of Computer Science,

More information

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Christian Wasserthal 1, Karin Engel 1, Karsten Rink 1 und André Brechmann

More information

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Albert Gubern-Mérida 1, Michiel Kallenberg 2, Robert Martí 1, and Nico Karssemeijer 2 1 University of Girona, Spain {agubern,marly}@eia.udg.edu

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information