Towards PetaScale Computational Science

Size: px
Start display at page:

Download "Towards PetaScale Computational Science"

Transcription

1 Towards PetaScale Computational Science U. Rüde (LSS Erlangen, joint work with many Lehrstuhl für Informatik 10 (Systemsimulation) Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de 3rd Erlangen HEC-Symposium July 2,

2 Motivation Overview Towards PetaScale and Beyond Scalable Finite Element Solvers Scalable Algorithms: Multigrid Scalable Software Architecture: Hierarchical Hybrid Grids (HHG) Parallel Performance Results on 9170 Core SGI Altix (HLRB-II) Complex Flow Simulations with Lattice Boltzmann Methods Metal Foams as an Example Application Free Surfaces, Moving Objects Parallel Performance Results Conclusions 2

3 Part I Towards PetaScale and Beyond 3

4 Technology as Driver 4

5 How much is a PetaFlops? 106 = 1 MegaFlops: Intel MHz PC (~1989) 109 = 1 GigaFlops: Intel Pentium III 1GHz (~2000) If every person on earth does one operation every 6 seconds, all humans together have 1 GigaFlops performance (less than a current laptop from Aldi) 1012= 1 TeraFlops: HLRB-I 1344 Proc., ~ = 1 PetaFlops Green Germ Q? > Proc. Cores?, ~2008? HLRB-I: 2 TFlops If every person on earth runs a 486 PC, we all together have an aggregate Performance of 6 PetaFlops. HLRB-II: 63 TFlops 5

6 The Two Principles of Science Three Theory Mathematical Models, Differential Equations, Newton Experiments Observation and prototypes empirical Sciences Computational Science Simulation, Optimization (quantitative) virtual Reality 6

7 Part II Scalable Algorithms: Multigrid Scalable Data Strcutures Hierarchical Hybrid Grids Scalable Architectures 7

8 What is Multigrid? Has nothing to do with grid computing A general methodology multi - scale (actually it is the original ) many different applications developped in the 1970s -... Useful e.g. for solving elliptic PDEs large sparse systems of equations iterative convergence rate independent of problem size asymptotically optimal complexity -> algorithmic scalability! can solve e.g. 2D Poisson Problem in ~ 30 operations per gridpoint efficient parallelization - if one knows how to do it best (maybe the only?) basis for fully scalable FE solvers 8

9 Multigrid: V-Cycle Goal: solve A h u h = f h using a hierarchy of grids Relax on Correct Residual Restrict Interpolate Solve by recursion 9

10 Parallel High Performance FE Multigrid Parallelize plain vanilla multigrid partition domain parallelize all operations on all grids use clever data structures Do not worry (so much) about Coarse Grids idle processors? short messages? sequential dependency in grid hierarchy? Why we do not use Domain Decomposition DD without coarse grid does not scale (algorithmically) and is inefficient for large problems/ many procssors DD with coarse grids is still less efficient than multigrid and is as difficult to parallelize 10

11 Part II Towards Scalable FE Software Performance Results 11

12 #Proc #unkn. x , ,147.5 Ph.1: sec Ph. 2: sec 6.38* 6.67* 6.75* 6.80* 4.92 Time to sol Parallel scalability of scalar elliptic problem discretized by tetrahedral finite elements , , , , , , , , , * 7.39* * 7.75* B. Bergen, F. Hülsemann, U. Rüde, G. Wellein: ISC Award 2006, also: Is unknowns the largest finite element system that can be solved today?, SuperComputing, Nov Times for 12 V(2,2) cycles on SGI Altix: Itanium GHz. Largest problem solved to date: 3.07 x DOFS on 9170 Procs: 7.8 s per V(2,2) cycle 13

13 So what? With scalable algorithms, well implemented, we can do now (scalar) PDEs with > 10 million unknows on a desktop > 300 billion unknowns on a TOP-10 class machine (HLRB-II, 63 Tflop peak, 40 TeraByte Mem) In the future, we will be able to do around : 5 trillion unknowns on a peak PetaScale machine (assuming 1 PByte memory) around : 50 trillion unknowns on a machine delivering a petaflop for real applications (assuming 10 Pbyte memory) This is e.g. sufficient to resolve all of earth s atmosphere with 10 km grid resolution (current desktop) 250 m mesh (current supercomputer) 100 m mesh (Peak-Peta-Scale system in 2009?) 50 m mesh (Application-Peta-Scale system in 2012?) This is a buidling block for many other applications 14

14 Why Multigrid? A direct elimination banded solver has complexity O(N 2.3 ) for a 3-D problem (N = 3*10 11 ) This becomes = O(10 26 ) operations for our problem size At 100 TeraFlops this would result in a runtime of years which could be reduced to 8 years on a ExaFlops (10 18 Flops) system. We can alternatively use multigrid and compute a solution with a 60 TeraFlops machine in 1.5 minutes. 15

15 An HPC Tutorial! Getting Supercomputer Performance is Easy! If parallel efficiency is bad, choose a slower serial algorithm it is probably easier to parallelize and will make your speedups look much more impressive Introduce the CrunchMe variable for getting high Flops rates advanced method: disguise CrunchMe by using an inefficient (but computeintensive) algorithm from the start Introduce the HitMe variable to get good cache hit rates advanced version: disguise HitMe within clever data structures that introduce a lot of overhead Never cite time-to-solution who cares whether you solve a real life problem anyway it is the MachoFlops that interest the people who pay for your research Never waste your time by trying to use a complicated algorithm in parallel (such as multigrid) the more primitive the algorithm the easier to maximize your MachoFlops. 16

16 Part III HEC Application: Complex and Coupled Flow Simulations with the Lattice Boltzmann Method 17

17 Process Simulation of Foam Production KONWIHR project FreeWIHR joint work with WTM, Dr. C. Körner poorly understood: coalescence collapse, drying, solidification etc. Simulation as tool to understand and control the process 18

18 First Test Breaking Dam 19

19 Rising Bubbles 20

20 Foaming Simulation 1 22

21 Moving Nano Particles in a Liquid K. Iglberger - Master Thesis C. Feichtinger - Diplomarbeit 23

22 Datensatz Pulsating Blood Flow in an Aneurysma Master Thesis Jan Götz Collaboration with Neuro-Radiology (Prof. Dörfler, Dr. Richter) Image Processing Simulation Fluid Mechanics (Prof. Durst) 24

23 Parallelization Standard LBM-Code: Scalability on SR 8000-F1 Largest Simulation: 1,08*10 9 cells 370 GByte memory Communication Cost because of large data volume (64 MByte) Efficiency ~ 75% Dissertation T. Pohl (2007) 25

24 Parallel Performance LSSCluster FujitsuSiemens 26

25 Example application: So What? Flow with moving objects on the nano-scale (suspensions) 1µm lattice resolution, object size 5-10 µm (example: blood cells) We can simulate (with this resolution) on a laptop: 2 Million lattice cells = mm 3 of liquid. on a TOP-10 supercomputer: 80 Billion lattice cells = 80 mm 3 = 0.08 ml of liquid for blood additionally required: 400 Million blood cells on a (peak) peta scale system: 2 Trillion lattice cells = 2 cm 3 = 2 ml of liquid ~ 10 Billion blood cells on an (application) peta scale system: 20 Trillion lattice cells = 20 ml of liquid Is this good for anything? 27

26 Part IV Conclusions 28

27 Acknowledgements Collaborators In Erlangen: WTM, LSE, LSTM, LGDV, LME, RRZE, Neurozentrum, Radiologie, etc. Especially for foams: C. Körner (WTM) International: Utah, Technion, Constanta, Ghent, Boulder, München, Zürich,... Dissertation Projects C. Freundl (Parallel Expression Templates for PDE-solver) K. Iglberger (Flow with moving objects) J. Götz (Blood Flow with LBM) M. Stürmer (MultiCore) T. Gradl (Hierarchical Hybrid Grids) S. Donath (Multiphase flow in microporous media) C. Feichtinger (Flow with nano particles) finished and almost finished: Kowarschik, Mohr, Bergen, Thürey, Fabricius, Köstler, Treibig 20 Diplom- /Master- Thesis Studien- /Bachelor- Thesis Especially for Performance-Analysis/ Optimization for LBM J. Wilke, K. Iglberger, S. Donath, M. Stürmer,... and 23 more KONWIHR, DFG, NATO, BMBF,, (EU - hopefully) Elitenetzwerk Bayern Bavarian Graduate School in Computational Engineering (with TUM, since 2004) Special International PhD program: Identifikation, Optimierung und Steuerung für technische Anwendungen (with Bayreuth and Würzburg) since Jan

28 Fancy Physics User control of flow to generate unphysical fluid behavior 30

29 Talk is Over Questions? 31

Architecture Aware Multigrid

Architecture Aware Multigrid Architecture Aware Multigrid U. Rüde (LSS Erlangen, ruede@cs.fau.de) joint work with D. Ritter, T. Gradl, M. Stürmer, H. Köstler, J. Treibig and many more students Lehrstuhl für Informatik 10 (Systemsimulation)

More information

Adaptive Hierarchical Grids with a Trillion Tetrahedra

Adaptive Hierarchical Grids with a Trillion Tetrahedra Adaptive Hierarchical Grids with a Trillion Tetrahedra Tobias Gradl, Björn Gmeiner and U. Rüde (LSS Erlangen, ruede@cs.fau.de) in collaboration with many more Lehrstuhl für Informatik 10 (Systemsimulation)

More information

Numerical Simulation in the Multi-Core Age

Numerical Simulation in the Multi-Core Age Numerical Simulation in the Multi-Core Age N. Thürey (LSS Erlangen/ now ETH Zürich), J. Götz, M. Stürmer, S. Donath, C. Feichtinger, K. Iglberger, T. Preclic, P. Neumann (LSS Erlangen) U. Rüde (LSS Erlangen,

More information

Performance and Software-Engineering Considerations for Massively Parallel Simulations

Performance and Software-Engineering Considerations for Massively Parallel Simulations Performance and Software-Engineering Considerations for Massively Parallel Simulations Ulrich Rüde (ruede@cs.fau.de) Ben Bergen, Frank Hülsemann, Christoph Freundl Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information

Scalable Parallel Multigrid for Finite Element Computations

Scalable Parallel Multigrid for Finite Element Computations Scalable Parallel Multigrid for Finite Element Computations Minisymposium MS8 @ SIAM CS&E 2007 Large Scale Parallel Multigrid B. Bergen (LSS Erlangen/ now Los Alamos) T. Gradl, Chr. Freundl (LSS Erlangen)

More information

High End Computing for Large Scale Simulations

High End Computing for Large Scale Simulations High End Computing for Large Scale Simulations B. Bergen (LSS Erlangen/ now Los Alamos) N. Thürey (LSS Erlangen/ now ETH Zürich) U. Rüde (LSS Erlangen, ruede@cs.fau.de) joint work with many more Lehrstuhl

More information

Massively Parallel Multgrid for Finite Elements

Massively Parallel Multgrid for Finite Elements Massively Parallel Multgrid for Finite Elements B. Bergen (LSS Erlangen/ now Los Alamos) T. Gradl, Chr. Freundl (LSS Erlangen) U. Rüde (LSS Erlangen, ruede@cs.fau.de) Lehrstuhl für Informatik 10 (Systemsimulation)

More information

Towards Exa-Scale: Computing with Millions of Cores

Towards Exa-Scale: Computing with Millions of Cores Towards Exa-Scale: Computing with Millions of Cores U. Rüde (LSS Erlangen, ruede@cs.fau.de) Lehrstuhl für Informatik 10 (Systemsimulation) Excellence Cluster Engineering of Advanced Materials Universität

More information

Solving Finite Element Systems with 17 Billion Unknowns at Sustained Teraflops Performance

Solving Finite Element Systems with 17 Billion Unknowns at Sustained Teraflops Performance Solving Finite Element Systems with 17 Billion Unknowns at Sustained Teraflops Performance B. Bergen (LSS Erlangen/Los Alamos) T. Gradl (LSS Erlangen) F. Hülsemann (LSS Erlangen/EDF) U. Rüde (LSS Erlangen,

More information

Parallel Solution of a Finite Element Problem with 17 Billion Unknowns

Parallel Solution of a Finite Element Problem with 17 Billion Unknowns Parallel Solution of a Finite Element Problem with 17 Billion Unknowns B. Bergen (LSS Erlangen/Los Alamos) T. Gradl (LSS Erlangen) F. Hülsemann (LSS Erlangen/EDF) U. Rüde (LSS Erlangen, ruede@cs.fau.de)

More information

Simulieren geht über Probieren

Simulieren geht über Probieren Simulieren geht über Probieren Ulrich Rüde (ruede@cs.fau.de) Lehrstuhl für Informatik 10 (Systemsimulation) Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de Ulm, 17. Mai 2006 1 Overview Motivation

More information

Reconstruction of Trees from Laser Scan Data and further Simulation Topics

Reconstruction of Trees from Laser Scan Data and further Simulation Topics Reconstruction of Trees from Laser Scan Data and further Simulation Topics Helmholtz-Research Center, Munich Daniel Ritter http://www10.informatik.uni-erlangen.de Overview 1. Introduction of the Chair

More information

The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms

The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms Harald Köstler, Uli Rüde (LSS Erlangen, ruede@cs.fau.de) Lehrstuhl für Simulation Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information

τ-extrapolation on 3D semi-structured finite element meshes

τ-extrapolation on 3D semi-structured finite element meshes τ-extrapolation on 3D semi-structured finite element meshes European Multi-Grid Conference EMG 2010 Björn Gmeiner Joint work with: Tobias Gradl, Ulrich Rüde September, 2010 Contents The HHG Framework τ-extrapolation

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures

Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Performance Analysis of the Lattice Boltzmann Method on x86-64 Architectures Jan Treibig, Simon Hausmann, Ulrich Ruede Zusammenfassung The Lattice Boltzmann method (LBM) is a well established algorithm

More information

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm

Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm Computational Fluid Dynamics with the Lattice Boltzmann Method KTH SCI, Stockholm March 17 March 21, 2014 Florian Schornbaum, Martin Bauer, Simon Bogner Chair for System Simulation Friedrich-Alexander-Universität

More information

Lehrstuhl für Informatik 10 (Systemsimulation)

Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) On the Resource Requirements of

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

simulation framework for piecewise regular grids

simulation framework for piecewise regular grids WALBERLA, an ultra-scalable multiphysics simulation framework for piecewise regular grids ParCo 2015, Edinburgh September 3rd, 2015 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG. Lehrstuhl für Informatik 10 (Systemsimulation)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG. Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Hierarchical hybrid grids: A framework

More information

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion M. Stürmer, H. Köstler, and U. Rüde Lehrstuhl für Systemsimulation Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Iterative Solvers Numerical Results Conclusion and outlook 1/22 Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Part II: GPU Implementation and Scaling on Titan Eike

More information

Is Unknowns the Largest Finite Element System that Can Be Solved Today?

Is Unknowns the Largest Finite Element System that Can Be Solved Today? Is 1.7 10 10 Unknowns the Largest Finite Element System that Can Be Solved Today? B. Bergen F. Hülsemann U. Rüde 22nd July 2005 Permission to make digital or hard copies of all or part of this work for

More information

Multigrid algorithms on multi-gpu architectures

Multigrid algorithms on multi-gpu architectures Multigrid algorithms on multi-gpu architectures H. Köstler European Multi-Grid Conference EMG 2010 Isola d Ischia, Italy 20.9.2010 2 Contents Work @ LSS GPU Architectures and Programming Paradigms Applications

More information

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method

Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method Introducing a Cache-Oblivious Blocking Approach for the Lattice Boltzmann Method G. Wellein, T. Zeiser, G. Hager HPC Services Regional Computing Center A. Nitsure, K. Iglberger, U. Rüde Chair for System

More information

Massively Parallel Phase Field Simulations using HPC Framework walberla

Massively Parallel Phase Field Simulations using HPC Framework walberla Massively Parallel Phase Field Simulations using HPC Framework walberla SIAM CSE 2015, March 15 th 2015 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer, Harald Köstler and Ulrich

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

Lattice Boltzmann Methods on the way to exascale

Lattice Boltzmann Methods on the way to exascale Lattice Boltzmann Methods on the way to exascale Ulrich Rüde (LSS Erlangen, ulrich.ruede@fau.de) Lehrstuhl für Simulation Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de HIGH PERFORMANCE

More information

A Contact Angle Model for the Parallel Free Surface Lattice Boltzmann Method in walberla Stefan Donath (stefan.donath@informatik.uni-erlangen.de) Computer Science 10 (System Simulation) University of Erlangen-Nuremberg

More information

Efficient implementation of simple lattice Boltzmann kernels

Efficient implementation of simple lattice Boltzmann kernels Survey Introduction Efficient implementation of simple lattice Boltzmann kernels Memory hierarchies of modern processors Implementation of lattice Boltzmann method Optimization of data access for 3D lattice

More information

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla SIAM PP 2016, April 13 th 2016 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer,

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

Peta-Scale Simulations with the HPC Software Framework walberla:

Peta-Scale Simulations with the HPC Software Framework walberla: Peta-Scale Simulations with the HPC Software Framework walberla: Massively Parallel AMR for the Lattice Boltzmann Method SIAM PP 2016, Paris April 15, 2016 Florian Schornbaum, Christian Godenschwager,

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method

Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method Simulation of Liquid-Gas-Solid Flows with the Lattice Boltzmann Method June 21, 2011 Introduction Free Surface LBM Liquid-Gas-Solid Flows Parallel Computing Examples and More References Fig. Simulation

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Iterative Solvers Numerical Results Conclusion and outlook 1/18 Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Eike Hermann Müller, Robert Scheichl, Eero Vainikko

More information

Hierarchical Hybrid Grids

Hierarchical Hybrid Grids Hierarchical Hybrid Grids IDK Summer School 2012 Björn Gmeiner, Ulrich Rüde July, 2012 Contents Mantle convection Hierarchical Hybrid Grids Smoothers Geometric approximation Performance modeling 2 Mantle

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Exploring unstructured Poisson solvers for FDS

Exploring unstructured Poisson solvers for FDS Exploring unstructured Poisson solvers for FDS Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin - Germany Agenda 1 Discretization of Poisson- Löser 2 Solvers for 3 Numerical Tests

More information

Simulation of Optical Waves

Simulation of Optical Waves Simulation of Optical Waves K. Hertel, Prof. Dr. Ch. Pflaum 1 Department Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg 2 School for Advanced Optical Technologies Friedrich-Alexander-Universität

More information

Lehrstuhl für Informatik 10 (Systemsimulation)

Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) WaLBerla: HPC Software Design for

More information

Thread and Data parallelism in CPUs - will GPUs become obsolete?

Thread and Data parallelism in CPUs - will GPUs become obsolete? Thread and Data parallelism in CPUs - will GPUs become obsolete? USP, Sao Paulo 25/03/11 Carsten Trinitis Carsten.Trinitis@tum.de Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR) Institut für

More information

Two main topics: `A posteriori (error) control of FEM/FV discretizations with adaptive meshing strategies' `(Iterative) Solution strategies for huge s

Two main topics: `A posteriori (error) control of FEM/FV discretizations with adaptive meshing strategies' `(Iterative) Solution strategies for huge s . Trends in processor technology and their impact on Numerics for PDE's S. Turek Institut fur Angewandte Mathematik, Universitat Heidelberg Im Neuenheimer Feld 294, 69120 Heidelberg, Germany http://gaia.iwr.uni-heidelberg.de/~ture

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

walberla: Developing a Massively Parallel HPC Framework

walberla: Developing a Massively Parallel HPC Framework walberla: Developing a Massively Parallel HPC Framework SIAM CS&E 2013, Boston February 26, 2013 Florian Schornbaum*, Christian Godenschwager*, Martin Bauer*, Matthias Markl, Ulrich Rüde* *Chair for System

More information

Efficiency Aspects for Advanced Fluid Finite Element Formulations

Efficiency Aspects for Advanced Fluid Finite Element Formulations Proceedings of the 5 th International Conference on Computation of Shell and Spatial Structures June 1-4, 2005 Salzburg, Austria E. Ramm, W. A. Wall, K.-U. Bletzinger, M. Bischoff (eds.) www.iassiacm2005.de

More information

Performance. Computing (UCHPC)) for Finite Element Simulations

Performance. Computing (UCHPC)) for Finite Element Simulations technische universität dortmund Universität Dortmund fakultät für mathematik LS III (IAM) UnConventional High Performance Computing (UCHPC)) for Finite Element Simulations S. Turek, Chr. Becker, S. Buijssen,

More information

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp

From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with LibGeoDecomp From Notebooks to Supercomputers: Tap the Full Potential of Your CUDA Resources with andreas.schaefer@cs.fau.de Friedrich-Alexander-Universität Erlangen-Nürnberg GPU Technology Conference 2013, San José,

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction ICON for HD(CP) 2 High Definition Clouds and Precipitation for Advancing Climate Prediction High Definition Clouds and Precipitation for Advancing Climate Prediction ICON 2 years ago Parameterize shallow

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing

Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing Algorithm and Library Software Design Challenges for Tera, Peta, and Future Exascale Computing Bo Kågström Department of Computing Science and High Performance Computing Center North (HPC2N) Umeå University,

More information

Shallow Water Equation simulation with Sparse Grid Combination Technique

Shallow Water Equation simulation with Sparse Grid Combination Technique GUIDED RESEARCH Shallow Water Equation simulation with Sparse Grid Combination Technique Author: Jeeta Ann Chacko Examiner: Prof. Dr. Hans-Joachim Bungartz Advisors: Ao Mo-Hellenbrand April 21, 2017 Fakultät

More information

International Supercomputing Conference 2009

International Supercomputing Conference 2009 International Supercomputing Conference 2009 Implementation of a Lattice-Boltzmann-Method for Numerical Fluid Mechanics Using the nvidia CUDA Technology E. Riegel, T. Indinger, N.A. Adams Technische Universität

More information

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Natasha Flyer National Center for Atmospheric Research Boulder, CO Meshes vs. Mesh-free

More information

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Christian Schmitt, Moritz Schmid, Frank Hannig, Jürgen Teich, Sebastian Kuckuk, Harald Köstler Hardware/Software Co-Design, System

More information

High Performance Computing for PDE Some numerical aspects of Petascale Computing

High Performance Computing for PDE Some numerical aspects of Petascale Computing High Performance Computing for PDE Some numerical aspects of Petascale Computing S. Turek, D. Göddeke with support by: Chr. Becker, S. Buijssen, M. Grajewski, H. Wobker Institut für Angewandte Mathematik,

More information

Sustainability and Efficiency for Simulation Software in the Exascale Era

Sustainability and Efficiency for Simulation Software in the Exascale Era Sustainability and Efficiency for Simulation Software in the Exascale Era Dominik Thönnes, Ulrich Rüde, Nils Kohl Chair for System Simulation, University of Erlangen-Nürnberg March 09, 2018 SIAM Conference

More information

Network Bandwidth & Minimum Efficient Problem Size

Network Bandwidth & Minimum Efficient Problem Size Network Bandwidth & Minimum Efficient Problem Size Paul R. Woodward Laboratory for Computational Science & Engineering (LCSE), University of Minnesota April 21, 2004 Build 3 virtual computers with Intel

More information

High Performance Computing for PDE Towards Petascale Computing

High Performance Computing for PDE Towards Petascale Computing High Performance Computing for PDE Towards Petascale Computing S. Turek, D. Göddeke with support by: Chr. Becker, S. Buijssen, M. Grajewski, H. Wobker Institut für Angewandte Mathematik, Univ. Dortmund

More information

Adaptive Mesh Refinement in Titanium

Adaptive Mesh Refinement in Titanium Adaptive Mesh Refinement in Titanium http://seesar.lbl.gov/anag Lawrence Berkeley National Laboratory April 7, 2005 19 th IPDPS, April 7, 2005 1 Overview Motivations: Build the infrastructure in Titanium

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

GPU Cluster Computing for FEM

GPU Cluster Computing for FEM GPU Cluster Computing for FEM Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de GPU Computing

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #18 Distributed Computing UC Berkeley Sr Lecturer SOE Dan By the end of the decade, we re going to see computers that can compute one exaflop (recall kilo, mega,

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Simulation of moving Particles in 3D with the Lattice Boltzmann Method

Simulation of moving Particles in 3D with the Lattice Boltzmann Method Simulation of moving Particles in 3D with the Lattice Boltzmann Method, Nils Thürey, Christian Feichtinger, Hans-Joachim Schmid Chair for System Simulation University Erlangen/Nuremberg Chair for Particle

More information

Data Locality Optimizations for Iterative Numerical Algorithms and Cellular Automata on Hierarchical Memory Architectures

Data Locality Optimizations for Iterative Numerical Algorithms and Cellular Automata on Hierarchical Memory Architectures Data Locality Optimizations for Iterative Numerical Algorithms and Cellular Automata on Hierarchical Memory Architectures Datenlokalitätsoptimierungen für iterative numerische Algorithmen und zelluläre

More information

Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB)

Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB) Multicore-aware parallelization strategies for efficient temporal blocking (BMBF project: SKALB) G. Wellein, G. Hager, M. Wittmann, J. Habich, J. Treibig Department für Informatik H Services, Regionales

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

Efficient Algorithmic Approaches for Flow Simulations on Cartesian Grids

Efficient Algorithmic Approaches for Flow Simulations on Cartesian Grids Efficient Algorithmic Approaches for Flow Simulations on Cartesian Grids M. Bader, H.-J. Bungartz, B. Gatzhammer, M. Mehl, T. Neckel, T. Weinzierl TUM Department of Informatics Chair of Scientific Computing

More information

HPC and IT Issues Session Agenda. Deployment of Simulation (Trends and Issues Impacting IT) Mapping HPC to Performance (Scaling, Technology Advances)

HPC and IT Issues Session Agenda. Deployment of Simulation (Trends and Issues Impacting IT) Mapping HPC to Performance (Scaling, Technology Advances) HPC and IT Issues Session Agenda Deployment of Simulation (Trends and Issues Impacting IT) Discussion Mapping HPC to Performance (Scaling, Technology Advances) Discussion Optimizing IT for Remote Access

More information

Shallow Water Simulations on Graphics Hardware

Shallow Water Simulations on Graphics Hardware Shallow Water Simulations on Graphics Hardware Ph.D. Thesis Presentation 2014-06-27 Martin Lilleeng Sætra Outline Introduction Parallel Computing and the GPU Simulating Shallow Water Flow Topics of Thesis

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

High performance Computing and O&G Challenges

High performance Computing and O&G Challenges High performance Computing and O&G Challenges 2 Seismic exploration challenges High Performance Computing and O&G challenges Worldwide Context Seismic,sub-surface imaging Computing Power needs Accelerating

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #19 Distributed Computing UC Berkeley Sr Lecturer SOE Dan By the end of the decade, we re going to see computers that can compute one exaflop (recall kilo, mega,

More information

arxiv: v1 [cs.pf] 5 Dec 2011

arxiv: v1 [cs.pf] 5 Dec 2011 Performance engineering for the Lattice Boltzmann method on GPGPUs: Architectural requirements and performance results J. Habich a, C. Feichtinger b, H. Köstler b, G. Hager a, G. Wellein a,b a Erlangen

More information

Jülich Supercomputing Centre

Jülich Supercomputing Centre Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre Norbert Attig Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich (FZJ) Aug 26, 2009 DOAG Regionaltreffen NRW 2 Supercomputing at

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Practical Scientific Computing

Practical Scientific Computing Practical Scientific Computing Performance-optimized Programming Preliminary discussion: July 11, 2008 Dr. Ralf-Peter Mundani, mundani@tum.de Dipl.-Ing. Ioan Lucian Muntean, muntean@in.tum.de MSc. Csaba

More information

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems Smoothers Partial Differential Equations Disappointing convergence rates observed for stationary iterative methods are asymptotic Much better progress may be made initially before eventually settling into

More information

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Dipl.-Inform. Dominik Göddeke (dominik.goeddeke@math.uni-dortmund.de) Mathematics III: Applied Mathematics and Numerics

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

A Fast GPU-based Method for Image Segmentation

A Fast GPU-based Method for Image Segmentation A Fast GPU-based Method for Image Segmentation H. Köstler 1, O. Röhrle 2 1 Lehrstuhl für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg, Germany 2 Institut für Mechanik (Bauwesen), Lehrstuhl

More information

Cost-Effective Parallel Computational Electromagnetic Modeling

Cost-Effective Parallel Computational Electromagnetic Modeling Cost-Effective Parallel Computational Electromagnetic Modeling, Tom Cwik {Daniel.S.Katz, cwik}@jpl.nasa.gov Beowulf System at PL (Hyglac) l 16 Pentium Pro PCs, each with 2.5 Gbyte disk, 128 Mbyte memory,

More information

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Rolf Rabenseifner rabenseifner@hlrs.de Gerhard Wellein gerhard.wellein@rrze.uni-erlangen.de University of Stuttgart

More information

Virtual EM Inc. Ann Arbor, Michigan, USA

Virtual EM Inc. Ann Arbor, Michigan, USA Functional Description of the Architecture of a Special Purpose Processor for Orders of Magnitude Reduction in Run Time in Computational Electromagnetics Tayfun Özdemir Virtual EM Inc. Ann Arbor, Michigan,

More information

LARGE-SCALE FREE-SURFACE FLOW SIMULATION USING LATTICE BOLTZMANN METHOD ON MULTI-GPU CLUSTERS

LARGE-SCALE FREE-SURFACE FLOW SIMULATION USING LATTICE BOLTZMANN METHOD ON MULTI-GPU CLUSTERS ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids

Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids Challenges in Fully Generating Multigrid Solvers for the Simulation of non-newtonian Fluids Sebastian Kuckuk FAU Erlangen-Nürnberg 18.01.2016 HiStencils 2016, Prague, Czech Republic Outline Outline Scope

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

Why Supercomputing Partnerships Matter for CFD Simulations

Why Supercomputing Partnerships Matter for CFD Simulations Why Supercomputing Partnerships Matter for CFD Simulations Wim Slagter, PhD Director, HPC & Cloud Alliances ANSYS, Inc. 1 2017 ANSYS, Inc. May 9, 2017 ANSYS is Fluids FOCUSED This is all we do. Leading

More information

Auto-tuning Multigrid with PetaBricks

Auto-tuning Multigrid with PetaBricks Auto-tuning with PetaBricks Cy Chan Joint Work with: Jason Ansel Yee Lok Wong Saman Amarasinghe Alan Edelman Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information