9/5/15. n Class objectives, goals. n Why Fine grain parallelism? n Equational Programming (intro) Sanjay Rajopadhye Colorado State University

Size: px
Start display at page:

Download "9/5/15. n Class objectives, goals. n Why Fine grain parallelism? n Equational Programming (intro) Sanjay Rajopadhye Colorado State University"

Transcription

1 Sanjay Rajopadhye Colorado State University n Class objectives, goals n Why Fine grain parallelism? n Equational Programming (intro) 2 1

2 n Every problem is underspecified n Questions are ill posed n Finding the right question is half the work n Communicate: write, write, write n Question everything 3 n Introductions: n Name n Year in school (e.g., MS in ECE, 2 nd year) n Parallelism experience (SW/HW) n Interesting fact 4 2

3 n Course website: n Very little on RamCT/Canvas (only for grades) n Course related cs560@cs.colostate.edu n How to succeed n Check the schedule tab/page every day frequent updates n Spend about 1-2 hrs every day outside class n General rule 4 credits = 8-12 hrs outside 5 n Short term Become macho paralle programmer: write heroically tuned codes. n Medium term Do it systematically: tuning for accelerator of the day e.g., Kepler k40 vs Xeon Phi: learn principles, not skills n Long term Do it automatically: Learn the foundations of automatic compilation. Focus on a regular subset of programs n Polyhedral Equational Model 6 3

4 n Big picture n Polyhedral Equations as programs: I m loath to write C n Equations vs (conventional) loop programs n Equations-to-code (compiling equations) n Schedule n (processor) allocation n (memory) allocation n But what about parallelism? 7 8 assignments (basic + advanced) + term project n Parallel program performance (2) n Mathematical foundations: polyhedra, affine functions, and operations (2) n Analysis: scheduling & allocation (2) n Equational programming: Alpha/AlphaZ (1) n Alpha analysis/transformation (1) n Code generation/tiling (2) 8 4

5 n Assignments (30%) n Midterms in class+take home (15+20=35%) n Final project (30% = ) n Proposal n Advancement report n Final report n Quality of work n Final poster n Participation/Discussion/Quizzes (5%) 9 n What are polyhedra? n Why are they useful/important n What is the polyhedral model? 10 5

6 n What is a model? n A mathematical/computational/mechanical/ abstraction of some other (physical) entity n Objects in the model must emulate the natural operations of the modeled entities semantics 11 From Feautrier s keynote at LCPC 2009 Introduction Prehistory State of the Art What Next? Dependences Karp, Miller, Winograd Irigoin, PF 1988, Pugh, Systolic Array Design Scheduling Quinton, Robert,, 1989 Quinton, Rajopadhye, Fortes,, PF Rajopadhye, 1987 Rau Placement PF, Pingali, 1994 H. T. Kung, 1978 Cousot, Halbwachs 1977 The Polytope Model Pugh, 1991 LC Lu, 1991 Code Generation Irigoin, Lengauer, Rajopadhye Bastoul, PF, Boulet, Tiling Irigoin, JL Xue,, 1988 Bernstein 1966 L. Lamport, 1974 Automatic Parallelization Dependence tests, Banerjee, 1976 Kuck Allen, Kennedy, 1987 Lam Irigoin Array Shrinking PF, Rajopadhye, Darte, 2005 Locality Wolfe + Lam, 1991 Bastoul, 2003 HLS Quinton, Risset, /

7 n Physical entity: programs/computations n The Polyhedral Model is a very high level intermediate representation (IR) of regular computations n Polyhedral equational model: real=abstract n Amenable to: n Mathematical static analysis n Transformation within model: closure n Transformation outside model: (tiled) code generation 13 n Class objectives, goals n Why Fine grain parallelism? n Equational Programming (intro) 14 7

8 n Parallel Programming is hard n End of the free lunch [Sut05] n Arrival of manycores signals the end of La-Z-Boy Programming [Pat06] Becoming a parallel programming expert will get you a good job But your skills may become obsolete new machines, new languages, Parallelism must return to La-Z-Boy programming [Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency, in Software. Dr. Dobb's Journal, vol. 30, no. 3, [Pat06] David Patterson, in keynote talk at the International Workshop on Languages and Compilers For Parallel Computers LCPC 2006, New Orleans, LA. 15 n Moore s law of density still lives on n How to use the Si resources in the face of constraints n Dark silicon exponentially increasing fraction of the chip cannot be turned on n (One) proposed solution: accelerators n Specialized (domain specific) circuits n Energy efficiently do the computation n Powered off otherwise 16 8

9 n Class objectives, goals n Why Fine grain parallelism? n Equational Programming (intro) 17 n Many resources on the web (NVIDIA webinars) n Coalescing (HW1a) n Challenge question: Achieve maximum bandwidth, with fewest threads-per-block n For a strided-by-block access pattern. n Arithmetic peak: warps and virtualization n Bank conflicts in shared memory 18 9

10 n Oxford CUDA conf (CUDA webinar online) n Identifying Performance Limiters, Micikevicius NVIDIA/UCF (CUDA webinar) n Roofline for Fast Math Sam Williams, LBL 19 n Wiki page for Pascal s Triangle n and also a non-standard way to compute Fibonacci numbers 20 10

Sanjay Rajopadhye Colorado State University

Sanjay Rajopadhye Colorado State University Sanjay Rajopadhye Colorado State University n Class objectives, goals, introduction n CUDA performance tuning (wrap up) n Equational Programming (intro) 2 n Parallel Programming is hard n End of the free

More information

The Polytope Model: Past, Present, Future

The Polytope Model: Past, Present, Future The Polytope Model: Past, Present, Future Paul Feautrier ENS de Lyon Paul.Feautrier@ens-lyon.fr 8 octobre 2009 1 / 39 What is a Model? What is a Polytope? Basis of the Polytope Model Fundamental Algorithms

More information

Lecture 12: Executing Alpha

Lecture 12: Executing Alpha High-Performance Embedded Systems-on-a-Chip Lecture 12: Executing Alpha Sanjay Rajopadhye Computer Science, Colorado State University High-Performance Embedded Systems-on-a-Chip p.1/10 Outline Operational

More information

A polyhedral loop transformation framework for parallelization and tuning

A polyhedral loop transformation framework for parallelization and tuning A polyhedral loop transformation framework for parallelization and tuning Ohio State University Uday Bondhugula, Muthu Baskaran, Albert Hartono, Sriram Krishnamoorthy, P. Sadayappan Argonne National Laboratory

More information

Review for Midterm 3/28/11. Administrative. Parts of Exam. Midterm Exam Monday, April 4. Midterm. Design Review. Final projects

Review for Midterm 3/28/11. Administrative. Parts of Exam. Midterm Exam Monday, April 4. Midterm. Design Review. Final projects Administrative Midterm - In class April 4, open notes - Review notes, readings and review lecture (before break) - Will post prior exams Design Review - Intermediate assessment of progress on project,

More information

Programming in CUDA. Malik M Khan

Programming in CUDA. Malik M Khan Programming in CUDA October 21, 2010 Malik M Khan Outline Reminder of CUDA Architecture Execution Model - Brief mention of control flow Heterogeneous Memory Hierarchy - Locality through data placement

More information

An Overview to. Polyhedral Model. Fangzhou Jiao

An Overview to. Polyhedral Model. Fangzhou Jiao An Overview to Polyhedral Model Fangzhou Jiao Polyhedral Model A framework for performing loop transformation Loop representation: using polytopes to achieve fine-grain representation of program Loop transformation:

More information

FADA : Fuzzy Array Dataflow Analysis

FADA : Fuzzy Array Dataflow Analysis FADA : Fuzzy Array Dataflow Analysis M. Belaoucha, D. Barthou, S. Touati 27/06/2008 Abstract This document explains the basis of fuzzy data dependence analysis (FADA) and its applications on code fragment

More information

Tiling: A Data Locality Optimizing Algorithm

Tiling: A Data Locality Optimizing Algorithm Tiling: A Data Locality Optimizing Algorithm Announcements Monday November 28th, Dr. Sanjay Rajopadhye is talking at BMAC Friday December 2nd, Dr. Sanjay Rajopadhye will be leading CS553 Last Monday Kelly

More information

CS 475: Parallel Programming Introduction

CS 475: Parallel Programming Introduction CS 475: Parallel Programming Introduction Wim Bohm, Sanjay Rajopadhye Colorado State University Fall 2014 Course Organization n Let s make a tour of the course website. n Main pages Home, front page. Syllabus.

More information

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni

CUDA Optimizations WS Intelligent Robotics Seminar. Universität Hamburg WS Intelligent Robotics Seminar Praveen Kulkarni CUDA Optimizations WS 2014-15 Intelligent Robotics Seminar 1 Table of content 1 Background information 2 Optimizations 3 Summary 2 Table of content 1 Background information 2 Optimizations 3 Summary 3

More information

Polyèdres et compilation

Polyèdres et compilation Polyèdres et compilation François Irigoin & Mehdi Amini & Corinne Ancourt & Fabien Coelho & Béatrice Creusillet & Ronan Keryell MINES ParisTech - Centre de Recherche en Informatique 12 May 2011 François

More information

EE 7722 GPU Microarchitecture. Offered by: Prerequisites By Topic: Text EE 7722 GPU Microarchitecture. URL:

EE 7722 GPU Microarchitecture. Offered by: Prerequisites By Topic: Text EE 7722 GPU Microarchitecture. URL: 00 1 EE 7722 GPU Microarchitecture 00 1 EE 7722 GPU Microarchitecture URL: http://www.ece.lsu.edu/gp/. Offered by: David M. Koppelman 345 ERAD, 578-5482, koppel@ece.lsu.edu, http://www.ece.lsu.edu/koppel

More information

Administrivia. Talks and other opportunities: Expect HW on functions in ASM (printing binary trees) soon

Administrivia. Talks and other opportunities: Expect HW on functions in ASM (printing binary trees) soon Threads 2/9/18 Administrivia Talks and other opportunities: Game designer and developer talk: Wed noon, Alumni Hall Room 302 (extra credit!) Networking, resume, interview: Wed 4pm, Alumni Hall Room 219

More information

2/2/11. Administrative. L6: Memory Hierarchy Optimization IV, Bandwidth Optimization. Project Proposal (due 3/9) Faculty Project Suggestions

2/2/11. Administrative. L6: Memory Hierarchy Optimization IV, Bandwidth Optimization. Project Proposal (due 3/9) Faculty Project Suggestions Administrative L6: Memory Hierarchy Optimization IV, Bandwidth Optimization Next assignment available Goals of assignment: simple memory hierarchy management block-thread decomposition tradeoff Due Tuesday,

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 15, 2010 888.11, Class #4 Introduction: Polyhedral

More information

Profiling of Data-Parallel Processors

Profiling of Data-Parallel Processors Profiling of Data-Parallel Processors Daniel Kruck 09/02/2014 09/02/2014 Profiling Daniel Kruck 1 / 41 Outline 1 Motivation 2 Background - GPUs 3 Profiler NVIDIA Tools Lynx 4 Optimizations 5 Conclusion

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today Graduate Students and Super Undergraduates... CS 553: Algorithmic Language Compilers (PLDI) look for other sources of information make decisions, because all research problems are under-specified evaluate

More information

A Compiler Framework for Optimization of Affine Loop Nests for General Purpose Computations on GPUs

A Compiler Framework for Optimization of Affine Loop Nests for General Purpose Computations on GPUs A Compiler Framework for Optimization of Affine Loop Nests for General Purpose Computations on GPUs Muthu Manikandan Baskaran 1 Uday Bondhugula 1 Sriram Krishnamoorthy 1 J. Ramanujam 2 Atanas Rountev 1

More information

Polynomial Homotopy Continuation on Graphics Processing Units

Polynomial Homotopy Continuation on Graphics Processing Units Polynomial Homotopy Continuation on Graphics Processing Units Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science

More information

Parallelism. CS6787 Lecture 8 Fall 2017

Parallelism. CS6787 Lecture 8 Fall 2017 Parallelism CS6787 Lecture 8 Fall 2017 So far We ve been talking about algorithms We ve been talking about ways to optimize their parameters But we haven t talked about the underlying hardware How does

More information

Figure 1. Simple example showing the necessity of splitting

Figure 1. Simple example showing the necessity of splitting On Index Set Splitting Martin Griebl FMI, Universität Passau 94030 Passau, Germany griebl@fmi.uni-passau.de Paul Feautrier PRiSM, Université de Versailles 45 avenue des États-Unis 78035 Versailles, France

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Reductions and Low-Level Performance Considerations CME343 / ME May David Tarjan NVIDIA Research

Reductions and Low-Level Performance Considerations CME343 / ME May David Tarjan NVIDIA Research Reductions and Low-Level Performance Considerations CME343 / ME339 27 May 2011 David Tarjan [dtarjan@nvidia.com] NVIDIA Research REDUCTIONS Reduction! Reduce vector to a single value! Via an associative

More information

Symbolic Evaluation of Sums for Parallelising Compilers

Symbolic Evaluation of Sums for Parallelising Compilers Symbolic Evaluation of Sums for Parallelising Compilers Rizos Sakellariou Department of Computer Science University of Manchester Oxford Road Manchester M13 9PL United Kingdom e-mail: rizos@csmanacuk Keywords:

More information

CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer

CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer Outline We ll be focussing on optimizing global memory throughput on Fermi-class GPUs

More information

L17: CUDA, cont. 11/3/10. Final Project Purpose: October 28, Next Wednesday, November 3. Example Projects

L17: CUDA, cont. 11/3/10. Final Project Purpose: October 28, Next Wednesday, November 3. Example Projects L17: CUDA, cont. October 28, 2010 Final Project Purpose: - A chance to dig in deeper into a parallel programming model and explore concepts. - Present results to work on communication of technical ideas

More information

How HPC Hardware and Software are Evolving Towards Exascale

How HPC Hardware and Software are Evolving Towards Exascale How HPC Hardware and Software are Evolving Towards Exascale Kathy Yelick Associate Laboratory Director and NERSC Director Lawrence Berkeley National Laboratory EECS Professor, UC Berkeley NERSC Overview

More information

Polyhedral Operations. Algorithms needed for automation. Logistics

Polyhedral Operations. Algorithms needed for automation. Logistics Polyhedral Operations Logistics Intermediate reports late deadline is Friday March 30 at midnight HW6 (posted) and HW7 (posted) due April 5 th Tuesday April 4 th, help session during class with Manaf,

More information

GpuWrapper: A Portable API for Heterogeneous Programming at CGG

GpuWrapper: A Portable API for Heterogeneous Programming at CGG GpuWrapper: A Portable API for Heterogeneous Programming at CGG Victor Arslan, Jean-Yves Blanc, Gina Sitaraman, Marc Tchiboukdjian, Guillaume Thomas-Collignon March 2 nd, 2016 GpuWrapper: Objectives &

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

CUB. collective software primitives. Duane Merrill. NVIDIA Research

CUB. collective software primitives. Duane Merrill. NVIDIA Research CUB collective software primitives Duane Merrill NVIDIA Research What is CUB?. A design model for collective primitives How to make reusable SIMT software constructs. A library of collective primitives

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents MATHEMATICS 800 FUNDAMENTALS COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 1 UNIT 2: MODELING PROBLEMS IN INTEGERS... 2 UNIT

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

Improving Performance of Machine Learning Workloads

Improving Performance of Machine Learning Workloads Improving Performance of Machine Learning Workloads Dong Li Parallel Architecture, System, and Algorithm Lab Electrical Engineering and Computer Science School of Engineering University of California,

More information

L14: CUDA, cont. Execution Model and Memory Hierarchy"

L14: CUDA, cont. Execution Model and Memory Hierarchy Programming Assignment 3, Due 11:59PM Nov. 7 L14: CUDA, cont. Execution Model and Hierarchy" October 27, 2011! Purpose: - Synthesize the concepts you have learned so far - Data parallelism, locality and

More information

LooPo: Automatic Loop Parallelization

LooPo: Automatic Loop Parallelization LooPo: Automatic Loop Parallelization Michael Claßen Fakultät für Informatik und Mathematik Düsseldorf, November 27 th 2008 Model-Based Loop Transformations model-based approach: map source code to an

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

Overview of the ECE Computer Software Curriculum. David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University

Overview of the ECE Computer Software Curriculum. David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University Overview of the ECE Computer Software Curriculum David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University The Fundamental Idea of Abstraction Human beings Applications Software systems

More information

Lecture 1: CS/ECE 3810 Introduction

Lecture 1: CS/ECE 3810 Introduction Lecture 1: CS/ECE 3810 Introduction Today s topics: Why computer organization is important Logistics Modern trends 1 Why Computer Organization 2 Image credits: uber, extremetech, anandtech Why Computer

More information

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten

GPU Computing: Development and Analysis. Part 1. Anton Wijs Muhammad Osama. Marieke Huisman Sebastiaan Joosten GPU Computing: Development and Analysis Part 1 Anton Wijs Muhammad Osama Marieke Huisman Sebastiaan Joosten NLeSC GPU Course Rob van Nieuwpoort & Ben van Werkhoven Who are we? Anton Wijs Assistant professor,

More information

EE282 Computer Architecture. Lecture 1: What is Computer Architecture?

EE282 Computer Architecture. Lecture 1: What is Computer Architecture? EE282 Computer Architecture Lecture : What is Computer Architecture? September 27, 200 Marc Tremblay Computer Systems Laboratory Stanford University marctrem@csl.stanford.edu Goals Understand how computer

More information

Multi-core Programming - Introduction

Multi-core Programming - Introduction Multi-core Programming - Introduction Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Di Zhao Ohio State University MVAPICH User Group (MUG) Meeting, August , Columbus Ohio

Di Zhao Ohio State University MVAPICH User Group (MUG) Meeting, August , Columbus Ohio Di Zhao zhao.1029@osu.edu Ohio State University MVAPICH User Group (MUG) Meeting, August 26-27 2013, Columbus Ohio Nvidia Kepler K20X Intel Xeon Phi 7120 Launch Date November 2012 Q2 2013 Processor Per-processor

More information

UMIACS-TR December, CS-TR-3192 Revised April, William Pugh. Dept. of Computer Science. Univ. of Maryland, College Park, MD 20742

UMIACS-TR December, CS-TR-3192 Revised April, William Pugh. Dept. of Computer Science. Univ. of Maryland, College Park, MD 20742 UMIACS-TR-93-133 December, 1992 CS-TR-3192 Revised April, 1993 Denitions of Dependence Distance William Pugh Institute for Advanced Computer Studies Dept. of Computer Science Univ. of Maryland, College

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

378: Machine Organization and Assembly Language

378: Machine Organization and Assembly Language 378: Machine Organization and Assembly Language Spring 2010 Luis Ceze Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins 1 What is computer architecture about? Computer architecture is the

More information

Lecture 11: Alpha (contd)

Lecture 11: Alpha (contd) High-Performance Embedded Systems-on-a-Chip Lecture 11: Alpha (contd) Sanjay Rajopadhye Computer Science, Colorado State University High-Performance Embedded Systems-on-a-Chip p1/14 Outline Other Transformations:

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Efficiency and Programmability: Enablers for ExaScale Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Scientific Discovery and Business Analytics Driving an Insatiable

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

2. Mathematical Notation Our mathematical notation follows Dijkstra [5]. Quantication over a dummy variable x is written (Q x : R:x : P:x). Q is the q

2. Mathematical Notation Our mathematical notation follows Dijkstra [5]. Quantication over a dummy variable x is written (Q x : R:x : P:x). Q is the q Parallel Processing Letters c World Scientic Publishing Company ON THE SPACE-TIME MAPPING OF WHILE-LOOPS MARTIN GRIEBL and CHRISTIAN LENGAUER Fakultat fur Mathematik und Informatik Universitat Passau D{94030

More information

CS516 Programming Languages and Compilers II

CS516 Programming Languages and Compilers II CS516 Programming Languages and Compilers II Zheng Zhang Spring 2015 Jan 22 Overview and GPU Programming I Rutgers University CS516 Course Information Staff Instructor: zheng zhang (eddy.zhengzhang@cs.rutgers.edu)

More information

Dynamic Accommodation of Performance, Power, and Reliability Tradeoffs

Dynamic Accommodation of Performance, Power, and Reliability Tradeoffs Dynamic Accommodation of Performance, Power, and Reliability Tradeoffs Special ACK to: Vivek Sarkar (co-pi) & team, Rice Kath Knobe, Intel U.S. Dept. of Defense Intel Labs Fifth Annual Concurrent Collections

More information

The Future of High Performance Computing

The Future of High Performance Computing The Future of High Performance Computing Randal E. Bryant Carnegie Mellon University http://www.cs.cmu.edu/~bryant Comparing Two Large-Scale Systems Oakridge Titan Google Data Center 2 Monolithic supercomputer

More information

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction Francesco Rossi University of Bologna and INFN * Using this terminology since you ve already heard of SIMD and SPMD at this school

More information

High-Level Synthesis of Loops Using the Polyhedral Model

High-Level Synthesis of Loops Using the Polyhedral Model Chapter 12 High-Level Synthesis of Loops Using the Polyhedral Model The MMAlpha Software Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy Risset Abstract High-level synthesis (HLS) of loops

More information

This image cannot currently be displayed. Course Catalog. Pre-algebra Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Pre-algebra Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Pre-algebra 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 1 UNIT 2: MODELING PROBLEMS IN INTEGERS...

More information

CUDA OPTIMIZATION TIPS, TRICKS AND TECHNIQUES. Stephen Jones, GTC 2017

CUDA OPTIMIZATION TIPS, TRICKS AND TECHNIQUES. Stephen Jones, GTC 2017 CUDA OPTIMIZATION TIPS, TRICKS AND TECHNIQUES Stephen Jones, GTC 2017 The art of doing more with less 2 Performance RULE #1: DON T TRY TOO HARD Peak Performance Time 3 Unrealistic Effort/Reward Performance

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

Affine Loop Optimization using Modulo Unrolling in CHAPEL

Affine Loop Optimization using Modulo Unrolling in CHAPEL Affine Loop Optimization using Modulo Unrolling in CHAPEL Aroon Sharma, Joshua Koehler, Rajeev Barua LTS POC: Michael Ferguson 2 Overall Goal Improve the runtime of certain types of parallel computers

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Automatic Parallelization of Loop Programs for Distributed Memory Architectures

Automatic Parallelization of Loop Programs for Distributed Memory Architectures Fakultät für Mathematik und Informatik Habilitation Automatic Parallelization of Loop Programs for Distributed Memory Architectures Author: Martin Griebl 2nd June 2004 2 Abstract Parallel computers, especially

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

Lecture 1: Introduction and Basics

Lecture 1: Introduction and Basics CS 515 Programming Language and Compilers I Lecture 1: Introduction and Basics Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/5/2017 Class Information Instructor: Zheng (Eddy) Zhang Email: eddyzhengzhang@gmailcom

More information

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards By Allan P. Engsig-Karup, Morten Gorm Madsen and Stefan L. Glimberg DTU Informatics Workshop

More information

Topics on Compilers

Topics on Compilers 4541.775 Topics on Compilers Spring 2011 Syllabus Instructor Bernhard Egger bernhard@snu.ac.kr Office Hrs 301 동 413 호 on Tuesdays, Thursdays 09:30 11:30 a.m. Lecture 302 동 106 호 on Mondays, Wednesdays

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Convolution Soup: A case study in CUDA optimization The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Optimization GPUs are very fast BUT Naïve programming can result in disappointing performance

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Shared Memory. Table of Contents. Shared Memory Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Shared Memory.

Shared Memory. Table of Contents. Shared Memory Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Shared Memory. Table of Contents Shared Memory Learning CUDA to Solve Scientific Problems. 1 Objectives Miguel Cárdenas Montes Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es

More information

Manycore Processors. Manycore Chip: A chip having many small CPUs, typically statically scheduled and 2-way superscalar or scalar.

Manycore Processors. Manycore Chip: A chip having many small CPUs, typically statically scheduled and 2-way superscalar or scalar. phi 1 Manycore Processors phi 1 Definition Manycore Chip: A chip having many small CPUs, typically statically scheduled and 2-way superscalar or scalar. Manycore Accelerator: [Definition only for this

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs

A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs Muthu Manikandan Baskaran Department of Computer Science and Engg. The Ohio State University baskaran@cse.ohiostate.edu J. Ramanujam

More information

Making Performance Understandable: Towards a Standard for Performance Counters on Manycore Architectures

Making Performance Understandable: Towards a Standard for Performance Counters on Manycore Architectures Parallel Hardware Parallel Applications IT industry (Silicon Valley) Parallel Software Users Making Performance Understandable: Towards a Standard for Performance Counters on Manycore Architectures Sarah

More information

CS420/CSE 402/ECE 492. Introduction to Parallel Programming for Scientists and Engineers. Spring 2006

CS420/CSE 402/ECE 492. Introduction to Parallel Programming for Scientists and Engineers. Spring 2006 CS420/CSE 402/ECE 492 Introduction to Parallel Programming for Scientists and Engineers Spring 2006 1 of 28 Additional Foils 0.i: Course organization 2 of 28 Instructor: David Padua. 4227 SC padua@uiuc.edu

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Advanced Compiler Construction

Advanced Compiler Construction Advanced Compiler Construction Qing Yi class web site: www.cs.utsa.edu/~qingyi/cs6363 cs6363 1 A little about myself Qing Yi Ph.D. Rice University, USA. Assistant Professor, Department of Computer Science

More information

Name card info (inside)

Name card info (inside) CS 475: Parallel Programming Introduction Sanjay Rajopadhye (with updates by Wim Bohm, Cathie Olschanowski) Colorado State University Fall 2016 Name card info (inside) n Name: Sanjay Rajopadhye n Pronunciation

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

HIGLEY UNIFIED SCHOOL DISTRICT 2016/2017 INSTRUCTIONAL ALIGNMENT

HIGLEY UNIFIED SCHOOL DISTRICT 2016/2017 INSTRUCTIONAL ALIGNMENT HIGLEY UNIFIED SCHOOL DISTRICT 2016/2017 INSTRUCTIONAL ALIGNMENT Third Grade Quarter 4 Unit 10: Geometry and Measurement Word Problems Approximately 40 Days Begin around March 27 th This 40-day final unit

More information

CS 31: Intro to Systems Threading & Parallel Applications. Kevin Webb Swarthmore College November 27, 2018

CS 31: Intro to Systems Threading & Parallel Applications. Kevin Webb Swarthmore College November 27, 2018 CS 31: Intro to Systems Threading & Parallel Applications Kevin Webb Swarthmore College November 27, 2018 Reading Quiz Making Programs Run Faster We all like how fast computers are In the old days (1980

More information

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 04 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for

More information

OpenCL: History & Future. November 20, 2017

OpenCL: History & Future. November 20, 2017 Mitglied der Helmholtz-Gemeinschaft OpenCL: History & Future November 20, 2017 OpenCL Portable Heterogeneous Computing 2 APIs and 2 kernel languages C Platform Layer API OpenCL C and C++ kernel language

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs AlgoPARC Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs 32nd ACM International Conference on Supercomputing June 17, 2018 Ben Karsin 1 karsin@hawaii.edu Volker Weichert 2 weichert@cs.uni-frankfurt.de

More information

Dense Linear Algebra. HPC - Algorithms and Applications

Dense Linear Algebra. HPC - Algorithms and Applications Dense Linear Algebra HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 6 th 2017 Last Tutorial CUDA Architecture thread hierarchy:

More information

High-Performance Packet Classification on GPU

High-Performance Packet Classification on GPU High-Performance Packet Classification on GPU Shijie Zhou, Shreyas G. Singapura, and Viktor K. Prasanna Ming Hsieh Department of Electrical Engineering University of Southern California 1 Outline Introduction

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Introduction Goal: connecting multiple computers to get higher performance

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors:!

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

Overview of ROCCC 2.0

Overview of ROCCC 2.0 Overview of ROCCC 2.0 Walid Najjar and Jason Villarreal SUMMARY FPGAs have been shown to be powerful platforms for hardware code acceleration. However, their poor programmability is the main impediment

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

CUDA Memory Model. Monday, 21 February Some material David Kirk, NVIDIA and Wen-mei W. Hwu, (used with permission)

CUDA Memory Model. Monday, 21 February Some material David Kirk, NVIDIA and Wen-mei W. Hwu, (used with permission) CUDA Memory Model Some material David Kirk, NVIDIA and Wen-mei W. Hwu, 2007-2009 (used with permission) 1 G80 Implementation of CUDA Memories Each thread can: Grid Read/write per-thread registers Read/write

More information

Using Cache Models and Empirical Search in Automatic Tuning of Applications. Apan Qasem Ken Kennedy John Mellor-Crummey Rice University Houston, TX

Using Cache Models and Empirical Search in Automatic Tuning of Applications. Apan Qasem Ken Kennedy John Mellor-Crummey Rice University Houston, TX Using Cache Models and Empirical Search in Automatic Tuning of Applications Apan Qasem Ken Kennedy John Mellor-Crummey Rice University Houston, TX Outline Overview of Framework Fine grain control of transformations

More information

Supercomputing and Mass Market Desktops

Supercomputing and Mass Market Desktops Supercomputing and Mass Market Desktops John Manferdelli Microsoft Corporation This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

More information