Optimizing CNN Inference on CPUs

Size: px
Start display at page:

Download "Optimizing CNN Inference on CPUs"

Transcription

1 Optimizing CNN Inference on CPUs Yizhi Liu, Yao Wang, Yida Wang With others in AWS AI

2 Agenda Deep learning inference optimization Optimization on Intel CPUs Evaluation

3 Make DL inference easier and faster

4 Deep Learning Inference Model Marketplace Model Marketplace Deep Learning Compiler Inference Target Inference Target

5 Models and hardware targets are far away! Computation graph optimization [Tensor] operation optimization Machine code generation

6 TVM: end-to-end optimization stack

7 Computation Graph Optimization Represent high-level deep learning computations Pruning Pre-compute Memory plan Operation fusion Data layout transform

8 Operation Optimization Challenges

9 Solution: separating compute definition and scheduling Compute definition C = tvm.compute((m, n), lambda i, j: tvm.sum(a[i, k] * B[k, j], axis=k)) Compute scheduling s = tvm.create_schedule(c.op) xo, yo, xi, yi = s[c].tile(c.op.axis[0], C.op.axis[1], bn, bn) ko, ki = s[c].split(k, factor=4) s[c].reorder(ko, xi, ki, yi) s[c].unroll(ki) s[c].cache_read(...) S[C].cache_write(...) s[c].vectorize(yi) s[c].parallel(xo)...

10 Machine code generation LLVM OpenCL CUDA x86 AMD GPU ARM CPU ARM GPU Intel Graphics Nvidia GPU

11 Model in, deployable module out modul e = runt i me. creat e(graph, l i b, t vm. gpu( 0)) modul e. set _i nput ( **params) modul e. run(dat a=dat a_array) out put = t vm. nd. empt y(out _shape, ct x=t vm. gpu(0)) modul e. get _out put ( 0, out put ) import tvm import nnvm.frontend import nnvm.compiler graph, params = nnvm.frontend.from_mxnet(mx_resnet50) graph, lib, params = nnvm.compiler.build(graph, target) input Deployable Module prediction tabby, tabby cat On languages and platforms you choose

12 Optimization on CPUs

13 Intel Xeon Platinum 8000-series CPUs (Skylake) Multi-cores E.g., EC2 c5.9xlarge: 1 processor with 18 cores. AVX-512 supported 512-bit width registers (ZMM) vfmadd231ps -1664(%rax,%r13){1to16}, %zmm0, %zmm1

14 Optimizing CNN inference 0. Leverage the hardware-independent graph-level optimizations Fusion Precomputing Pruning 1. CONV operation optimization 2. Graph-level layout optimization 3. Optimization scheme search

15 in_height kernel_height out_height CONV optimization Data layout is important! conv = tvm.compute(oshape, lambda n, oc, oh, ow: tvm.sum( data[n, ic, oh*stride+kh, ow*stride+kw] * kernel[oc, ic, kh, kw], axis=[ic, kh, kw]), ) NCHW -> NHWC NCHW -> NCHW[x]c OIHW-> OIHW[x]i[y]o in_channel in_width for (n, 0, N): for (oc, 0, OC): for (oh, 0, OH): for (ow, 0, OW): Out[n, oc, oh, ow] = 0 // init Out for (ic, 0, IC): for (kh, 0, KH): for (kw, 0, KW): // Out += In * Kernel kernel_width out_channel (# of kernel) out_width

16 in_height kernel_height out_height CONV optimization Utilize the AVX-512 ISA well (broadcast) Load input to DRAM; Load kernels to ZMM; // up to 16 float32 vfmadd input, kernel, output Store output back to DRAM in_channel in_width outputs inputs + kernels kernel_width ZMM_0 Load 31 inputs to DRAM; Load kernels to ZMM; vfmadd input_1, kernel, output_1 vfmadd input_2, kernel, output_2 vfmadd input_31, kernel, output_31 Store output_{1 31} back to DRAM ZMM_1 - ZMM_{ow_inner} DRAM vectorized FMA out_channel (# of kernel) ow_inner out_width

17 CONV optimization Use a customized thread pool Lock-free queue Thread-binding to physical cores Cache line padding

18 Graph-level layout optimization Undef FLATTEN NCHW AlterOpLayout Undef FLATTEN NCHW NCHW16c LayoutTransform LayoutTransform for parameters can be pre-computed during compile time. CONV OIHW Kernel CONV_NCHW16c OIHW16i16o LayoutTransform OIHW Kernel NCHW NCHW16c RELU NCHW POOLING RELU NCHW16c POOLING NCHW BATCH_NORM C Mean / Variance optimized layout NCHW16c BATCH_NORM C16c LayoutTransform C Mean / Variance NCHW NCHW16c CONV OIHW Kernel CONV_NCHW16c OIHW16i16o LayoutTransform OIHW Kernel NCHW NCHW16c Data Data NCHW LayoutTransform

19 Operator Local Search C H W For operators in a graph, different input sizes lead to various workloads. In local search, we parameterize the schedule for each workload and search for the optimal parameter combinations. Reference: Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin and Arvind Krishnamurthy Learning to optimize tensor programs. arxiv: [cs.lg]

20 Graph Global Search Layout Transformation A layout transformation may be required between two workloads with different layouts.

21 Evaluations

22 End-to-end results Batch size = 1 Baseline: MKLDNN, 18-core Skylake MXNet-MKLDNN TVM-compiled Time (ms) x 1.8x 1.2x 2.1x 1.5x 1.5x 1.7x ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-19 MobileNet 1.2x

23 Scalability ResNet-152 VGG-19 MobileNet

24 Conclusions Industry needs an open standard compiler for DL AWS working on the TVM stack Coverages main frameworks and hardware targets Gains performance through Graph and Tensor co-optimization Separation of hardware-specific schedules

25 Contact us if you re interested in trying out TVM with your models! Thank you! Q & A offline

Deep Learning Compiler

Deep Learning Compiler Deep Learning Compiler AWS AI Acknowledgement Amazon Sagemaker Neo Enables developers to train machine learning models once and run them anywhere in the cloud and at the edge Hardware targets Intel CPU,

More information

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning TVM: An Automated End-to-End Optimizing Compiler for Deep Learning Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos

More information

End to End Optimization Stack for Deep Learning

End to End Optimization Stack for Deep Learning End to End Optimization Stack for Deep Learning Presenter: Tianqi Chen Paul G. Allen School of Computer Science & Engineering University of Washington Collaborators University of Washington AWS AI Team

More information

Automatic Code Generation TVM Stack

Automatic Code Generation TVM Stack Automatic Code Generation TVM Stack CSE 599W Spring TVM stack is an active project by saml.cs.washington.edu and many partners in the open source community The Gap between Framework and Hardware Frameworks

More information

TVM Stack Overview. Tianqi Chen

TVM Stack Overview. Tianqi Chen TVM Stack Overview Tianqi Chen Beginning of TVM Story Acclerator Beginning of TVM Story Acclerator Beginning of TVM Story Beginning of TVM Story Acclerator // Pseudo-code for convolution program for the

More information

AutoTVM & Device Fleet

AutoTVM & Device Fleet AutoTVM & Device Fleet ` Learning to Optimize Tensor Programs Frameworks High-level data flow graph and optimizations Hardware Learning to Optimize Tensor Programs Frameworks High-level data flow graph

More information

Optimizing CNN Model Inference on CPUs

Optimizing CNN Model Inference on CPUs Optimizing CNN Model Inference on CPUs arxiv:1809.02697v1 [cs.dc] 7 Sep 2018 Abstract Yizhi Liu*, Yao Wang*, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang Amazon Web Services East Palo Alto, CA, USA {yizhiliu,wayao,yuruofei,mli,vinarm,wangyida}@amazon.com

More information

HKG OpenCL Support by NNVM & TVM. Jammy Zhou - Linaro

HKG OpenCL Support by NNVM & TVM. Jammy Zhou - Linaro HKG18-417 OpenCL Support by NNVM & TVM Jammy Zhou - Linaro Agenda OpenCL Overview OpenCL in NNVM & TVM Current Status OpenCL Introduction Open Computing Language Open standard maintained by Khronos with

More information

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning TVM: An Automated End-to-End Optimizing Compiler for Deep Learning Tianqi Chen and Thierry Moreau, University of Washington; Ziheng Jiang, University of Washington, AWS; Lianmin Zheng, Shanghai Jiao Tong

More information

VTA: Open & Flexible DL Acceleration. Thierry Moreau TVM Conference, Dec 12th 2018

VTA: Open & Flexible DL Acceleration. Thierry Moreau TVM Conference, Dec 12th 2018 VTA: Open & Flexible DL Acceleration Thierry Moreau TVM Conference, Dec 12th 2018 TVM Stack High-Level Differentiable IR Tensor Expression IR LLVM CUDA Metal TVM Stack High-Level Differentiable IR Tensor

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

Xilinx ML Suite Overview

Xilinx ML Suite Overview Xilinx ML Suite Overview Yao Fu System Architect Data Center Acceleration Xilinx Accelerated Computing Workloads Machine Learning Inference Image classification and object detection Video Streaming Frame

More information

arxiv: v2 [cs.lg] 20 May 2018

arxiv: v2 [cs.lg] 20 May 2018 TVM: An Automated End-to-End Optimizing Compiler for Deep Learning Tianqi Chen 1, Thierry Moreau 1, Ziheng Jiang 2, Lianmin Zheng 3, Eddie Yan 1 Meghan Cowan 1, Haichen Shen 1, Leyuan Wang 4, Yuwei Hu

More information

Chapter 8: Convolutional Networks

Chapter 8: Convolutional Networks Chapter 8: Convolutional Networks Dietrich Klakow Spoken Language Systems Saarland University, Germany Dietrich.Klakow@LSV.Uni-Saarland.De Neural Networks Implementation and Application Introduction Source:

More information

Relay: a high level differentiable IR. Jared Roesch TVMConf December 12th, 2018

Relay: a high level differentiable IR. Jared Roesch TVMConf December 12th, 2018 Relay: a high level differentiable IR Jared Roesch TVMConf December 12th, 2018!1 This represents months of joint work with lots of great folks:!2 TVM Stack Optimization Relay High-Level Differentiable

More information

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017 DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE Dennis Lui August 2017 THE RISE OF GPU COMPUTING APPLICATIONS 10 7 10 6 GPU-Computing perf 1.5X per year 1000X by 2025 ALGORITHMS 10 5 1.1X

More information

Wu Zhiwen.

Wu Zhiwen. Wu Zhiwen zhiwen.wu@intel.com Agenda Background information OpenCV DNN module OpenCL acceleration Vulkan backend Sample 2 What is OpenCV? Open Source Compute Vision (OpenCV) library 2500+ Optimized algorithms

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder EFFICIENT INFERENCE WITH TENSORRT Han Vanholder AI INFERENCING IS EXPLODING 2 Trillion Messages Per Day On LinkedIn 500M Daily active users of iflytek 140 Billion Words Per Day Translated by Google 60

More information

Usable while performant: the challenges building. Soumith Chintala

Usable while performant: the challenges building. Soumith Chintala Usable while performant: the challenges building Soumith Chintala Problem Statement Deep Learning Workloads Problem Statement Deep Learning Workloads for epoch in range(max_epochs): for data, target in

More information

Arm s First-Generation Machine Learning Processor

Arm s First-Generation Machine Learning Processor Arm s First-Generation Machine Learning Processor Ian Bratt 2018 Arm Limited Introducing the Arm Machine Learning (ML) Processor Optimized ground-up architecture for machine learning processing Massive

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia System Challenge in Deep Learning

More information

Demystifying Deep Learning

Demystifying Deep Learning Demystifying Deep Learning Mandar Gujrathi Mandar.Gujrathi@mathworks.com.au 2015 The MathWorks, Inc. 1 2 Deep Learning Applications Voice assistants (speech to text) Teaching character to beat video game

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware

Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware Florian Tramèr (joint work with Dan Boneh) Stanford security lunch June 13 th Trusted execution of ML: 3 motivating

More information

Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware

Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware Florian Tramèr (joint work with Dan Boneh) Intel, Santa Clara August 30 th 2018 Trusted execution of ML: 3 motivating

More information

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters *Argonne National Lab +BU & USTC Presented by Martin Herbordt Work by Ahmed

More information

GPU Coder: Automatic CUDA and TensorRT code generation from MATLAB

GPU Coder: Automatic CUDA and TensorRT code generation from MATLAB GPU Coder: Automatic CUDA and TensorRT code generation from MATLAB Ram Kokku 2018 The MathWorks, Inc. 1 GPUs and CUDA programming faster Performance CUDA OpenCL C/C++ GPU Coder MATLAB Python Ease of programming

More information

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13 GPU FOR DEEP LEARNING chandlerz@nvidia.com 周国峰 Wuhan University 2017/10/13 Why Deep Learning Boost Today? Nvidia SDK for Deep Learning? Agenda CUDA 8.0 cudnn TensorRT (GIE) NCCL DIGITS 2 Why Deep Learning

More information

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA Inference Optimization Using TensorRT with Use Cases Jack Han / 한재근 Solutions Architect NVIDIA Search Image NLP Maps TensorRT 4 Adoption Use Cases Speech Video AI Inference is exploding 1 Billion Videos

More information

Demystifying Deep Learning

Demystifying Deep Learning Demystifying Deep Learning Let the computers do the hard work Jérémy Huard 2015 The MathWorks, Inc. 1 2 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Sarah Knepper Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Outline Motivation Problem statement and solutions Simple example Performance comparison 2 Motivation Partial differential equations

More information

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017 Deep Learning on Modern Architectures Keren Zhou 4/17/2017 HPC Software Stack Application Algorithm Data Layout CPU GPU MIC Others HPC Software Stack Deep Learning Algorithm Data Layout CPU GPU MIC Others

More information

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads Natalia Vassilieva, Sergey Serebryakov Deep learning ecosystem today Software Hardware 2 HPE s portfolio for deep learning Government,

More information

Deploying Deep Learning Networks to Embedded GPUs and CPUs

Deploying Deep Learning Networks to Embedded GPUs and CPUs Deploying Deep Learning Networks to Embedded GPUs and CPUs Rishu Gupta, PhD Senior Application Engineer, Computer Vision 2015 The MathWorks, Inc. 1 MATLAB Deep Learning Framework Access Data Design + Train

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

arxiv: v1 [cs.lg] 11 Jul 2018

arxiv: v1 [cs.lg] 11 Jul 2018 VTA: An Open Hardware-Software Stack for Deep Learning Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy Paul G. Allen School of Computer Science & Engineering,

More information

TENSORRT. RN _v01 January Release Notes

TENSORRT. RN _v01 January Release Notes TENSORRT RN-08624-030_v01 January 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter 1. 2. 3. 4. Overview...1 Release 3.0.2... 2 Release 3.0.1... 4 Release 2.1... 10 RN-08624-030_v01

More information

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer 2 100 倍以上速く 本当に可能ですか? 2 DOUGLAS ADAMS BABEL FISH Neural Machine Translation Unit 3 4 OVER 100X FASTER, IS IT REALLY POSSIBLE?

More information

Industrial-Strength High-Performance RISC-V Processors for Energy-Efficient Computing

Industrial-Strength High-Performance RISC-V Processors for Energy-Efficient Computing Industrial-Strength High-Performance RISC-V Processors for Energy-Efficient Computing Dave Ditzel dave@esperanto.ai President and CEO Esperanto Technologies, Inc. 7 th RISC-V Workshop November 28, 2017

More information

R for SQListas, a Continuation

R for SQListas, a Continuation 3-2 - 1-0: Classifying Digits with R R for SQListas, a Continuation R for SQListas: Now that we're in the tidyverse... what can we do now? Machine Learning MNIST - the Drosophila of Machine Learning (attributed

More information

Improving Performance of Machine Learning Workloads

Improving Performance of Machine Learning Workloads Improving Performance of Machine Learning Workloads Dong Li Parallel Architecture, System, and Algorithm Lab Electrical Engineering and Computer Science School of Engineering University of California,

More information

OpenCL Vectorising Features. Andreas Beckmann

OpenCL Vectorising Features. Andreas Beckmann Mitglied der Helmholtz-Gemeinschaft OpenCL Vectorising Features Andreas Beckmann Levels of Vectorisation vector units, SIMD devices width, instructions SMX, SP cores Cus, PEs vector operations within kernels

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

THE NVIDIA DEEP LEARNING ACCELERATOR

THE NVIDIA DEEP LEARNING ACCELERATOR THE NVIDIA DEEP LEARNING ACCELERATOR INTRODUCTION NVDLA NVIDIA Deep Learning Accelerator Developed as part of Xavier NVIDIA s SOC for autonomous driving applications Optimized for Convolutional Neural

More information

Scaling Distributed Machine Learning

Scaling Distributed Machine Learning Scaling Distributed Machine Learning with System and Algorithm Co-design Mu Li Thesis Defense CSD, CMU Feb 2nd, 2017 nx min w f i (w) Distributed systems i=1 Large scale optimization methods Large-scale

More information

April 2 nd, Bob Burroughs Director, HPC Solution Sales

April 2 nd, Bob Burroughs Director, HPC Solution Sales April 2 nd, 2019 Bob Burroughs Director, HPC Solution Sales Today - Introducing 2 nd Generation Intel Xeon Scalable Processors how Intel Speeds HPC performance Work Time System Peak Efficiency Software

More information

Shrinath Shanbhag Senior Software Engineer Microsoft Corporation

Shrinath Shanbhag Senior Software Engineer Microsoft Corporation Accelerating GPU inferencing with DirectML and DirectX 12 Shrinath Shanbhag Senior Software Engineer Microsoft Corporation Machine Learning Machine learning has become immensely popular over the last decade

More information

Lecture 6: Optimize for Hardware Backends. CSE599G1: Spring 2017

Lecture 6: Optimize for Hardware Backends. CSE599G1: Spring 2017 Lecture 6: Optimize for Hardware Backends CSE599G1: Spring 2017 Where are we High level Packages User API Programming API Gradient Calculation (Differentiation API) System Components Computational Graph

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017

A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017 A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017 TWO FORCES DRIVING THE FUTURE OF COMPUTING 10 7 Transistors (thousands) 10 6 10 5 1.1X per year 10 4 10 3 10 2 1.5X per year Single-threaded

More information

Deep Learning on AWS with TensorFlow and Apache MXNet

Deep Learning on AWS with TensorFlow and Apache MXNet Deep Learning on AWS with TensorFlow and Apache MXNet Julien Simon Global Evangelist, AI & Machine Learning @julsimon Renaud ALLIOUX CTO, Earthcube The Amazon ML Stack: Broadest & Deepest Set of Capabilities

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

Revolutionizing the Datacenter

Revolutionizing the Datacenter Power-Efficient Machine Learning using FPGAs on POWER Systems Ralph Wittig, Distinguished Engineer Office of the CTO, Xilinx Revolutionizing the Datacenter Join the Conversation #OpenPOWERSummit Top-5

More information

Snapdragon NPE Overview

Snapdragon NPE Overview March 2018 Linaro Connect Hong Kong Snapdragon NPE Overview Mark Charlebois Director, Engineering Qualcomm Technologies, Inc. Caffe2 Snapdragon Neural Processing Engine Efficient execution on Snapdragon

More information

Neural Network Exchange Format

Neural Network Exchange Format Copyright Khronos Group 2017 - Page 1 Neural Network Exchange Format Deploying Trained Networks to Inference Engines Viktor Gyenes, specification editor Copyright Khronos Group 2017 - Page 2 Outlook The

More information

S INSIDE NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORK CONTAINERS

S INSIDE NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORK CONTAINERS S8497 - INSIDE NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORK CONTAINERS Chris Lamb CUDA and NGC Engineering, NVIDIA John Barco NGC Product Management, NVIDIA NVIDIA GPU Cloud (NGC) overview AGENDA Using NGC

More information

Renderscript Accelerated Advanced Image and Video Processing on ARM Mali T-600 GPUs. Lihua Zhang, Ph.D. MulticoreWare Inc.

Renderscript Accelerated Advanced Image and Video Processing on ARM Mali T-600 GPUs. Lihua Zhang, Ph.D. MulticoreWare Inc. Renderscript Accelerated Advanced Image and Video Processing on ARM Mali T-600 GPUs Lihua Zhang, Ph.D. MulticoreWare Inc. lihua@multicorewareinc.com Overview More & more mobile apps are beginning to require

More information

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory Scalable and Energy-Efficient Architecture Lab (SEAL) PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in -based Main Memory Ping Chi *, Shuangchen Li *, Tao Zhang, Cong

More information

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications TESLA V100 PERFORMANCE GUIDE Life Sciences Applications NOVEMBER 2017 TESLA V100 PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

POWERING THE AI REVOLUTION JENSEN HUANG, FOUNDER & CEO GTC 2017

POWERING THE AI REVOLUTION JENSEN HUANG, FOUNDER & CEO GTC 2017 POWERING THE AI REVOLUTION JENSEN HUANG, FOUNDER & CEO GTC 2017 LIFE AFTER MOORE S LAW 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 Transistors (thousands) 1.1X per year 10 4 10 3 1.5X per year

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Channel Locality Block: A Variant of Squeeze-and-Excitation

Channel Locality Block: A Variant of Squeeze-and-Excitation Channel Locality Block: A Variant of Squeeze-and-Excitation 1 st Huayu Li Northern Arizona University Flagstaff, United State Northern Arizona University hl459@nau.edu arxiv:1901.01493v1 [cs.lg] 6 Jan

More information

Xilinx ML Suite Overview

Xilinx ML Suite Overview Xilinx ML Suite Overview Jim Heaton Sr. FAE Deep Learning explores the study of algorithms that can learn from and make predictions on data Deep Learning is Re-defining Many Applications Cloud Acceleration

More information

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture The 51st Annual IEEE/ACM International Symposium on Microarchitecture Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture Byungchul Hong Yeonju Ro John Kim FuriosaAI Samsung

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 개발에서구현까지 MATLAB 환경에서의딥러닝 김종남 Application Engineer 2015 The MathWorks, Inc. 2 3 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System

Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System Chi Zhang, Viktor K Prasanna University of Southern California {zhan527, prasanna}@usc.edu fpga.usc.edu ACM

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

Deep Learning on Arm Cortex-M Microcontrollers. Rod Crawford Director Software Technologies, Arm

Deep Learning on Arm Cortex-M Microcontrollers. Rod Crawford Director Software Technologies, Arm Deep Learning on Arm Cortex-M Microcontrollers Rod Crawford Director Software Technologies, Arm What is Machine Learning (ML)? Artificial Intelligence Machine Learning Deep Learning Neural Networks Additional

More information

Embarquez votre Intelligence Artificielle (IA) sur CPU, GPU et FPGA

Embarquez votre Intelligence Artificielle (IA) sur CPU, GPU et FPGA Embarquez votre Intelligence Artificielle (IA) sur CPU, GPU et FPGA Pierre Nowodzienski Engineer pierre.nowodzienski@mathworks.fr 2018 The MathWorks, Inc. 1 From Data to Business value Make decisions Get

More information

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors Weifeng Liu and Brian Vinter Niels Bohr Institute University of Copenhagen Denmark {weifeng, vinter}@nbi.dk March 1, 2014 Weifeng

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

NVIDIA DATA LOADING LIBRARY (DALI)

NVIDIA DATA LOADING LIBRARY (DALI) NVIDIA DATA LOADING LIBRARY (DALI) RN-09096-001 _v01 September 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter 1. 2. 3. 4. 5. DALI DALI DALI DALI DALI Overview...1 Release

More information

Deep Learning Inferencing on IBM Cloud with NVIDIA TensorRT

Deep Learning Inferencing on IBM Cloud with NVIDIA TensorRT Deep Learning Inferencing on IBM Cloud with NVIDIA TensorRT Khoa Huynh Senior Technical Staff Member (STSM), IBM Larry Brown Senior Software Engineer, IBM Agenda Introduction Inferencing with PyCaffe TensorRT

More information

SIMD Exploitation in (JIT) Compilers

SIMD Exploitation in (JIT) Compilers SIMD Exploitation in (JIT) Compilers Hiroshi Inoue, IBM Research - Tokyo 1 What s SIMD? Single Instruction Multiple Data Same operations applied for multiple elements in a vector register input 1 A0 input

More information

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS JIFENG DAI YI LI KAIMING HE JIAN SUN MICROSOFT RESEARCH TSINGHUA UNIVERSITY MICROSOFT RESEARCH MICROSOFT RESEARCH SPEED/ACCURACY TRADE-OFFS

More information

Unified Deep Learning with CPU, GPU, and FPGA Technologies

Unified Deep Learning with CPU, GPU, and FPGA Technologies Unified Deep Learning with CPU, GPU, and FPGA Technologies Allen Rush 1, Ashish Sirasao 2, Mike Ignatowski 1 1: Advanced Micro Devices, Inc., 2: Xilinx, Inc. Abstract Deep learning and complex machine

More information

Enabling the future of Artificial intelligence

Enabling the future of Artificial intelligence Enabling the future of Artificial intelligence Contents AI Overview Intel Nervana AI products Hardware Software Intel Nervana Deep Learning Platform Learn more - Intel Nervana AI Academy Artificial Intelligence,

More information

Cost Modelling for Vectorization on ARM

Cost Modelling for Vectorization on ARM Cost Modelling for Vectorization on ARM Angela Pohl, Biagio Cosenza and Ben Juurlink ARM Research Summit 2018 Challenges of Auto-Vectorization in Compilers 1. Is it possible to vectorize the code? Passes:

More information

From Application to Technology OpenCL Application Processors Chung-Ho Chen

From Application to Technology OpenCL Application Processors Chung-Ho Chen From Application to Technology OpenCL Application Processors Chung-Ho Chen Computer Architecture and System Laboratory (CASLab) Department of Electrical Engineering and Institute of Computer and Communication

More information

GUNREAL: GPU-accelerated UNsupervised REinforcement and Auxiliary Learning

GUNREAL: GPU-accelerated UNsupervised REinforcement and Auxiliary Learning GUNREAL: GPU-accelerated UNsupervised REinforcement and Auxiliary Learning Koichi Shirahata, Youri Coppens, Takuya Fukagai, Yasumoto Tomita, and Atsushi Ike FUJITSU LABORATORIES LTD. March 27, 2018 0 Deep

More information

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage HENet: A Highly Efficient Convolutional Neural Networks Optimized for Accuracy, Speed and Storage Qiuyu Zhu Shanghai University zhuqiuyu@staff.shu.edu.cn Ruixin Zhang Shanghai University chriszhang96@shu.edu.cn

More information

Convolutional Neural Networks and Supervised Learning

Convolutional Neural Networks and Supervised Learning Convolutional Neural Networks and Supervised Learning Eilif Solberg August 30, 2018 Outline Convolutional Architectures Convolutional neural networks Training Loss Optimization Regularization Hyperparameter

More information

Speculations about Computer Architecture in Next Three Years. Jan. 20, 2018

Speculations about Computer Architecture in Next Three Years. Jan. 20, 2018 Speculations about Computer Architecture in Next Three Years shuchang.zhou@gmail.com Jan. 20, 2018 About me https://zsc.github.io/ Source-to-source transformation Cache simulation Compiler Optimization

More information

Big Data Systems on Future Hardware. Bingsheng He NUS Computing

Big Data Systems on Future Hardware. Bingsheng He NUS Computing Big Data Systems on Future Hardware Bingsheng He NUS Computing http://www.comp.nus.edu.sg/~hebs/ 1 Outline Challenges for Big Data Systems Why Hardware Matters? Open Challenges Summary 2 3 ANYs in Big

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 2018/19 A.J.Proença Data Parallelism 3 (GPU/CUDA, Neural Nets,...) (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 1 The

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Preliminary Performance Evaluation of Application Kernels using ARM SVE with Multiple Vector Lengths

Preliminary Performance Evaluation of Application Kernels using ARM SVE with Multiple Vector Lengths Preliminary Performance Evaluation of Application Kernels using ARM SVE with Multiple Vector Lengths Y. Kodama, T. Odajima, M. Matsuda, M. Tsuji, J. Lee and M. Sato RIKEN AICS (Advanced Institute for Computational

More information

TensorFlow-HRT. User Manual

TensorFlow-HRT. User Manual TensorFlow-HRT User Manual 2017-12-25 Reversion Record Date Rev Change Description Author 2017-12-25 0.1.0 Initial Yuming Cheng Yu Wang 2018-02-08 0.1.1 Add Alexnet test Yuming Cheng 1 / 12 catalog 1 PURPOSE...3

More information

Layer-wise Performance Bottleneck Analysis of Deep Neural Networks

Layer-wise Performance Bottleneck Analysis of Deep Neural Networks Layer-wise Performance Bottleneck Analysis of Deep Neural Networks Hengyu Zhao, Colin Weinshenker*, Mohamed Ibrahim*, Adwait Jog*, Jishen Zhao University of California, Santa Cruz, *The College of William

More information

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Jongsoo Park Facebook AI System SW/HW Co-design Team Sep-21 2018 Team Introduction

More information

Scaling Throughput Processors for Machine Intelligence

Scaling Throughput Processors for Machine Intelligence Scaling Throughput Processors for Machine Intelligence ScaledML Stanford 24-Mar-18 simon@graphcore.ai 1 MI The impact on humanity of harnessing machine intelligence will be greater than the impact of harnessing

More information

Implementing Deep Learning for Video Analytics on Tegra X1.

Implementing Deep Learning for Video Analytics on Tegra X1. Implementing Deep Learning for Video Analytics on Tegra X1 research@hertasecurity.com Index Who we are, what we do Video analytics pipeline Video decoding Facial detection and preprocessing DNN: learning

More information

NVIDIA AI BRAIN OF SELF DRIVING AND HD MAPPING. September 13, 2016

NVIDIA AI BRAIN OF SELF DRIVING AND HD MAPPING. September 13, 2016 NVIDIA AI BRAIN OF SELF DRIVING AND HD MAPPING September 13, 2016 AI FOR AUTONOMOUS DRIVING MAPPING KALDI LOCALIZATION DRIVENET Training on DGX-1 NVIDIA DGX-1 NVIDIA DRIVE PX 2 Driving with DriveWorks

More information