Usable while performant: the challenges building. Soumith Chintala

Size: px
Start display at page:

Download "Usable while performant: the challenges building. Soumith Chintala"

Transcription

1

2 Usable while performant: the challenges building Soumith Chintala

3 Problem Statement Deep Learning Workloads

4 Problem Statement Deep Learning Workloads for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

5 Problem Statement Deep Learning Workloads N samples, each of some shape D for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

6 Problem Statement Deep Learning Workloads mini-batch of M samples (M << N), each of shape D for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

7 Problem Statement Deep Learning Workloads neural network with weights for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

8 Problem Statement Deep Learning Workloads backpropagation: compute derivatives wrt loss, using chain rule for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

9 Problem Statement Deep Learning Workloads update weights using the computed gradients for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

10 Problem Statement Deep Learning Workloads for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

11 Problem Statement Deep Learning Workloads neural network with weights for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

12 Types of typical operators Convolution Figure by Vincent Dumolin:

13 Types of typical operators Convolution Figure by Vincent Dumolin:

14 Types of typical operators Convolution for oc in output_channel: for ic in input_channel: for h in output_height: for w in output_width: for kh in kernel_height: for kw in kernel_width: output_pixel += input_pixel * kernel_value Figure by Vincent Dumolin:

15 Types of typical operators Figure by Vincent Dumolin:

16 Types of typical operators Matrix Multiply Figure by Wikipedia:

17 Types of typical operators Pointwise operations for (i=0; i < data_length; i++) { } output[i] = input1[i] + input2[i] Figure by Wikipedia:

18 Types of typical operators Reduction operations double sum = 0.0; for (i=0; i < data_length; i++) { sum += input[i]; } Figure by Wikipedia:

19 Chained Together Input Output Figure by Wikipedia:

20 Chained Together Input Output Figure by Wikipedia:

21 Chained Together Figure by Wikipedia: Input Output "deep"

22 Chained Together Figure by Wikipedia: Input Output "deep" recurrent

23 Trained with Gradient Descent Figure by Wikipedia: Input Output "deep" recurrent

24 Problem Statement Deep Learning Workloads an easy way to see recurrence for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

25 Problem Statement Deep Learning Workloads an easy way to see recurrence for epoch in range(max_epochs): for data, target in enumerate(training_data): output, hidden = [], zeros() for t in data.size(0): out, hidden = model(data[t], hidden) output.append(out) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

26 Problem Statement Deep Learning Workloads - Vision models - model is very deep, straight-line chain with no recurrence - lots of convolutions - typically run on GPUs

27 Problem Statement Deep Learning Workloads - Vision models - model is very deep, straight-line chain with no recurrence - lots of convolutions - typically run on GPUs - NLP models - LSTM-RNN - model is 1 to 4 "layers" deep - two matmuls across space and time along with pointwise ops -typically run on CPUs if small, GPUs if large

28 Deep Learning Frameworks Make this easy to program for epoch in range(max_epochs): for data, target in enumerate(training_data): output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step()

29 Pre-PyTorch meta programming meta programming imperative

30 Caffe

31 Caffe define protobuf, run via command-line utility

32 Caffe define protobuf, run via command-line utility small, efficient library. Could do convents well.

33 Theano

34 Theano meta-program Theano VM via Python API

35 Theano meta-program Theano VM via Python API whole program optimizations, graph fusion

36 Theano meta-program Theano VM via Python API whole program optimizations, graph fusion graphs took minutes to hours to compile and start

37 Torch-7

38 Torch-7 imperative programming in Lua

39 Torch-7 imperative programming in Lua tied closely to underlying C89 implementations

40 Torch-7 imperative programming in Lua tied closely to underlying C89 implementations Lua lacked good tooling and ecosystem

41 What is PyTorch? automatic differentiation Ndarray library gradient based Utilities engine with GPU support optimization package (data loading, etc.) Deep Learning Numpy-alternative Reinforcement Learning

42 ndarray library np.ndarray <-> torch.tensor 200+ operations, similar to numpy very fast acceleration on NVIDIA GPUs

43 ndarray library Numpy PyTorch

44 ndarray / Tensor library

45 ndarray / Tensor library

46 ndarray / Tensor library

47 ndarray / Tensor library

48 NumPy bridge

49 NumPy bridge Zero memory-copy very efficient

50 NumPy bridge

51 NumPy bridge

52 Seamless GPU Tensors

53 automatic differentiation engine for deep learning and reinforcement learning

54 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20)

55 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20) MM MM i2h = torch.mm(w_x, x.t()) h2h = torch.mm(w_h, prev_h.t())

56 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20) MM MM i2h = torch.mm(w_x, x.t()) h2h = torch.mm(w_h, prev_h.t()) next_h = i2h + h2h

57 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20) MM MM i2h = torch.mm(w_x, x.t()) h2h = torch.mm(w_h, prev_h.t()) next_h = i2h + h2h Add

58 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20) MM MM i2h = torch.mm(w_x, x.t()) h2h = torch.mm(w_h, prev_h.t()) next_h = i2h + h2h next_h = next_h.tanh() Add Tanh

59 PyTorch Autograd W_h = torch.randn(20, 20, requires_grad=true) W_x = torch.randn(20, 10, requires_grad=true) x = torch.randn(1, 10) prev_h = torch.randn(1, 20) MM MM i2h = torch.mm(w_x, x.t()) h2h = torch.mm(w_h, prev_h.t()) next_h = i2h + h2h next_h = next_h.tanh() Add Tanh next_h.backward(torch.ones(1, 20))

60 Neural Networks

61 Neural Networks

62 Neural Networks

63 Optimization package SGD, Adagrad, RMSProp, LBFGS, etc.

64 Bootstrapping Writing Building models Implementing Checkpointing Dataset loaders Training loop models Python + PyTorch - an environment to do all of this Interfacing with Dealing with Building Building optimizers environments GPUs Baselines

65 Bootstrapping Writing Building models Implementing Checkpointing Dataset loaders Training loop models bootstrapping Python + PyTorch the Python - an environment tooling stack to do for all good of this UX Interfacing with Dealing with Building Building optimizers environments GPUs Baselines

66 Python is slow, interpreted Global interpreter-lock application logic is order of magnitude slower than C++ moved autograd engine to C++ moved everything to ATen - Side-effect, a clean C++ API

Adam Paszke, Sam Gross, Soumith Chintala, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Adam Paszke, Sam Gross, Soumith Chintala, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Adam Paszke, Sam Gross, Soumith Chintala, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Alban Desmaison, Andreas Kopf, Edward Yang, Zach Devito,

More information

Frameworks in Python for Numeric Computation / ML

Frameworks in Python for Numeric Computation / ML Frameworks in Python for Numeric Computation / ML Why use a framework? Why not use the built-in data structures? Why not write our own matrix multiplication function? Frameworks are needed not only because

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

TensorFlow: A System for Learning-Scale Machine Learning. Google Brain

TensorFlow: A System for Learning-Scale Machine Learning. Google Brain TensorFlow: A System for Learning-Scale Machine Learning Google Brain The Problem Machine learning is everywhere This is in large part due to: 1. Invention of more sophisticated machine learning models

More information

DEEP LEARNING IN PYTHON. The need for optimization

DEEP LEARNING IN PYTHON. The need for optimization DEEP LEARNING IN PYTHON The need for optimization A baseline neural network Input 2 Hidden Layer 5 2 Output - 9-3 Actual Value of Target: 3 Error: Actual - Predicted = 4 A baseline neural network Input

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Deep Learning with Torch

Deep Learning with Torch Deep Learning with Torch The good, the bad, the ugly since 2002 Jimmy Ba jimmy@psi.utoronto.ca What is Torch? Year 2012 Google Answer: Torch7 provides a Matlab-like environment for state-of-the-art machine

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 4: Backpropagation and computation graphs

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 4: Backpropagation and computation graphs Natural Language Processing with Deep Learning CS4N/Ling84 Christopher Manning Lecture 4: Backpropagation and computation graphs Lecture Plan Lecture 4: Backpropagation and computation graphs 1. Matrix

More information

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA MIXED PRECISION TRAINING OF NEURAL NETWORKS Carl Case, Senior Architect, NVIDIA OUTLINE 1. What is mixed precision training with FP16? 2. Considerations and methodology for mixed precision training 3.

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Slide credit: http://sebastianruder.com/optimizing-gradient-descent/index.html#batchgradientdescent

More information

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Abstract: This project aims at creating a benchmark for Deep Learning (DL) algorithms

More information

autograd tutorial Paul Vicol, Slides Based on Ryan Adams January 30, 2017 CSC 321, University of Toronto

autograd tutorial Paul Vicol, Slides Based on Ryan Adams January 30, 2017 CSC 321, University of Toronto autograd tutorial Paul Vicol, Slides Based on Ryan Adams January 30, 2017 CSC 321, University of Toronto 1 tutorial outline 1. Automatic Differentiation 2. Introduction to Autograd 3. IPython Notebook

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

RNN LSTM and Deep Learning Libraries

RNN LSTM and Deep Learning Libraries RNN LSTM and Deep Learning Libraries UDRC Summer School Muhammad Awais m.a.rana@surrey.ac.uk Outline Recurrent Neural Network Application of RNN LSTM Caffe Torch Theano TensorFlow Flexibility of Recurrent

More information

Application of Deep Learning Techniques in Satellite Telemetry Analysis.

Application of Deep Learning Techniques in Satellite Telemetry Analysis. Application of Deep Learning Techniques in Satellite Telemetry Analysis. Greg Adamski, Member of Technical Staff L3 Technologies Telemetry and RF Products Julian Spencer Jones, Spacecraft Engineer Telenor

More information

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius What is Mixed Precision Training? Reduced precision tensor math with FP32 accumulation, FP16 storage Successfully used to train a variety

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia System Challenge in Deep Learning

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Convolutional Networks for Text

Convolutional Networks for Text CS11-747 Neural Networks for NLP Convolutional Networks for Text Graham Neubig Site https://phontron.com/class/nn4nlp2017/ An Example Prediction Problem: Sentence Classification I hate this movie very

More information

Deep neural networks

Deep neural networks Deep neural networks Outline What s new in ANNs in the last 5-10 years? Deeper networks, more data, and faster training Scalability and use of GPUs Symbolic differentiation reverse-mode automatic differentiation

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

Deep Neural Networks Optimization

Deep Neural Networks Optimization Deep Neural Networks Optimization Creative Commons (cc) by Akritasa http://arxiv.org/pdf/1406.2572.pdf Slides from Geoffrey Hinton CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy

More information

CS281 Section 3: Practical Optimization

CS281 Section 3: Practical Optimization CS281 Section 3: Practical Optimization David Duvenaud and Dougal Maclaurin Most parameter estimation problems in machine learning cannot be solved in closed form, so we often have to resort to numerical

More information

Neural Network Exchange Format

Neural Network Exchange Format Copyright Khronos Group 2017 - Page 1 Neural Network Exchange Format Deploying Trained Networks to Inference Engines Viktor Gyenes, specification editor Copyright Khronos Group 2017 - Page 2 Outlook The

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Day 1 Lecture 6. Software Frameworks for Deep Learning

Day 1 Lecture 6. Software Frameworks for Deep Learning Day 1 Lecture 6 Software Frameworks for Deep Learning Packages Caffe Theano NVIDIA Digits Lasagne Keras Blocks Torch TensorFlow MxNet MatConvNet Nervana Neon Leaf Caffe Deep learning framework from Berkeley

More information

Optimizing CNN Inference on CPUs

Optimizing CNN Inference on CPUs Optimizing CNN Inference on CPUs Yizhi Liu, Yao Wang, Yida Wang With others in AWS AI Agenda Deep learning inference optimization Optimization on Intel CPUs Evaluation Make DL inference easier and faster

More information

Machine Learning Workshop

Machine Learning Workshop Machine Learning Workshop {Presenters} Feb. 20th, 2018 Theory of Neural Networks Architecture and Types of Layers: Fully Connected (FC) Convolutional Neural Network (CNN) Pooling Drop out Residual Recurrent

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 19: Parallel Deep Network Training Parallel Computer Architecture and Programming How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors

More information

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018 SEMANTIC COMPUTING Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) Dagmar Gromann International Center For Computational Logic TU Dresden, 21 December 2018 Overview Handling Overfitting Recurrent

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

Deep Learning Frameworks. COSC 7336: Advanced Natural Language Processing Fall 2017

Deep Learning Frameworks. COSC 7336: Advanced Natural Language Processing Fall 2017 Deep Learning Frameworks COSC 7336: Advanced Natural Language Processing Fall 2017 Today s lecture Deep learning software overview TensorFlow Keras Practical Graphical Processing Unit (GPU) From graphical

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44 A Activation potential, 40 Annotated corpus add padding, 162 check versions, 158 create checkpoints, 164, 166 create input, 160 create train and validation datasets, 163 dropout, 163 DRUG-AE.rel file,

More information

Scaling Distributed Machine Learning

Scaling Distributed Machine Learning Scaling Distributed Machine Learning with System and Algorithm Co-design Mu Li Thesis Defense CSD, CMU Feb 2nd, 2017 nx min w f i (w) Distributed systems i=1 Large scale optimization methods Large-scale

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

Unified Deep Learning with CPU, GPU, and FPGA Technologies

Unified Deep Learning with CPU, GPU, and FPGA Technologies Unified Deep Learning with CPU, GPU, and FPGA Technologies Allen Rush 1, Ashish Sirasao 2, Mike Ignatowski 1 1: Advanced Micro Devices, Inc., 2: Xilinx, Inc. Abstract Deep learning and complex machine

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

NVIDIA DEEP LEARNING INSTITUTE

NVIDIA DEEP LEARNING INSTITUTE NVIDIA DEEP LEARNING INSTITUTE TRAINING CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

A Torch Library for Action Recognition and Detection Using CNNs and LSTMs

A Torch Library for Action Recognition and Detection Using CNNs and LSTMs A Torch Library for Action Recognition and Detection Using CNNs and LSTMs Gary Thung and Helen Jiang Stanford University {gthung, helennn}@stanford.edu Abstract It is very common now to see deep neural

More information

Hardware and Software. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 6-1

Hardware and Software. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 6-1 Lecture 6: Hardware and Software Lecture 6-1 Administrative Assignment 1 was due yesterday. Assignment 2 is out, due Wed May 1. Project proposal due Wed April 24. Project-only office hours leading up to

More information

The Anatomy of Deep Learning Frameworks* *Everything you wanted to know about DL Frameworks but were afraid to ask

The Anatomy of Deep Learning Frameworks* *Everything you wanted to know about DL Frameworks but were afraid to ask The Anatomy of Deep Learning Frameworks* *Everything you wanted to know about DL Frameworks but were afraid to ask $whoami Master s Student in CS @ ETH Zurich, bachelors from BITS Pilani Contributor to

More information

Getting started with Caffe. Jon Barker, Solutions Architect

Getting started with Caffe. Jon Barker, Solutions Architect Getting started with Caffe Jon Barker, Solutions Architect Caffe tour Overview Agenda Example applications Setup Performance Hands-on lab preview 2 A tour of Caffe 3 What is Caffe? An open framework for

More information

Machine Learning on VMware vsphere with NVIDIA GPUs

Machine Learning on VMware vsphere with NVIDIA GPUs Machine Learning on VMware vsphere with NVIDIA GPUs Uday Kurkure, Hari Sivaraman, Lan Vu GPU Technology Conference 2017 2016 VMware Inc. All rights reserved. Gartner Hype Cycle for Emerging Technology

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Deep Learning Compiler

Deep Learning Compiler Deep Learning Compiler AWS AI Acknowledgement Amazon Sagemaker Neo Enables developers to train machine learning models once and run them anywhere in the cloud and at the edge Hardware targets Intel CPU,

More information

Matrix Computations and " Neural Networks in Spark

Matrix Computations and  Neural Networks in Spark Matrix Computations and " Neural Networks in Spark Reza Zadeh Paper: http://arxiv.org/abs/1509.02256 Joint work with many folks on paper. @Reza_Zadeh http://reza-zadeh.com Training Neural Networks Datasets

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

An Introduction to NNs using Keras

An Introduction to NNs using Keras An Introduction to NNs using Keras Michela Paganini michela.paganini@cern.ch Yale University 1 Keras Modular, powerful and intuitive Deep Learning python library built on Theano and TensorFlow Minimalist,

More information

EECS 496 Statistical Language Models. Winter 2018

EECS 496 Statistical Language Models. Winter 2018 EECS 496 Statistical Language Models Winter 2018 Introductions Professor: Doug Downey Course web site: www.cs.northwestern.edu/~ddowney/courses/496_winter2018 (linked off prof. home page) Logistics Grading

More information

Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL

Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL 1 THIS TALK Using mixed precision and Volta your networks can be: 1. 2-4x faster 2. half the

More information

PLT: Inception (cuz there are so many layers)

PLT: Inception (cuz there are so many layers) PLT: Inception (cuz there are so many layers) By: Andrew Aday, (aza2112) Amol Kapoor (ajk2227), Jonathan Zhang (jz2814) Proposal Abstract Overview of domain Purpose Language Outline Types Operators Syntax

More information

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset LSTM: An Image Classification Model Based on Fashion-MNIST Dataset Kexin Zhang, Research School of Computer Science, Australian National University Kexin Zhang, U6342657@anu.edu.au Abstract. The application

More information

Operator Vectorization Library A TensorFlow Plugin

Operator Vectorization Library A TensorFlow Plugin Operator Vectorization Library A TensorFlow Plugin Matthew Pickett, Karen Brems, Florian Raudies Hewlett Packard Labs HPE-2016-94 Keyword(s): Machine learning; GPU acceleration; TensorFlow Abstract: TensorFlow

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Sentiment Classification of Food Reviews

Sentiment Classification of Food Reviews Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford

More information

Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 05 Classification with Perceptron Model So, welcome to today

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this course

More information

Tutorial on Deep Learning with Theano and Lasagne. Jan Schlüter Sander Dieleman EMBL-EBI

Tutorial on Deep Learning with Theano and Lasagne. Jan Schlüter Sander Dieleman EMBL-EBI Tutorial on Deep Learning with Theano and Lasagne Jan Schlüter Sander Dieleman EMBL-EBI 2016-04-21 Tutorial Outline Foundations What are Artificial Neural Networks? Practical part: Theano and Lasagne Learning

More information

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research with R Francesca Lazzeri - @frlazzeri Data Scientist II - Microsoft, AI Research Agenda with R What is Demo Better understanding of R DL tools Fundamental concepts in Forward Propagation Algorithm Activation

More information

Matchbox. automatic batching for imperative deep learning NVIDIA GTC, 2018/3/28. James Bradbury

Matchbox. automatic batching for imperative deep learning NVIDIA GTC, 2018/3/28. James Bradbury Matchbox automatic batching for imperative deep learning James Bradbury NVIDIA GTC, 2018/3/28 Roadmap Imperative deep learning How manual batching works Other tools for automatic batching The Matchbox

More information

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi OPTIMIZED GPU KERNELS FOR DEEP LEARNING Amir Khosrowshahi GTC 17 Mar 2015 Outline About nervana Optimizing deep learning at assembler level Limited precision for deep learning neon benchmarks 2 About nervana

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

A Simple (?) Exercise: Predicting the Next Word

A Simple (?) Exercise: Predicting the Next Word CS11-747 Neural Networks for NLP A Simple (?) Exercise: Predicting the Next Word Graham Neubig Site https://phontron.com/class/nn4nlp2017/ Are These Sentences OK? Jane went to the store. store to Jane

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 26: Parallel Deep Network Training Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Tunes Speech Debelle Finish This Album (Speech Therapy) Eat your veggies and study

More information

National College of Ireland Project Submission Sheet 2015/2016 School of Computing

National College of Ireland Project Submission Sheet 2015/2016 School of Computing National College of Ireland Project Submission Sheet 2015/2016 School of Computing Student Name: Sean McNally Student ID: 15021581 Programme: MSc Data Analytics Year: 2015-2016 Module: Supervisor: Configuration

More information

Caffe tutorial. Seong Joon Oh

Caffe tutorial. Seong Joon Oh Caffe tutorial Seong Joon Oh What is Caffe? Convolution Architecture For Feature Extraction (CAFFE) Open framework, models, and examples for deep learning 600+ citations, 100+ contributors, 7,000+ stars,

More information

Frameworks. Advanced Machine Learning for NLP Jordan Boyd-Graber INTRODUCTION. Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig

Frameworks. Advanced Machine Learning for NLP Jordan Boyd-Graber INTRODUCTION. Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig Frameworks Advanced Machine Learning for NLP Jordan Boyd-Graber INTRODUCTION Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig Advanced Machine Learning for NLP Boyd-Graber Frameworks 1 of 10

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks Deep neural networks have enabled major advances in machine learning and AI Computer vision Language translation Speech recognition Question answering And more Problem: DNNs are challenging to serve and

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Convolutional Sequence to Sequence Learning Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Sequence generation Need to model a conditional distribution

More information

Modeling Sequences Conditioned on Context with RNNs

Modeling Sequences Conditioned on Context with RNNs Modeling Sequences Conditioned on Context with RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Administrative. Assignment 1 due Wednesday April 18, 11:59pm

Administrative. Assignment 1 due Wednesday April 18, 11:59pm Lecture 4-1 Administrative Assignment 1 due Wednesday April 18, 11:59pm Lecture 4-2 Administrative All office hours this week will use queuestatus Lecture 4-3 Where we are... scores function SVM loss data

More information

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, 10.2.1) Properties of RNNs (10.2.2, 8.2.6) Using

More information

Introducing CURRENNT: The Munich Open-Source CUDA RecurREnt Neural Network Toolkit

Introducing CURRENNT: The Munich Open-Source CUDA RecurREnt Neural Network Toolkit Journal of Machine Learning Research 6 205) 547-55 Submitted 7/3; Published 3/5 Introducing CURRENNT: The Munich Open-Source CUDA RecurREnt Neural Network Toolkit Felix Weninger weninger@tum.de Johannes

More information

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Authors: Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio Presenter: Yu-Wei Lin Background: Recurrent Neural

More information

Can Active Memory Replace Attention?

Can Active Memory Replace Attention? Google Brain NIPS 2016 Presenter: Chao Jiang NIPS 2016 Presenter: Chao Jiang 1 / Outline 1 Introduction 2 Active Memory 3 Step by Step to Neural GPU 4 Another two steps: 1. the Markovian Neural GPU 5 Another

More information

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer DEEP NEURAL NETWORKS AND GPUS Julie Bernauer GPU Computing GPU Computing Run Computations on GPUs x86 CUDA Framework to Program NVIDIA GPUs A simple sum of two vectors (arrays) in C void vector_add(int

More information

LBANN: Livermore Big Artificial Neural Network HPC Toolkit

LBANN: Livermore Big Artificial Neural Network HPC Toolkit LBANN: Livermore Big Artificial Neural Network HPC Toolkit Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, Barry Chen Lawrence Livermore National Laboratory MLHPC 2015 Presented by: Sourav Chakraborty

More information

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT Mocha.jl Deep Learning in Julia Chiyuan Zhang (@pluskid) CSAIL, MIT Deep Learning Learning with multi-layer (3~30) neural networks, on a huge training set. State-of-the-art on many AI tasks Computer Vision:

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Profiling DNN Workloads on a Volta-based DGX-1 System

Profiling DNN Workloads on a Volta-based DGX-1 System Profiling DNN Workloads on a Volta-based DGX-1 System Saiful A. Mojumder 1, Marcia S Louis 1, Yifan Sun 2, Amir Kavyan Ziabari 3, José L. Abellán 4, John Kim 5, David Kaeli 2, Ajay Joshi 1 1 ECE Department,

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017 Deep Learning on Modern Architectures Keren Zhou 4/17/2017 HPC Software Stack Application Algorithm Data Layout CPU GPU MIC Others HPC Software Stack Deep Learning Algorithm Data Layout CPU GPU MIC Others

More information

TENSORRT. RN _v01 January Release Notes

TENSORRT. RN _v01 January Release Notes TENSORRT RN-08624-030_v01 January 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter 1. 2. 3. 4. Overview...1 Release 3.0.2... 2 Release 3.0.1... 4 Release 2.1... 10 RN-08624-030_v01

More information