Ray Path Analysis in LightTools

Size: px
Start display at page:

Download "Ray Path Analysis in LightTools"

Transcription

1 Ray Path Analysis in LightTools 3280 East Foothill Boulevard Pasadena, California USA (626) Fax (626) World Wide Web: Copyright 2008 Optical Research Associates Copyright 2008 Optical Research Associates

2 Ray Path Feature The Ray Path feature in LightTools is a powerful analysis tool, especially for users analyzing stray light Records each individual path that rays take as they traverse the system LightTools 6.1 New Features, Slide 2

3 What is a Ray Path? A path is the sequence of surfaces and zones that rays intersect as they trace from the source to their termination point Data is collected for each path including: Surfaces and Zones that compose the path Number of rays that follow a given path Power in each path LightTools 6.1 New Features, Slide 3

4 Collecting Ray Path Data Controls for collecting Ray Path data are located on the Simulation Input page for forward simulation Check Collect Ray Path Data to collect the data Check Show Ray Paths to show the paths in the 3D Design View Indicate the number of rays to display per path LightTools 6.1 New Features, Slide 4

5 Backward Simulation Ray path data can also be collected for backward simulations Controls similar to the forward simulation are located on the Mesh or Points Simulation tabs LightTools 6.1 New Features, Slide 5

6 Ray Path Manager A Ray Path Manager is available to: Control the collection and display of the paths in the 3D Design View Display the data collected in the form of Catalogs The Ray Path Manager can be launched from Analysis > Ray Path LightTools 6.1 New Features, Slide 6

7 Ray Path Manager Interface The Ray Path Manager has a page for Controls Show, Collect and Display controls The Collect controls can limit data collection to specified catalogs during simulation, saving memory The Manager also has a listing for all available catalogs Controls Page Set Number of Rays per Path to Display Catalogs Show Catalog in 3D Design View Collect Data for a Catalog LightTools 6.1 New Features, Slide 7

8 Ray Path Catalogs Ray path listings are collected and displayed in a series of Ray Path Catalogs One catalog for the full Forward Simulation One catalog for each receiver in the model One catalog for each backward simulation Catalogs are not exclusive, so paths (full or partial) can appear in multiple catalogs Catalogs can be displayed independently in the 3D View using the Show setting This is separate from the View setting for individual paths LightTools 6.1 New Features, Slide 8

9 Forward Simulation Catalog Forward Simulation catalog lists paths from the sources to wherever the rays terminate All Forward Simulation rays are included in the Forward Simulation catalog Rays which split will generate two paths Path 1 Path 2 LightTools 6.1 New Features, Slide 9

10 Receiver Catalogs Each receiver has its own catalog Catalogs for both forward and backward receivers Lists ray paths only up to that receiver Surface interactions and ray splitting after the receiver are not counted Rays which do not intersect the receiver are not counted Path 1 Not Considered LightTools 6.1 New Features, Slide 10

11 Data Displayed in the Catalog Each catalog displays a listing of the ray paths in that catalog Data included in the listing are: Path visibility setting Color of the path in the 3D Design View Total power collected in that path Total number of rays recorded for that path Originating source for the path Final surface Full path listing Total number of rays and total power for all paths in the catalog with the visibility setting turned on LightTools 6.1 New Features, Slide 11

12 Ray Path Catalog Interface LightTools 6.1 New Features, Slide 12

13 Path Detail The Path Detail tab shows a tabular listing of the entire path listing for a selected path LightTools 6.1 New Features, Slide 13

14 Display A user-specified number of rays can be displayed for each path Each path displayed in a different color User can control the display of these paths LightTools 6.1 New Features, Slide 14

15 Visibility Toggle By checking and un-checking the Visibility checkbox, the user can control which ray paths are displayed LightTools 6.1 New Features, Slide 15

16 Ray Path Filter A Ray Path receiver filter is available Accepts only rays from visible ray paths in the receivers catalog All Paths Visible Three Paths Visible LightTools 6.1 New Features, Slide 16

17 Ray Path Analyzer A Ray Path Analyzer utility is available to adjust path visibility based on surface and zone intersections Logic such as and, or, & not can be applied Found under Tools>Utility Library>Receivers LightTools 6.1 New Features, Slide 17

18 Helmet Mounted Display Helmet (on a hidden layer) Eyeball Beam Splitter Combiner Lens Projection Optics Ray Path Example, Slide 18

19 Methodology The example used to demonstrate the power of the ray path feature is a Helmet Mounded Display (HMD) Specific to this example is the combiner lens and splitter What is important to understand is how much scattered sun light enters the pilots eye as compared to the light from either the display or outside world as seen through the primary viewing path. Ray Path Example, Slide 19

20 Methodology cont. Backward ray tracing will be used to improve simulation efficiency Ray path will help us understand where the light is coming from and the magnitude of the light The Ray Path Analyzer will be used to help us sort the optical paths and identify problem surfaces The optical designer can then make a decision, whether or not to change the design based on this knowledge Ray Path Example, Slide 20

21 HMD How it Works An image of the display is projected onto the beam splitter from below. A special coating on the beam splitter reflects the image onto the combiner which reflects the light back through the splitter onto the eye. The combiner also afocalizes the light Ray Path Example, Slide 21

22 HMD How it Works, cont. In addition, the eye can see through the splitter and combiner into the field of view. Thus an image of the display overlaid on the field of view. The pilot sees the display and the field of view at the same time. Ray Path Example, Slide 22

23 HMD What do we want to know? We would like to know if light from the sun can enter the optical system at oblique angles (i.e. off a mount, or the edge of a lens) and cause a distraction or even worse damage to the eye. Ray path can help Ray Path Example, Slide 23

24 Backward Ray Trace A receiver is placed on a dummy surface just at the pupil of the eye A backward intensity mesh has been added to this receiver IES Type C Angular extent from 0 to 45 degrees Aim area is set on the Beam Splitter and oversized to allow rays to be traced around the splitter A Ray Path Filter is added to the receiver to help identify contributions from various paths Ray Path Example, Slide 24

25 Source A large hollow hemisphere is set outside the system and the inner surface is set to be a Lambertian emitter Provides an even sky illumination The source is hidden to avoid visual clutter Ray Path Example, Slide 25

26 Trace Ray Paths Light from the eye receiver is traced outward to the source. Light that reaches the source would be light that could reach the eye from the sun. The mesh represents the perceived intensity of a diffuse sky as seen by the user through the display device Ray Path allows us to explore stray paths to find ones with significant intensity Ray Path Example, Slide 26

27 Backward Intensity Result The intensity result from the backward ray trace is shown here with all paths active Primary Field of View Contributions from Various Stray Light Paths Ray Path Example, Slide 27

28 Primary Viewing Path Using the Analysis> Ray Path we can quickly identify the primary viewing path and note its contribution on the Intensity Raster Ray Path Example, Slide 28

29 Stray Light Paths Turning off the visibility of the main path we can easily see the contribution from all the other paths Ray Path Example, Slide 29

30 Primary Stray Light Paths By turning on the visibility of each path in turn we can identify the primary stray light paths The top three primary paths, determined by flux, are: Direct line of sight rays, shown in purple Rays that hit the splitter but not the combiner, shown in red Rays that miss the splitter but hit the combiner, shown in dark blue Ray Path Example, Slide 30

31 Secondary Stray Light Paths We can eliminate the contributions of the main viewing path and the three primary stray light paths to see the remaining stray light contributions Areas of concern Ray Path Example, Slide 31

32 Area of Concern An examination of the remaining stray paths reveal that three of the most energetic remaining paths contribute to the two concerning areas Significantly, these three paths all TIR off of the outer edge of the combiner (sometimes twice) Ray Path Example, Slide 32

33 Ray Path Analyzer To determine all the ray paths that intersect a specific surface, or several surfaces run the Ray Path utility. In this case, all the paths that intersect the Combiner edge surface Found in the Tools>Utility Library under the Receivers category Ray Path Example, Slide 33

34 Select the Edge Surface In the Ray Path Analyzer select the Combiner> CombinerEdgeSurface> BareSurface and Add to Path Select the Receiver and select the BWD_Intensity Mesh Click Run to run the filter This sets the visibility flag to on for all paths that meet the criteria Ray Path Example, Slide 34

35 Ray Path Analyzer Results After running the Ray Path Analyzer we can see all the paths that intersect the Combiner edge surface We have identified this surface as a critical source of stray light and action could now be taken to modify the surface to reduce its effect. Ray Path Example, Slide 35

36 Conclusion The Ray Path feature in LightTools offers a means to do detailed analysis of how light passes through your system Paths are cataloged for the simulation as a whole and also for each individual receiver and backward simulation The Ray Path Analyzer provides a powerful means to quickly sort through large catalogs based on user-defined criteria The Ray Path Filter allows you to easily visualize the effects of individual paths or select groups of paths Ray Path Example, Slide 36

Building and Simulating a Task Lighting Model in LightTools

Building and Simulating a Task Lighting Model in LightTools Building and Simulating a Task Lighting Model in LightTools Synopsys 2012 1 Introduction to LightTools, Task Lighting Walkthrough Example This is an example of modeling a task lighting system in LightTools.

More information

TracePro Stray Light Simulation

TracePro Stray Light Simulation TracePro Stray Light Simulation What Is Stray Light? A more descriptive term for stray light is unwanted light. In an optical imaging system, stray light is caused by light from a bright source shining

More information

Ghost and Stray Light Analysis using TracePro. February 2012 Webinar

Ghost and Stray Light Analysis using TracePro. February 2012 Webinar Ghost and Stray Light Analysis using TracePro February 2012 Webinar Moderator: Andy Knight Technical Sales Manager Lambda Research Corporation Presenter: Michael Gauvin Vice President of Sales Lambda Research

More information

Polarizer Surface Treatment: Nanostructures with Mega Impact

Polarizer Surface Treatment: Nanostructures with Mega Impact Polarizer Surface Treatment: Nanostructures with Mega Impact As passionate display engineers, we appreciate the beauty of a bright and clear LCD display. But often the experience is marred by ambient light.

More information

Lightpipe. Requirements. Introduction. This example shows you how to create and analyze a lightpipe using TracePro.

Lightpipe. Requirements. Introduction. This example shows you how to create and analyze a lightpipe using TracePro. Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this tutorial we will be creating a curved light pipe from scratch. This example shows you how to create

More information

This tutorial illustrates how to use TracePro for the analysis of LCD Back Lights. The steps include:

This tutorial illustrates how to use TracePro for the analysis of LCD Back Lights. The steps include: Requirements Models: None Properties: None Editions: TracePro Expert Introduction This tutorial illustrates how to use TracePro for the analysis of LCD Back Lights. The steps include: Generating a solid

More information

How to Use the Luminit LSD Scatter Model

How to Use the Luminit LSD Scatter Model How to Use the Luminit LSD Scatter Model Summary: This article describes the characteristics and use of Luminit s LSD scatter model in OpticStudio. The scatter model presented here is the idealized scatter

More information

The Role of Light to Sight

The Role of Light to Sight Reflection The Role of Light to Sight The visual ability of humans and other animals is the result of the complex interaction of light, eyes and brain. Absence of Light Darkness. Luminous objects are objects

More information

Computer Graphics Tick 1

Computer Graphics Tick 1 Computer Graphics Tick 1 Introduction to Ray Tracing Figure 1: The image you will create in this exercise. 1 Introduction In this exercise you will write code for a simple ray tracer. Ray tracing is a

More information

TracePro Tutorial Tissue Optics

TracePro Tutorial Tissue Optics TracePro Tutorial Tissue Optics Splitting the Screen To view the System Tree, select Window Split, then drag the mouse to the right to position the vertical splitter bar. Alternatively, you can place your

More information

CODE V COM Interface COM-1

CODE V COM Interface COM-1 CODE V COM Interface 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: service@opticalres.com World Wide Web: http://www.opticalres.com COM API CODE

More information

New Features in CODE V Version 10

New Features in CODE V Version 10 Webinar Series New Features in CODE V Version 10 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: service@opticalres.com World Wide Web: http://www.opticalres.com

More information

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017 CS354 Computer Graphics Ray Tracing Qixing Huang Januray 24th 2017 Graphics Pipeline Elements of rendering Object Light Material Camera Geometric optics Modern theories of light treat it as both a wave

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Wearality Sky Field of View

Wearality Sky Field of View Wearality Sky Field of View Wearality Technical Staff info@wearality.com Introduction The Panorama Lens in Wearality Sky represents five years of research optimizing wide field of view (FOV) optics for

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Accurate LED Source Modeling using TracePro

Accurate LED Source Modeling using TracePro Accurate LED Source Modeling using TracePro Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA 01460 Moderator: Mike Gauvin Vice President of Sales and Marketing Lambda Research Corporation

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Houdini Light, Shade, Render

Houdini Light, Shade, Render Houdini Light, Shade, Render M06: Creating a Light Rig Ari Danesh ari@sidefx.com Agenda More Managing Desktop (A Diversion) Looking at Existing Light Rig Digital Assets (Three Point Light) Creating our

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Release notes. October 8, If you have questions, contact

Release notes. October 8, If you have questions, contact Release notes October 8, 2018 If you have questions, contact Support@Zemax.com Contents 1. About LensMechanix...2 2. LensMechanix User Interface...3 3. Load Opticstudio Files...4 3.1 Load Opticstudio File...4

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 Presenter Dave Jacobsen Senior Application Engineer at Lambda Research Corporation for

More information

Stray light calculation methods with optical ray trace software

Stray light calculation methods with optical ray trace software Stray light calculation methods with optical ray trace software Gary L. Peterson Breault Research Organization 6400 East Grant Road, Suite 350, Tucson, Arizona 85715 Copyright 1999, Society of Photo-Optical

More information

DESIGNING A SIMPLE OPTICAL SYSTEM IN LIGHTTOOLS

DESIGNING A SIMPLE OPTICAL SYSTEM IN LIGHTTOOLS DESIGNING A SIMPLE OPTICAL SYSTEM IN LIGHTTOOLS Liliana Ruiz Diaz December 08, 2016 College of Optical Sciences, University of Arizona, Tucson, AZ USA 85721 WHAT IS LIGHTTOOLS LightTools is a 3D optical

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Scattering measurements. Guidelines for measurements service

Scattering measurements. Guidelines for measurements service Scattering measurements Guidelines for measurements service 1 Content Introduction Light Tec Presentation Instruments availalable. Scattering measurements Refelctors Diffusers Colors issuses Volume Scattering

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Microsatellite Star Tracking Baffles: Validation and Testing

Microsatellite Star Tracking Baffles: Validation and Testing Microsatellite Star Tracking Baffles: Validation and Testing Martin Marciniak John Enright Tom Dzamba Ryerson University Doug Sinclair Sinclair Interplanetary 1 Purpose Star tracker baffles are designed

More information

Assignment 1 Due September 6, 2011

Assignment 1 Due September 6, 2011 Assignment 1 Due September 6, 2011 Text readings A brief history of optics [Pages 1-9] Reflection and refraction [Pages 95-104] Huygen's principle [pages 104-106] Fermat's principle [Pages 106-111] Total

More information

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website: Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave

More information

Light Tec Scattering measurements guideline

Light Tec Scattering measurements guideline Light Tec Scattering measurements guideline 1 Our Laboratory Light Tec is equipped with a Photometric Laboratory (a dark room) including: Goniophotometers: REFLET 180S. High specular bench (10 meters),

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

Part 1: Plane Mirrors!

Part 1: Plane Mirrors! Algodoo Optics Part 1: Plane Mirrors This activity will model, using Algodoo, the mirror lab experiment from class. With a physical model, students are asked to look into the mirror from two different

More information

Photorealism: Ray Tracing

Photorealism: Ray Tracing Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any

More information

TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times

TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA 01460 www.lambdares.com Moderator:

More information

FRED Display Application Note

FRED Display Application Note FRED Display Application Note Most displays consist of several optical components. The most important component is the source of light that illuminates the display. All displays need a mechanism to send

More information

Light Tec Scattering measurements guideline

Light Tec Scattering measurements guideline Light Tec Scattering measurements guideline 1 Our Laboratory Light Tec is equipped with a Photometric Laboratory (a dark room) including: Goniophotometers: REFLET180s. High specular bench (10 meters),

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Rainbows. A. D. Andrew G. L. Cain S. S. Crum T. D. Morley. Introduction

Rainbows. A. D. Andrew G. L. Cain S. S. Crum T. D. Morley. Introduction Rainbows A. D. Andrew G. L. Cain S. S. Crum T. D. Morley Introduction Most of us are familiar with the sight of a rainbow after a rainstorm. The sun is at our back, and we see an arc with violet innermost,

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

Light Tec Scattering measurements guideline

Light Tec Scattering measurements guideline Light Tec Scattering measurements guideline 1 2 Light Tec Locations REFLET assembling plant, Aix-en-Provence, France Light Tec GmbH, Munich, Germany German office Light Tec Sarl, Hyères, France Main office

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

LightTools Illumination Design Software

LightTools Illumination Design Software LightTools Illumination Design Software Design, Analyze, Optimize and Deliver Illumination Optics synopsys.com/optical-solutions Design Highlights Design Highlights at a Glance Smart system modeling with

More information

Light Tec Scattering measurements guideline

Light Tec Scattering measurements guideline Light Tec Scattering measurements guideline 1 Our Laboratory Light Tec is equipped with a Photometric Laboratory (a dark room) including: Goniophotometers: REFLET 180S. High specular bench (10 meters),

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material

Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material WHITE PAPER Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material Author Andreas Bielawny, Ph.D. CAE Synopsys, Inc. Abstract LucidShape accurately simulates how light interacts

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

Ray tracing. Methods of Programming DV2. Introduction to ray tracing and XML. Forward ray tracing. The image plane. Backward ray tracing

Ray tracing. Methods of Programming DV2. Introduction to ray tracing and XML. Forward ray tracing. The image plane. Backward ray tracing Methods of Programming DV2 Introduction to ray tracing and XML Ray tracing Suppose we have a description of a 3-dimensional world consisting of various objects spheres, triangles (flat), planes (flat,

More information

TOTAL INTERNAL REFLECTION BASED ANGLE FILTER FOR SIDE IMAGE MITIGATION IN A CURVED LIGHTGUIDE

TOTAL INTERNAL REFLECTION BASED ANGLE FILTER FOR SIDE IMAGE MITIGATION IN A CURVED LIGHTGUIDE Technical Disclosure Commons Defensive Publications Series November 15, 2017 TOTAL INTERNAL REFLECTION BASED ANGLE FILTER FOR SIDE IMAGE MITIGATION IN A CURVED LIGHTGUIDE Ozan Cakmakci James Dunphy Oscar

More information

6. Illumination, Lighting

6. Illumination, Lighting Jorg s Graphics Lecture Notes 6. Illumination, Lighting 1 6. Illumination, Lighting No ray tracing in OpenGL! ray tracing: direct paths COP interreflection: soft shadows, color bleeding. umbra, penumbra,

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

Shadows. COMP 575/770 Spring 2013

Shadows. COMP 575/770 Spring 2013 Shadows COMP 575/770 Spring 2013 Shadows in Ray Tracing Shadows are important for realism Basic idea: figure out whether a point on an object is illuminated by a light source Easy for ray tracers Just

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University Global Illumination CS334 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g., a bulb)

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

LightTools Illumination Design Software. Design, Analyze, Optimize and Deliver Illumination Optics

LightTools Illumination Design Software. Design, Analyze, Optimize and Deliver Illumination Optics LightTools Illumination Design Software Design, Analyze, Optimize and Deliver Illumination Optics Design Highlights Design Highlights at a Glance ``Smart system modeling with full optical accuracy and

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

Visible Surface Detection Methods

Visible Surface Detection Methods Visible urface Detection Methods Visible-urface Detection identifying visible parts of a scene (also hidden- elimination) type of algorithm depends on: complexity of scene type of objects available equipment

More information

18.4 Release Notes May 10th, 2018

18.4 Release Notes May 10th, 2018 18.4 Release Notes May 10 th, 2018 CONTENTS 1 Sequential Features... 3 1.1 Full-Field Aberration analysis (Professional and Premium editions)... 3 1.2 GRIN surface usage with User-Defined and Grid Sag

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

LBP2-SAM Series Beam Sampler for C-mount Cameras. User Notes

LBP2-SAM Series Beam Sampler for C-mount Cameras. User Notes LBP2-SAM Series Beam Sampler for C-mount Cameras P/N LBP2-SAM-UV, LBP2-SAM-VIS, LBP2-SAM-IR and LBP2-SAM-BB User Notes Newport Corporation 1791 Deere Avenue Irvine, CA 92606 www.newport.com For Sales,

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 15 RAY TRACING 1 Announcements Programming Assignment 3 out today - overview @ end of the class Ray Tracing 2 Lecture Overview Review of last class Ray Tracing 3 Local

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. 11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

CEng 477 Introduction to Computer Graphics Fall 2007

CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the

More information

Lighting and Shading

Lighting and Shading Lighting and Shading Today: Local Illumination Solving the rendering equation is too expensive First do local illumination Then hack in reflections and shadows Local Shading: Notation light intensity in,

More information

Light distribution curves, illumination and isolux diagrams

Light distribution curves, illumination and isolux diagrams Light distribution curves, illumination and isolux diagrams 77 986 77 97 77 831 β = 5 /7 cd/klm 1 36 cd/klm C 18 - C C 7 - C 9 C 195 - C 15 3 6 3 3 6 Fig. 1 Fig. 5 Light distribution curves Careful planning

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

COMP30019 Graphics and Interaction Ray Tracing

COMP30019 Graphics and Interaction Ray Tracing COMP30019 Graphics and Interaction Ray Tracing Department of Computer Science and Software Engineering The Lecture outline Ray tracing Recursive Ray Tracing Binary Space Partition (BSP) Trees Refraction

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

OptisWorks. SolidWorks - integrated solutions for the modeling and perception of light

OptisWorks. SolidWorks - integrated solutions for the modeling and perception of light OptisWorks SolidWorks - integrated solutions for the modeling and perception of light OptisWorks for SolidWorks The complete simulation solution for the design, analysis, optimization and virtual prototyping

More information

NEAR FIELD GONIOMETRIC SYSTEMS FOR SOLID STATE LIGHTING: LUMINANCE, INTENSITY, COLOR, AND

NEAR FIELD GONIOMETRIC SYSTEMS FOR SOLID STATE LIGHTING: LUMINANCE, INTENSITY, COLOR, AND NEAR FIELD GONIOMETRIC SYSTEMS FOR SOLID STATE LIGHTING: LUMINANCE, INTENSITY, COLOR, AND SPECTRA AS A FUNCTION OF ANGLE Douglas Kreysar Chief Operating Officer Presentation Outline What is a Near Field

More information

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 10 llumination Models and Surface-Rendering Methods Somsak Walairacht, Computer Engineering, KMTL Outline Light Sources Surface Lighting Effects Basic llumination Models Polygon

More information

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene. SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Werner Purgathofer

Werner Purgathofer Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

More information

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter Reading: Light Key concepts: Huygens s principle; reflection; refraction; reflectivity; total reflection; Brewster angle; polarization by absorption, reflection and Rayleigh scattering. 1.! Questions about

More information

SnapLED Xtreme. Assembly and handling information. Introduction. Scope AUTOMOTIVE

SnapLED Xtreme. Assembly and handling information. Introduction. Scope AUTOMOTIVE AUTOMOTIVE SnapLED Xtreme Assembly and handling information Introduction This application brief covers recommended assembly and handling procedures for SnapLED Xtreme. SnapLED Xtreme emitters leverage

More information

LECTURE 15 REFLECTION & REFRACTION. Instructor: Kazumi Tolich

LECTURE 15 REFLECTION & REFRACTION. Instructor: Kazumi Tolich LECTURE 15 REFLECTION & REFRACTION Instructor: Kazumi Tolich Lecture 15 2 18.1 The ray model of light Source of light rays Ray diagrams Seeing objects Shadows 18.2 Reflection Diffuse reflection The plane

More information

COMPUTER GRAPHICS AND INTERACTION

COMPUTER GRAPHICS AND INTERACTION DH2323 DGI17 COMPUTER GRAPHICS AND INTERACTION INTRODUCTION TO RAYTRACING Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

Choosing the Right Illumination Design Software

Choosing the Right Illumination Design Software Software for the Design and Engineering of Illumination Optics Choosing the Right Illumination Design Software As a decision maker responsible for making the right choices for your company s bottom line,

More information

Light and Sound. Wave Behavior and Interactions

Light and Sound. Wave Behavior and Interactions Light and Sound Wave Behavior and Interactions How do light/sound waves interact with matter? WORD Definition Example Picture REFLECTED REFRACTED is the change in direction of a wave when it changes speed

More information

CPU to GPU translation

CPU to GPU translation Illuminating Ideas FRED MPC Version #: 17.104.0 Last Updated: October 1, 2018 Table of Contents Document Overview... 1 Numerical Precision... 2 Raytrace Modes... 2 Sources... 4 Rays... 6 Surfaces... 7

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Chapter 10. Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL

Chapter 10. Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 10 llumination Models and Surface-Rendering Methods Somsak Walairacht, Computer Engineering, KMTL 1 Outline Light Sources Surface Lighting Effects Basic llumination Models Polygon

More information

Optimization of optical systems for LED spot lights concerning the color uniformity

Optimization of optical systems for LED spot lights concerning the color uniformity Optimization of optical systems for LED spot lights concerning the color uniformity Anne Teupner* a, Krister Bergenek b, Ralph Wirth b, Juan C. Miñano a, Pablo Benítez a a Technical University of Madrid,

More information

Computer Graphics - Chapter 1 Graphics Systems and Models

Computer Graphics - Chapter 1 Graphics Systems and Models Computer Graphics - Chapter 1 Graphics Systems and Models Objectives are to learn about: Applications of Computer Graphics Graphics Systems Images: Physical and Synthetic The Human Visual System The Pinhole

More information

Fast ray tracing on phase space

Fast ray tracing on phase space Supervisor: Jan ten Thije Boonkkamp Philips supervisors: Wilbert IJzerman and Teus Tukker CASA-Day, 8 April 2015 Outline Introduction Physical background Monte Carlo ray tracing Phase space representation

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information