A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL PDES

Size: px
Start display at page:

Download "A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL PDES"

Transcription

1 European Conference on Computational Fluid Dnamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périau (Eds) c TU Delft, The Netherlands, 26 A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL PDES Hassan Goldani Moghaddam and Wane H. Enright Department of Computer Science Universit of Toronto King s College Road, Toronto, ON, M5S 3G4, Canada goldani@cs.toronto.edu Department of Computer Science Universit of Toronto King s College Road, Toronto, ON, M5S 3G4, Canada enright@cs.toronto.edu Ke words: Scattered Data, Scientific Visualization, Interpolation, Three-Dimensional PDE. Abstract. Using Differential Equation Interpolant (DEI), one can accuratel approimate the solution of a Partial Differential Equation (PDE) at off-mesh points. The idea is to allocate a multi-variate polnomial to each mesh element and consequentl, the collection of such polnomials over all mesh elements will define a piecewise polnomial approimation. In this paper we will investigate such interpolants on a three-dimensional unstructured mesh. As reported in [], for a tetrahedron mesh in three dimensions, tensor product tri-quadratic and pure tri-cubic interpolants are the most appropriate candidates. We will report on the effectiveness of these alternatives on some tpical PDEs. Introduction. Motivation In man practical applications, the underling sstem is modeled b Partial Differential Equations (PDEs). In most applications, the underling PDEs do not have a closed form solution. In these cases, effective numerical methods can be applied to approimate the solution at a discrete set of mesh points in the domain associated with the problem definition. Although these approimations can be ver accurate at mesh points, if one wishes to visualize some properties of the solution on the whole domain, some etra data at off-mesh points must be generated. In [], Enright introduced the Differential Equation Interpolant (DEI) which approimates the solution of a PDE such that the approimations at off-mesh points have the same order of accurac as those at mesh points.

2 Hassan Goldani Moghaddam and Wane H. Enright In the case that the underling numerical method produces approimations on an unstructured mesh, the DEI can be considered to be a scattered data interpolant. In [3], we investigated such problems and introduced the PCI, a scattered data interpolant, for a two-dimensional second-order elliptic PDE. The PCI is globall continuous and efficient in terms of time and error. In this paper, we will etend the PCI to a three dimensional tri-variate interpolant and identif and investigate the most efficient interpolants based on the DEI approach..2 Outline In the net section, the problem of scattered data interpolation in three dimensions will be defined followed b three candidate interpolants. In section 3, numerical results will be presented. 2 Problem Definition In this paper, we focus on scattered discrete data associated with the numerical solution of a three-dimensional second-order elliptic PDE of the form Lu = g(,, z,u, u,u, u z ), where L is a given differential operator of the form L = a (,, z) a 2(,, z) a 3(,,z) 2 z 2. We assume that there are some accurate numerical results (approimate solution values, u(,, z), as well as approimate derivative values, u (,, z), u (,,z) and u z (,,z)) at some mesh points that are not necessaril structured. The mesh points partition the domain of the problem into a collection of mesh elements which are tetrahedra. Our approach is to associate with each mesh element e, a tri-variate polnomial p d,e (,,z) of degree d, which approimates u(,,z) on mesh element e. In other words, one can determine a polnomial p d,e (,, z) that interpolates the data values associated with the mesh points of e and almost satisfies the PDE at a predetermined set of collocation points of e. The number of collocation points depends on the degree d and tpe of interpolant (tensor product or pure). The collection of such polnomials over all mesh elements will then define a piecewise polnomial approimation p d (,, z), that is well defined for all (,, z) in the domain of interest. In [], Enright investigated the performance of this approach for both two and three dimensions. He reported that, for three-dimensional problems and tetrahedron meshes, pure tri-cubic interpolants and tensor product tri-quadratic are the most appropriate candidates. In this paper we compare the effectiveness of these alternatives on some test problems. 2

3 Hassan Goldani Moghaddam and Wane H. Enright A pure tri-cubic polnomial for a mesh element e is defined b where p (,,z) = 3 3 i 3 i j i= j= k= c ijk s i t j v k, s = ( ) D,t = ( ) D 2, v = (z z ) D 3, and (,,z ) is the corner of the associated enclosing bo of e with the smallest values of (,, z); and D, D 2 and D 3 are the dimensions of the bo. The number of unknown coefficients, c ijk s, for a pure three-dimensional interpolant of degree d can be epressed b d (k+)(k+2) k=. Thus for a pure tri-cubic, there are 2 2 unknown coefficients. Since we alread have 6 pieces of information (u, u, u and u z for each of four nodes of a tetrahedron), we have to consider 4 collocation points to uniquel determine the interpolant. A tensor product tri-quadratic polnomial can be also defined b p 2 (,, z) = c ijk s i t j v k. i= j= k= For a tensor product three-dimensional interpolant of degree d, there are (d + ) 3 unknown coefficients. Therefore for a tensor product tri-quadratic, we have 27 unknowns to identif. This results to consider collocation points for each mesh elements. Note that a pure tri-quadratic polnomial makes a total degree 2 and has onl unknowns. Since the number of unknowns is less than the number of linear equations provided b the information at four mesh points of e, it is not appropriate to investigate this tpe of interpolant. However we can consider a tri-quadratic polnomial of total degree 3 as follows: p 3 (,, z) = 2 i= min(2,3 i) j= min(2,3 i j) k= c ijk s i t j v k. Since p 3 has onl 7 unknown coefficients, it requires less time to compute rather than p 2. Our results show that it also generates more accurate results than p 2 in practice. 3 Results In this section, we will first introduce two test problems. We will then present test results comparing three mentioned candidates. 3

4 Hassan Goldani Moghaddam and Wane H. Enright 3. Test Problems Both test problems have a known closed-form solution and we use this known solution to generate the required data at the unstructured mesh points. The first test problem is a three-dimensional second-order elliptic PDE: on the domain and its closed-form solution is 2 u u u z 2 = 2π cos(π) sin(π) sin(πz) 3π2 u,, z u(,,z) = sin(π) sin(π) sin(πz). Figure shows its surface and contour plots for fied z =.5. z=.5.7 z= (a) The surface plot (b) The contour plot Figure : The first test problem: The surface and contour plots. The Second test problem is also a three-dimensional second-order elliptic PDE: 2 u + 2 u u 2 z = 2 6(2 )(z 2 + ) + ( 2 )(6 2)(z 2 + ) + 2( 2 )( 2 ), on the domain,, z and its closed-form solution is u(,, z) = ( 3 )( 3 2 )(z 2 + ). Figure 2 shows its surface and contour plots for fied z =.5. 4

5 Hassan Goldani Moghaddam and Wane H. Enright z=.5.8 z= (a) The surface plot (b) The contour plot Figure 2: The second test problem: The surface and contour plots. 3.2 Test Results In this section, we compare three candidate interpolants in terms of time, accurac and visualization. As of accurac, the average error over regular points in the domain has been computed. The scattered data is generated using a random approach and triangularized b the built-in Matlab delauna3 function [2]. # Mesh # Mesh Interpolant Points Elements p p 2 p First Test Problem Observed Order Second Test Problem Observed Order Table : Average error for both test problems. Table shows the average error of the candidate interpolants for different number of mesh points. As epected, the pure cubic interpolant p has the most accurate results for both test problems. Furthermore, table 2 represents the corresponding required computer time for the candidate interpolants and both test problems. It can be seen that 5

6 Hassan Goldani Moghaddam and Wane H. Enright p 3 needs less computer time than p and p 2 as it includes less unknown coefficients to identif. Considering both test problems, the required time depends on the number of mesh elements and number of unknowns and is almost independent of the test problem. # Mesh # Mesh Interpolant Points Elements p p 2 p First Test Problem Second Test Problem Table 2: Total required time (in seconds) for both test problems. Unfortunatel, none of these interpolants are globall continuous along the boundaries of the mesh elements. In fact, the provide continuit on the shared edges, but on the shared faces. Figure 3 shows the contour plots associated with the different interpolants on a tetrahedron mesh with 52 mesh points for the second test problem. The contour plots have been generated b the built-in Matlab contour procedure on a fine grid of size The pure tri-cubic generates more suitable results for visualization. As can be seen, tri-quadratic with total degree 3 generates better results rather than tensor product tri-quadratic with total degree 6. 4 Conclusions We compared three candidate interpolants defined for three-dimensional elliptic PDEs over an unstructured mesh. Test results show that pure tri-cubic interpolant generates more accurate results rather than tri-quadratic interpolants. It is also the best one in terms of visualization. REFERENCES [] Wane H. Enright. Accurate approimate solution of partial differential equations at off-mesh points. ACM Transaction on Mathematical Software, 26(2): , June 2. [2] MathWorks. MATLAB online documentation, 2 edition. 6

7 Hassan Goldani Moghaddam and Wane H. Enright z=.5.7 z= (a) The eact solution (b) pure tri-cubic (p ) z=.5.7 z= (c) tensor product tri-quadratic (p 2 ) (d) modified tri-quadratic (p 3 ) Figure 3: The contour plots of the eact solution and candidate interpolants for the second test problem on a tetrahedron mesh with 52 mesh points. [3] Hassan Goldani Moghaddam and Wane H. Enright. The PCI: A Scattered Data Interpolant For the Solution of Partial Differential Equations. In Proceedings of International Conference on Adaptive Modeling and Simulation, ADMOS 25, Barcelona, Spain, September 25. 7

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes by Hassan Goldani Moghaddam A thesis submitted in conformity with

More information

Chapter 5: Polynomial Functions

Chapter 5: Polynomial Functions Chapter : Polnomial Functions Section.1 Chapter : Polnomial Functions Section.1: Eploring the Graphs of Polnomial Functions Terminolog: Polnomial Function: A function that contains onl the operations of

More information

Chapter 3. Interpolation. 3.1 Introduction

Chapter 3. Interpolation. 3.1 Introduction Chapter 3 Interpolation 3 Introduction One of the fundamental problems in Numerical Methods is the problem of interpolation, that is given a set of data points ( k, k ) for k =,, n, how do we find a function

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

Discontinuous Galerkin Spectral Element Approximations for CFD

Discontinuous Galerkin Spectral Element Approximations for CFD Discontinuous Galerkin Spectral Element Approimations for CFD D.A. Kopriva Florida State Universit Tallahassee, FL 3236 G.B. Jacobs San Diego State Universit San Diego, CA 92182 September 3, 211 1 Code

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Grid and Mesh Generation. Introduction to its Concepts and Methods

Grid and Mesh Generation. Introduction to its Concepts and Methods Grid and Mesh Generation Introduction to its Concepts and Methods Elements in a CFD software sstem Introduction What is a grid? The arrangement of the discrete points throughout the flow field is simpl

More information

Lecture 3.4 Differential Equation Based Schemes

Lecture 3.4 Differential Equation Based Schemes Lecture 3.4 Differential Equation Based Schemes 1 Differential Equation Based Schemes As stated in the previous lecture, another important and most widel used method of structured mesh generation is based

More information

Numerical Analysis Notes

Numerical Analysis Notes Numerical Analsis Notes Foes Team Plotting of = f() contour-lines with Ecel Macro isol.ls The Ecel (XP/) macro isol.ls developed b SimonLuca Santoro and kindl released in the free public domain allows

More information

NUMERICAL PERFORMANCE OF COMPACT FOURTH ORDER FORMULATION OF THE NAVIER-STOKES EQUATIONS

NUMERICAL PERFORMANCE OF COMPACT FOURTH ORDER FORMULATION OF THE NAVIER-STOKES EQUATIONS Published in : Communications in Numerical Methods in Engineering (008 Commun.Numer.Meth.Engng. 008; Vol : pp 003-019 NUMERICAL PERFORMANCE OF COMPACT FOURTH ORDER FORMULATION OF THE NAVIER-STOKES EQUATIONS

More information

2.4. Families of Polynomial Functions

2.4. Families of Polynomial Functions 2. Families of Polnomial Functions Crstal pieces for a large chandelier are to be cut according to the design shown. The graph shows how the design is created using polnomial functions. What do all the

More information

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions?

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions? 1.2 Characteristics of Polnomial Functions In Section 1.1, ou eplored the features of power functions, which are single-term polnomial functions. Man polnomial functions that arise from real-world applications

More information

Online Homework Hints and Help Extra Practice

Online Homework Hints and Help Extra Practice Evaluate: Homework and Practice Use a graphing calculator to graph the polnomial function. Then use the graph to determine the function s domain, range, and end behavior. (Use interval notation for the

More information

Discussion: Clustering Random Curves Under Spatial Dependence

Discussion: Clustering Random Curves Under Spatial Dependence Discussion: Clustering Random Curves Under Spatial Dependence Gareth M. James, Wenguang Sun and Xinghao Qiao Abstract We discuss the advantages and disadvantages of a functional approach to clustering

More information

Developed in Consultation with Tennessee Educators

Developed in Consultation with Tennessee Educators Developed in Consultation with Tennessee Educators Table of Contents Letter to the Student........................................ Test-Taking Checklist........................................ Tennessee

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Cubic Spline Questions

Cubic Spline Questions Cubic Spline Questions. Find natural cubic splines which interpolate the following dataset of, points:.0,.,.,.0, 7.0,.,.0,0.; estimate the value for. Solution: Step : Use the n- cubic spline equations

More information

Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions

Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions Bonita Saunders Qiming Wang National Institute of Standards and Technology Bureau Drive

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Name Class Date 5.2 Graphing Polnomial Functions Essential Question: How do ou sketch the graph of a polnomial function in intercept form? Eplore 1 Investigating the End Behavior of the Graphs of Simple

More information

Quad-Tree Based Geometric-Adapted Cartesian Grid Generation

Quad-Tree Based Geometric-Adapted Cartesian Grid Generation Quad-Tree Based Geometric-Adapted Cartesian Grid Generation EMRE KARA1, AHMET ĐHSAN KUTLAR1, MEHMET HALUK AKSEL 1Department of Mechanical Engineering Universit of Gaziantep 7310 Gaziantep TURKEY Mechanical

More information

Contents. 24. Integration Numerical Integration... 2 Example Example

Contents. 24. Integration Numerical Integration... 2 Example Example Contents. Integration. Numerical Integration............................ Eample.8............................... Eample.0............................... Peterson, Technical Mathematics, rd edition. Numerical

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Transformations of y = x 2 Parent Parabola

Transformations of y = x 2 Parent Parabola Transformations of = 2 SUGGESTED LEARNING STRATEGIES: Marking the Tet, Interactive Word Wall, Create Representations, Quickwrite 1. Graph the parent quadratic function, f () = 2, on the coordinate grid

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

A Comparison of Some Numerical Methods for the Advection-Diffusion Equation

A Comparison of Some Numerical Methods for the Advection-Diffusion Equation Res Lett Inf Math Sci, 26, Vol1, pp49-62 Available online at http://iimsmasseyacnz/research/letters/ 49 A Comparison of Some Numerical Methods for the Advection-Diffusion Equation M Thongmoon 1 & R McKibbin

More information

Investigation Free Fall

Investigation Free Fall Investigation Free Fall Name Period Date You will need: a motion sensor, a small pillow or other soft object What function models the height of an object falling due to the force of gravit? Use a motion

More information

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function?

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function? 3.3 Characteristics of Polnomial Functions in Factored Form INVESTIGATE the Math The graphs of the functions f () 5 1 and g() 5 1 are shown.? GOAL Determine the equation of a polnomial function that describes

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Calibration and measurement reconstruction

Calibration and measurement reconstruction Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metrolog laborator Calibration and measurement reconstruction Scope Tasks - Calibration of a two-degree-of-freedom

More information

EECS1022 Winter 2018 Additional Notes Tracing Point, PointCollector, and PointCollectorTester

EECS1022 Winter 2018 Additional Notes Tracing Point, PointCollector, and PointCollectorTester EECS1022 Winter 2018 Additional Notes Tracing, Collector, and CollectorTester Chen-Wei Wang Contents 1 Class 1 2 Class Collector 2 Class CollectorTester 7 1 Class 1 class { 2 double ; double ; 4 (double

More information

Research Article Modified Bézier Curves with Shape-Preserving Characteristics Using Differential Evolution Optimization Algorithm

Research Article Modified Bézier Curves with Shape-Preserving Characteristics Using Differential Evolution Optimization Algorithm Advances in Numerical Analsis Volume 23, Article ID 858279, 8 pages http://d.doi.org/.55/23/858279 Research Article Modified Bézier Curves with Shape-Preserving Characteristics Using Differential Evolution

More information

Answers. Investigation 4. ACE Assignment Choices. Applications

Answers. Investigation 4. ACE Assignment Choices. Applications Answers Investigation ACE Assignment Choices Problem. Core Other Connections, ; Etensions ; unassigned choices from previous problems Problem. Core, 7 Other Applications, ; Connections ; Etensions ; unassigned

More information

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(1):150-155 ISSN: 0976-8610 CODEN (USA): AASRFC A numerical grid and grid less (Mesh less) techniques for

More information

Database Design 1DL400. Assignment 2:2

Database Design 1DL400. Assignment 2:2 Uppsala Universit Department of Information Technolog Kjell Orsborn Assignment : - Database Design II Database Design DL00 Assignment : A Scientific Database for Mesh-Based Data. Goals This eercise consists

More information

Essential Question How many turning points can the graph of a polynomial function have?

Essential Question How many turning points can the graph of a polynomial function have? .8 Analzing Graphs of Polnomial Functions Essential Question How man turning points can the graph of a polnomial function have? A turning point of the graph of a polnomial function is a point on the graph

More information

Answers Investigation 4

Answers Investigation 4 Answers Investigation Applications. a. At seconds, the flare will have traveled to a maimum height of 00 ft. b. The flare will hit the water when the height is 0 ft, which will occur at 0 seconds. c. In

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Numerical Solution of Optimal Control Problems Using B-Splines

Numerical Solution of Optimal Control Problems Using B-Splines Numerical Solution of Optimal Control Problems Using B-Splines Tamer Inanc Raktim Bhattachara Control and Dnamical Sstems Mail Code 17-81 California Institute of Technolog Pasadena, CA 9115. September

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

A new Adaptive PID Control Approach Based on Closed-Loop Response Recognition

A new Adaptive PID Control Approach Based on Closed-Loop Response Recognition roceedings of the 7th WSEAS nternational Conference on Automation & nformation, Cavtat, Croatia, June 13-15, 2006 (pp156-160) A Adaptive Control Approach Based on Closed-Loop Response Recognition MARTN

More information

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods Scott A. Sarra, Derek Sturgill Marshall University, Department of Mathematics, One John Marshall Drive, Huntington

More information

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x Section 6.3 Etrema and Models 593 6.3 Eercises In Eercises 1-8, perform each of the following tasks for the given polnomial. i. Without the aid of a calculator, use an algebraic technique to identif the

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

Journal of Engineering Research and Studies E-ISSN

Journal of Engineering Research and Studies E-ISSN Journal of Engineering Research and Studies E-ISS 0976-79 Research Article SPECTRAL SOLUTIO OF STEADY STATE CODUCTIO I ARBITRARY QUADRILATERAL DOMAIS Alavani Chitra R 1*, Joshi Pallavi A 1, S Pavitran

More information

3.1 Functions. The relation {(2, 7), (3, 8), (3, 9), (4, 10)} is not a function because, when x is 3, y can equal 8 or 9.

3.1 Functions. The relation {(2, 7), (3, 8), (3, 9), (4, 10)} is not a function because, when x is 3, y can equal 8 or 9. 3. Functions Cubic packages with edge lengths of cm, 7 cm, and 8 cm have volumes of 3 or cm 3, 7 3 or 33 cm 3, and 8 3 or 5 cm 3. These values can be written as a relation, which is a set of ordered pairs,

More information

2) The following data represents the amount of money Tom is saving each month since he graduated from college.

2) The following data represents the amount of money Tom is saving each month since he graduated from college. Mac 1 Review for Eam 3 Name(s) Solve the problem. 1) To convert a temperature from degrees Celsius to degrees Fahrenheit, ou multipl the temperature in degrees Celsius b 1.8 and then add 3 to the result.

More information

Application of a Coordinate Transformation and Discretization Method for Computational Fluid Dynamics

Application of a Coordinate Transformation and Discretization Method for Computational Fluid Dynamics Application of a Coordinate Transformation and Discretization Method for Computational Fluid Dnamics 1 Douglas F. Hunsaker Utah State Universit An overview of the computational methods implemented in a

More information

Spectral Analysis for Fourth Order Problem Using Three Different Basis Functions

Spectral Analysis for Fourth Order Problem Using Three Different Basis Functions Volume 119 o. 1, 09- ISS: 11-9 (on-line version url: http://www.ijpam.eu ijpam.eu Spectral Analsis for Fourth Order Problem Using Three Different Basis Functions 1 Sagitha and Rajeswari Seshadri 1 Department

More information

Chapter 3. Selected advancements in finite element method

Chapter 3. Selected advancements in finite element method Chapter 3. elected advancements in finite element method Learning outcomes After working through the material in this chapter ou should be able to: 1. Understand the idea behind isoparametric elements

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS

PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS Topic 21: Problem solving with eponential functions 323 PROBLEM SOLVING WITH EXPONENTIAL FUNCTIONS Lesson 21.1 Finding function rules from graphs 21.1 OPENER 1. Plot the points from the table onto the

More information

Three-Dimensional Object Representations Chapter 8

Three-Dimensional Object Representations Chapter 8 Three-Dimensional Object Representations Chapter 8 3D Object Representation A surace can be analticall generated using its unction involving the coordinates. An object can be represented in terms o its

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

Asymptotic Error Analysis

Asymptotic Error Analysis Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC www.math.ubc.ca/ wetton PIMS YRC, June 3, 2014 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History:

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method P.B. Choksi 1 and A.K. Pathak 2 1 Research Scholar, Rai University,Ahemdabad. Email:pinalchoksey@gmail.com 2 H.O.D.

More information

5.6 Translations and Combinations of Transformations

5.6 Translations and Combinations of Transformations 5.6 Translations and Combinations of Transformations The highest tides in the world are found in the Ba of Fund. Tides in one area of the ba cause the water level to rise to 6 m above average sea level

More information

Lecture 3.2 Methods for Structured Mesh Generation

Lecture 3.2 Methods for Structured Mesh Generation Lecture 3.2 Methods for Structured Mesh Generation 1 There are several methods to develop the structured meshes: Algebraic methods, Interpolation methods, and methods based on solving partial differential

More information

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x Section 6.3 Etrema and Models 593 6.3 Eercises In Eercises 1-8, perform each of the following tasks for the given polnomial. i. Without the aid of a calculator, use an algebraic technique to identif the

More information

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems 2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems Choon Ki Ahn, Jung Hun Park, and Wook Hyun Kwon 1 Abstract CEMTool is a command style design and analyzing package for scientific

More information

Hybrid Computing Algorithm in Representing Solid Model

Hybrid Computing Algorithm in Representing Solid Model The International Arab Journal of Information Technolog, Vol. 7, No. 4, October 00 4 Hbrid Computing Algorithm in Representing Solid Model Muhammad Matondang and Habibollah Haron Department of Modeling

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Fast PSF reconstruction using the frozen flow hypothesis

Fast PSF reconstruction using the frozen flow hypothesis Fast PSF reconstruction using the frozen flow hpothesis James Nag Mathematics and Computer Science Emor Universit Atlanta, GA 30322, USA nag@mathcsemoredu Stuart Jefferies Institue for Astronom Universit

More information

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002 Eitan Grinspun Caltech Petr Krysl UCSD Peter Schröder Caltech Presented by Jose Guerra 1 Outline Background Motivation (Element vs. Basis

More information

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI-9979711 Bernard Grossman, William H. Mason, Layne T. Watson, Serhat Hosder, and Hongman Kim Virginia Polytechnic

More information

Chapter Three Chapter Three

Chapter Three Chapter Three Chapter Three Chapter Three 90 CHAPTER THREE ConcepTests for Section.. If f () = g (), then f() = g(). (a) True (b) False (b). If f () = g (), then f() = g() + C, where C is some constant. You might point

More information

A Fourth-Order Gas-Kinetic CPR Method for the Navier-Stokes Equations on Unstructured Meshes

A Fourth-Order Gas-Kinetic CPR Method for the Navier-Stokes Equations on Unstructured Meshes Tenth International Conference on Computational Fluid Dnamics (ICCFD), Barcelona,Spain, Jul 9-, 8 ICCFD-8- A Fourth-Order Gas-Kinetic CPR Method for the Navier-Stokes Equations on Unstructured Meshes Chao

More information

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods Abstract In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals

More information

A9.1 Linear programming

A9.1 Linear programming pplications 9. Linear programming 9. Linear programming efore ou start You should be able to: show b shading a region defined b one or more linear inequalities. Wh do this? Linear programming is an eample

More information

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Ivan Christov 1,* Bojan Popov 1 Peter Popov 2 1 Department of Mathematics, 2 Institute for Scientific

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes Sanjay Kumar Khattri Department of Mathematics, University of Bergen, Norway sanjay@mi.uib.no http://www.mi.uib.no/ sanjay Abstract. Mesh

More information

Adaptive and Smooth Surface Construction by Triangular A-Patches

Adaptive and Smooth Surface Construction by Triangular A-Patches Adaptive and Smooth Surface Construction by Triangular A-Patches Guoliang Xu Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, China Abstract

More information

Write Polynomial Functions and Models

Write Polynomial Functions and Models TEKS 5.9 a.3, A.1.B, A.3.B; P.3.B Write Polnomial Functions and Models Before You wrote linear and quadratic functions. Now You will write higher-degree polnomial functions. Wh? So ou can model launch

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 16 Higher Degree Equations 1 Worksheet 16.1: A Graphical Eploration of Polnomials............ 4 Worksheet 16.2: Thinking about Cubic Functions................

More information

Bias-Variance Decomposition Error Estimators

Bias-Variance Decomposition Error Estimators Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Bias-Variance Decomposition Error Estimators Cross-Validation

Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Systems of Linear Equations

Systems of Linear Equations Sstems of Linear Equations Gaussian Elimination Tpes of Solutions A linear equation is an equation that can be written in the form: a a a n n b The coefficients a i and the constant b can be real or comple

More information

Instructor: Virginia Davis Course: Foundations for College Math (1)

Instructor: Virginia Davis Course: Foundations for College Math (1) 5/19/01 Final Eam Review Ch 10,11-Virginia Davis Student: Date: Instructor: Virginia Davis Course: Foundations for College Math (1) Assignment: Final Eam Review Ch 10,11 1. Simplif b factoring. Assume

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION The volume of a sphere is the limit of sums of volumes of approimating clinders. In this chapter we eplore some of the applications of the definite integral b using it to

More information

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION

More information

C3 Integration 1. June 2010 qu. 4

C3 Integration 1. June 2010 qu. 4 C Integration. June qu. 4 k The diagram shows part of the curve y =, where k is a positive constant. The points A and B on the curve have -coordinates and 6 respectively. Lines through A and B parallel

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Discrete Coons patches

Discrete Coons patches Computer Aided Geometric Design 16 (1999) 691 700 Discrete Coons patches Gerald Farin a,, Dianne Hansford b,1 a Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, USA b NURBS

More information

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

Nodal Basis Functions for Serendipity Finite Elements

Nodal Basis Functions for Serendipity Finite Elements Nodal Basis Functions for Serendipity Finite Elements Andrew Gillette Department of Mathematics University of Arizona joint work with Michael Floater (University of Oslo) Andrew Gillette - U. Arizona Nodal

More information

New Basis Functions and Their Applications to PDEs

New Basis Functions and Their Applications to PDEs Copyright c 2007 ICCES ICCES, vol.3, no.4, pp.169-175, 2007 New Basis Functions and Their Applications to PDEs Haiyan Tian 1, Sergiy Reustkiy 2 and C.S. Chen 1 Summary We introduce a new type of basis

More information

1.1. Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions?

1.1. Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions? 1.1 Parent Functions and Transformations Essential Question What are the characteristics of some of the basic parent functions? Identifing Basic Parent Functions JUSTIFYING CONCLUSIONS To be proficient

More information