Real-world bandit applications: Bridging the gap between theory and practice

Size: px
Start display at page:

Download "Real-world bandit applications: Bridging the gap between theory and practice"

Transcription

1 Real-world bandit applications: Bridging the gap between theory and practice Audrey Durand EWRL 2018

2 The bandit setting (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985) Action Agent Context Environment Reward Flow 1. (Receive context) 2. Select action 3. Observe reward 4. Go back to step 1 Audrey Durand Real-world bandit applications 1

3 Structure in bandit problems Contextual bandits Reward = function of context Structured bandits Reward = function of action Reward 0-1 Reward 0.5 Action 1 Action 2 Action 3 Action Context Actions Audrey Durand Real-world bandit applications 2

4 Capturing structure with kernel regression Non-linear f(x) f(x) = ϕ(x) θ X ϕ( ) K Kernel k(x, x ) = ϕ(x) ϕ(x ) x, x X Audrey Durand Real-world bandit applications 3

5 Posterior model Gathering observations y 1, y 2,..., y N at locations x 1, x 2,..., x N Assuming that y i = f(x i ) + ξ i with ξ i N (0, σ 2 ) θ N d (0, Σ) with Σ = σ2 λ I d for λ > 0 Gaussian posterior on f f λ,n x 1,..., x N, y 1,..., y N N ([f λ,n (x)] x X, σ2 ) λ [k λ,n(x, x )] x,x X with f λ,n (x) = k N (x) (K N + λi N ) 1 y N, k λ,n (x, x ) = k(x, x ) k N (x) (K N + λi N ) 1 k N (x ) Audrey Durand Real-world bandit applications 4

6 Gaussian Process (GP) (Rasmussen and Williams, 2006) For λ = σ 2, i.e. assuming θ N d (0, I d ) (a) N = 1 (b) N = 10 (c) N = 50 Theoretical guarantees in the streaming setting Many applications in bandits, e.g. Kernel UCB, Kernel TS, CGP/GP-UCB, GP-TS Audrey Durand Real-world bandit applications 5

7 Adaptive treatment allocation for mice trials as contextual bandits Joint work with Joelle Pineau, Georgios D. Mitsis, Katerina Strati, Charis Achilleos, and Demetris Machine Learning for Healthcare (MLHC) 2018

8 Collecting data for personalized medecine Treatment adapted to the disease Which treatment should be allocated to patients with cancer given the stage of their disease? Tumour volume v = π 6 (lw)3/2 (Tomayko and Reynolds, 1989) Data acquisition setup Mice with induced cancer tumours Options: none, 5-FU, imiquimod, and imiquimod + 5-FU Natural death or sacrifice when tumour volume is critical Audrey Durand Real-world bandit applications 6

9 Initial data acquisition RCT (Randomized Clinical Trial) 6 mice, 163 triplets (v i, a i, v i ) Quick degradation of subjects Limited covering of the tumour volume space Volume (mm 3 ) (a) Tumour evolution Number of days Number of measurements (b) Tumour volume distribution Volume (mm 3 ) Audrey Durand Real-world bandit applications 7

10 Adaptive allocation ACT (Adaptive Clinical Trial) (Thompson, 1933) Favor selection of better treatments Reduce the exposition of less effective treatments Contextual bandits Context: tumour volume x t Actions: 4 possible treatment options Treatment effect: post-treatment tumour volume x t Reward: y t = x t Audrey Durand Real-world bandit applications 8

11 Select next action given the context BESA (Best Empirical Sampled Average) (Baransi et al., 2014) Fair comparison of empirical estimators Opportunities for action to show how good they are GP BESA for two actions Parameters: context x t, two actions a and b Let N (a) t 1 < N (b) t 1 Subset S (a) t all observations from a history Subset S (b) t Compute posterior mean subsample of N (a) t Compute posterior mean f (a) t f (b) t Select a t = argmax i {a,b} f (i) t (x t ) from b history using S (a) t using S (b) t Audrey Durand Real-world bandit applications 9

12 Regression on subsets of observations (a) N = 5 (b) N = Treatment effect f f N Treatment effect f f N Tumour volume Tumour volume (c) N = 20 (d) N = Treatment effect f f N Treatment effect f f N Tumour volume Tumour volume Audrey Durand Real-world bandit applications 10

13 Animal experiments Delayed feedback Update the history upon the completion of a group Group A mice 1 and 2 Group B mice 3, 4 and 5 Group C mice 6 and 7 Group D mice 8, 9 and 10 Baseline strategies for comparison No treatment (3 mice) Random (5 mice) 5-FU (4 mice) Audrey Durand Real-world bandit applications 11

14 Evolution of tumour volumes with adaptive allocation Volume (mm 3 ) Volume (mm 3 ) Volume (mm 3 ) Volume (mm 3 ) Group A Group B Group C Group D Days Recall: The algorithm is updated after each group Audrey Durand Real-world bandit applications 12

15 Animals live longer (a) Per approach (b) Per group of GP BESA Life duration (days) Life duration (days) None Random 5-FU GP BESA A B C D Preliminary results GP BESA median > 50% 5-FU median Visible improvement after each group To validate on a larger cohort Audrey Durand Real-world bandit applications 13

16 A better state space covering Number of measurements (a) Random allocation Volume (mm 3 ) Number de measurements (b) Adaptive allocation Volume (mm 3 ) Using data in a next phase More information on the tumor growth process 40% more data points of volume > 70mm 3 Audrey Durand Real-world bandit applications 14

17 Contextual bandits for adaptive clinical trials work well! Even though: Contexts were not independent The model was (over) simplistic Rewards were delayed We lost guarantees on the regression model Audrey Durand Real-world bandit applications 15

18 Theory vs Practice In theory... The kernel is well adapted to the function The noise variance σ 2 is known In practice... Sometimes the kernel is picked from expert knowledge Sometimes the kernel is tuned using previous data Sometimes σ 2 is learned from previous data Sometimes an upper bound σ 2 + σ 2 is used Audrey Durand Real-world bandit applications 16

19 Theory vs Practice In theory... The kernel is well adapted to the function The noise variance σ 2 is known In practice... Sometimes the kernel is picked from expert knowledge Sometimes the kernel is tuned using previous data Sometimes σ 2 is learned from previous data Sometimes an upper bound σ 2 + σ 2 is used Theory holds with this! Audrey Durand Real-world bandit applications 16

20 Impact of noise upper bound on regression model Using σ 2 + Using σ Audrey Durand Real-world bandit applications 17

21 Empirical noise variance estimate Confidence intervals on empirical variance (Maillard, 2016) Example with σ = 0.1: Confidence envelope σ + = 1.0 σ + = 0.5 σ + = t Use these intervals to adapt the regularization (λ) Audrey Durand Real-world bandit applications 18

22 Example: Adapting λ t vs fixed λ (unknown σ) 10 observations 100 observations observations observations f λ = σ 2 +/C 2 λ t = σ 2 +,t 1/C X X Audrey Durand Real-world bandit applications 19

23 Theory can hold with more realistic assumptions Requires initial lower/upper bounds σ /σ + instead of σ Preserves guarantees on the resulting regression model Tightest confidence intervals than using fixed σ + All details in Durand, Maillard, Pineau (JMLR 2018) Audrey Durand Real-world bandit applications 20

24 Optimizing super-resolution imaging parameters as multi-objective structured bandits Joint work with Flavie Lavoie-Cardinal, Paul De Koninck, Christian Gagné, Theresa Wiesner, Marc-André Gardner, Louis-Émile Robitaille, and Anthony Bilodeau

25 Observing structures at the nanoscale (Hell and Wichmann, 1994) Audrey Durand Real-world bandit applications 21

26 Optimizing imaging parameters Biology: The optimal parameters are not always the same Find good parameters during the imaging task Maximize the acquisition of images useful to researchers Minimize trials of poor parameters Structured bandits Action space: Space of parameters that can be tuned Reward function defined over the action space Audrey Durand Real-world bandit applications 22

27 Trade-off between different objectives Conflicting objectives Maximize image quality (structure visible) Minimize photobleaching (structure maintained after imaging) Include an expert in the learning loop Multi-objective bandits Estimates Expert Action Agent Environment Rewards Audrey Durand Real-world bandit applications 23

28 Producing estimates Thompson Sampling (Thompson, 1933) Decision based on sampling from the posterior distribution Kernel TS in the multi-objective loop Model each objective function f,i using kernel regression Sample f t,i from the posterior distribution on f,i Estimate at parameter configuration x = ( f t,i (x)) i E.g. (sampled imaging quality, sampled photobleaching) Audrey Durand Real-world bandit applications 24

29 Presenting estimates to user Expert acts as an argmax on the preference function Audrey Durand Real-world bandit applications 25

30 Experiments on neuronal imaging: two objectives Experimental conditions Three parameters (1000 configurations): Excitation laser power Depletion laser power Duration of imaging per pixel Two objectives: f,1 : image quality (structure visible) f,2 : photobleaching (structure maintained after imaging) Image quality feedback provided by expert Audrey Durand Real-world bandit applications 26

31 Example: Image quality of actin rings Poor images Good images Audrey Durand Real-world bandit applications 27

32 Logarithmic regret, as expected Neuron: Rat neuron PC12: Rat tumor cell line ulti-objective optimization of microscopy parameters for re HEK293: Human embryonic kidney cells parison across different cell types. a) Parameter configurati agingaudrey trials Durand in neuronal (green), Real-worldPC12 bandit applications (blue), and HEK (o

33 Better images without manual tuning Audrey Durand Real-world bandit applications 29

34 Fully automatized loop! Audrey Durand Real-world bandit applications 30

35 Logarithmic regret again, without expert in the loop I Bassoon: Protein from the nerve terminals active zone I Tubulin: Protein of cytoskeleton I Actin: Protein involved in cell motility and establishment/maintenance of cell junctions/shape Audrey Durand Real-world bandit applications 31

36 Fully automated imaging results Audrey Durand Real-world bandit applications 32

37 Structured bandits for online imaging parameters tuning with multiple objectives work well! Even though: We may have experts in the loop We may even have neural networks in the loop Audrey Durand Real-world bandit applications 33

38 Take home Bandits have great applications Theory is important: we should make it applicable Audrey Durand Real-world bandit applications 34

39 Thanks! Collaborators: Joelle Pineau Odalric-Ambrym Maillard Christian Gagné Georgios D. Mitsis Katerina Strati Demetris Iacovides Charis Achilleos Flavie-Lavoie Cardinal Paul De Koninck Theresa Wiesner Marc-André Gardner Louis-Émile Robitaille Anthony Bilodeau Audrey Durand Real-world bandit applications 35

An introduction to multi-armed bandits

An introduction to multi-armed bandits An introduction to multi-armed bandits Henry WJ Reeve (Manchester) (henry.reeve@manchester.ac.uk) A joint work with Joe Mellor (Edinburgh) & Professor Gavin Brown (Manchester) Plan 1. An introduction to

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Where we are. Exploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min)

Where we are. Exploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min) Where we are Background (15 min) Graph models, subgraph isomorphism, subgraph mining, graph clustering Eploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min)

More information

CME323 Report: Distributed Multi-Armed Bandits

CME323 Report: Distributed Multi-Armed Bandits CME323 Report: Distributed Multi-Armed Bandits Milind Rao milind@stanford.edu 1 Introduction Consider the multi-armed bandit (MAB) problem. In this sequential optimization problem, a player gets to pull

More information

Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe

Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe Topics What is Reinforcement Learning? Exploration vs. Exploitation The Multi-armed Bandit Optimizing read locations

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 10-810 /02-710 Computational Genomics Normalization Genes and Gene Expression Technology Display of Expression Information Yeast cell cycle expression Experiments (over time) baseline expression program

More information

Bayesian Optimization Nando de Freitas

Bayesian Optimization Nando de Freitas Bayesian Optimization Nando de Freitas Eric Brochu, Ruben Martinez-Cantin, Matt Hoffman, Ziyu Wang, More resources This talk follows the presentation in the following review paper available fro Oxford

More information

Bandit-based Search for Constraint Programming

Bandit-based Search for Constraint Programming Bandit-based Search for Constraint Programming Manuel Loth 1,2,4, Michèle Sebag 2,4,1, Youssef Hamadi 3,1, Marc Schoenauer 4,2,1, Christian Schulte 5 1 Microsoft-INRIA joint centre 2 LRI, Univ. Paris-Sud

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Web advertising We discussed how to match advertisers to queries in real-time But we did not discuss how to estimate

More information

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas Table of Contents Recognition of Facial Gestures...................................... 1 Attila Fazekas II Recognition of Facial Gestures Attila Fazekas University of Debrecen, Institute of Informatics

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Guidelines Submission. Submit a hardcopy of the report containing all the figures and printouts of code in class. For readability

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Basis Functions. Volker Tresp Summer 2017

Basis Functions. Volker Tresp Summer 2017 Basis Functions Volker Tresp Summer 2017 1 Nonlinear Mappings and Nonlinear Classifiers Regression: Linearity is often a good assumption when many inputs influence the output Some natural laws are (approximately)

More information

Bagging for One-Class Learning

Bagging for One-Class Learning Bagging for One-Class Learning David Kamm December 13, 2008 1 Introduction Consider the following outlier detection problem: suppose you are given an unlabeled data set and make the assumptions that one

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 3, 2013 ABOUT THIS

More information

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives Foundations of Machine Learning École Centrale Paris Fall 25 9. Support Vector Machines Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech Learning objectives chloe agathe.azencott@mines

More information

Introduction to Reinforcement Learning. J. Zico Kolter Carnegie Mellon University

Introduction to Reinforcement Learning. J. Zico Kolter Carnegie Mellon University Introduction to Reinforcement Learning J. Zico Kolter Carnegie Mellon University 1 Agent interaction with environment Agent State s Reward r Action a Environment 2 Of course, an oversimplification 3 Review:

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Transductive and Inductive Methods for Approximate Gaussian Process Regression

Transductive and Inductive Methods for Approximate Gaussian Process Regression Transductive and Inductive Methods for Approximate Gaussian Process Regression Anton Schwaighofer 1,2 1 TU Graz, Institute for Theoretical Computer Science Inffeldgasse 16b, 8010 Graz, Austria http://www.igi.tugraz.at/aschwaig

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

Degrees of Freedom in Cached Interference Networks with Limited Backhaul

Degrees of Freedom in Cached Interference Networks with Limited Backhaul Degrees of Freedom in Cached Interference Networks with Limited Backhaul Vincent LAU, Department of ECE, Hong Kong University of Science and Technology (A) Motivation Interference Channels 3 No side information

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Chapter 9 Chapter 9 1 / 50 1 91 Maximal margin classifier 2 92 Support vector classifiers 3 93 Support vector machines 4 94 SVMs with more than two classes 5 95 Relationshiop to

More information

Multi-Sensor Adaptive Signal Processing for Landmines

Multi-Sensor Adaptive Signal Processing for Landmines Multi-Sensor Adaptive Signal Processing for Landmines Leslie Collins, Mark Kolba, Peter Torrione, and Yongli Yu Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI Overview

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics. by Albert Gerovitch

Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics. by Albert Gerovitch Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics by Albert Gerovitch 1 Abstract Understanding the geometry of neurons and their connections is key to comprehending

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

Basis Functions. Volker Tresp Summer 2016

Basis Functions. Volker Tresp Summer 2016 Basis Functions Volker Tresp Summer 2016 1 I am an AI optimist. We ve got a lot of work in machine learning, which is sort of the polite term for AI nowadays because it got so broad that it s not that

More information

Transductive Learning: Motivation, Model, Algorithms

Transductive Learning: Motivation, Model, Algorithms Transductive Learning: Motivation, Model, Algorithms Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, FRANCE olivier.bousquet@m4x.org University of New Mexico, January 2002 Goal

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Confidence sharing: an economic strategy for efficient information flows in animal groups 1

Confidence sharing: an economic strategy for efficient information flows in animal groups 1 1 / 35 Confidence sharing: an economic strategy for efficient information flows in animal groups 1 Amos Korman 2 CNRS and University Paris Diderot 1 Appears in PLoS Computational Biology, Oct. 2014 2 Joint

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Apprenticeship Learning for Reinforcement Learning with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Table of Contents Introduction Theory Autonomous helicopter control

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Monte Carlo Tree Search PAH 2015

Monte Carlo Tree Search PAH 2015 Monte Carlo Tree Search PAH 2015 MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel Markov Decision Processes (MDPs) main formal model Π = S, A, D, T, R states finite set of states of the

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18

CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18 CSE 417T: Introduction to Machine Learning Lecture 6: Bias-Variance Trade-off Henry Chai 09/13/18 Let! ", $ = the maximum number of dichotomies on " points s.t. no subset of $ points is shattered Recall

More information

Super-resolution on Text Image Sequences

Super-resolution on Text Image Sequences November 4, 2004 Outline Outline Geometric Distortion Optical/Motion Blurring Down-Sampling Total Variation Basic Idea Outline Geometric Distortion Optical/Motion Blurring Down-Sampling No optical/image

More information

Ship Energy Systems Modelling: a Gray-Box approach

Ship Energy Systems Modelling: a Gray-Box approach MOSES Workshop: Modelling and Optimization of Ship Energy Systems Ship Energy Systems Modelling: a Gray-Box approach 25 October 2017 Dr Andrea Coraddu andrea.coraddu@strath.ac.uk 30/10/2017 Modelling &

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

MLCC 2018 Local Methods and Bias Variance Trade-Off. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Local Methods and Bias Variance Trade-Off. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Local Methods and Bias Variance Trade-Off Lorenzo Rosasco UNIGE-MIT-IIT About this class 1. Introduce a basic class of learning methods, namely local methods. 2. Discuss the fundamental concept

More information

SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin. April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1

SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin. April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1 SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1 Overview The goals of analyzing cross-sectional data Standard methods used

More information

SVM cont d. Applications face detection [IEEE INTELLIGENT SYSTEMS]

SVM cont d. Applications face detection [IEEE INTELLIGENT SYSTEMS] SVM cont d A method of choice when examples are represented by vectors or matrices Input space cannot be readily used as attribute-vector (e.g. too many attrs) Kernel methods: map data from input space

More information

arxiv: v2 [stat.ml] 5 Nov 2018

arxiv: v2 [stat.ml] 5 Nov 2018 Kernel Distillation for Fast Gaussian Processes Prediction arxiv:1801.10273v2 [stat.ml] 5 Nov 2018 Congzheng Song Cornell Tech cs2296@cornell.edu Abstract Yiming Sun Cornell University ys784@cornell.edu

More information

Advanced Crawling Techniques. Outline. Web Crawler. Chapter 6. Selective Crawling Focused Crawling Distributed Crawling Web Dynamics

Advanced Crawling Techniques. Outline. Web Crawler. Chapter 6. Selective Crawling Focused Crawling Distributed Crawling Web Dynamics Chapter 6 Advanced Crawling Techniques Outline Selective Crawling Focused Crawling Distributed Crawling Web Dynamics Web Crawler Program that autonomously navigates the web and downloads documents For

More information

Context Attentive Bandits: Contextual Bandit with Restricted Context

Context Attentive Bandits: Contextual Bandit with Restricted Context Context Attentive Bandits: Contextual Bandit with Restricted Context Djallel Bouneffouf 1, Irina Rish 2, Guillermo A. Cecchi 3, Raphaël Féraud 4 1,2,3 IBM Thomas J. Watson Research Center, Yorktown Heights,

More information

Observational Learning with Modular Networks

Observational Learning with Modular Networks Observational Learning with Modular Networks Hyunjung Shin, Hyoungjoo Lee and Sungzoon Cho {hjshin72, impatton, zoon}@snu.ac.kr Department of Industrial Engineering, Seoul National University, San56-1,

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence AI & Machine Learning & Neural Nets Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: Neural networks became a central topic for Machine Learning and AI. But in

More information

Learning Inverse Dynamics: a Comparison

Learning Inverse Dynamics: a Comparison Learning Inverse Dynamics: a Comparison Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstraße 38, 72076 Tübingen - Germany Abstract.

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

Super-Resolution from Image Sequences A Review

Super-Resolution from Image Sequences A Review Super-Resolution from Image Sequences A Review Sean Borman, Robert L. Stevenson Department of Electrical Engineering University of Notre Dame 1 Introduction Seminal work by Tsai and Huang 1984 More information

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

Topological Abstraction and Planning for the Pursuit-Evasion Problem

Topological Abstraction and Planning for the Pursuit-Evasion Problem Topological Abstraction and Planning for the Pursuit-Evasion Problem Alberto Speranzon*, Siddharth Srivastava (UTRC) Robert Ghrist, Vidit Nanda (UPenn) IMA 1/1/2015 *Now at Honeywell Aerospace Advanced

More information

Traditional Acquisition Functions for Bayesian Optimization

Traditional Acquisition Functions for Bayesian Optimization Traditional Acquisition Functions for Bayesian Optimization Jungtaek Kim (jtkim@postech.edu) Machine Learning Group, Department of Computer Science and Engineering, POSTECH, 77-Cheongam-ro, Nam-gu, Pohang-si

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Prediction Systems. Dan Crankshaw UCB RISE Lab Seminar 10/3/2015

Prediction Systems. Dan Crankshaw UCB RISE Lab Seminar 10/3/2015 Prediction Systems Dan Crankshaw UCB RISE Lab Seminar 10/3/2015 Learning Big Data Training Big Model Timescale: minutes to days Systems: offline and batch optimized Heavily studied... major focus of the

More information

FUNCTION optimization has been a recurring topic for

FUNCTION optimization has been a recurring topic for Bandits attack function optimization Philippe Preux and Rémi Munos and Michal Valko Abstract We consider function optimization as a sequential decision making problem under the budget constraint. Such

More information

Ranking Clustered Data with Pairwise Comparisons

Ranking Clustered Data with Pairwise Comparisons Ranking Clustered Data with Pairwise Comparisons Alisa Maas ajmaas@cs.wisc.edu 1. INTRODUCTION 1.1 Background Machine learning often relies heavily on being able to rank the relative fitness of instances

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand Effect of age and dementia on topology of brain functional networks Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand 1 Structural changes in aging brain Age-related changes in

More information

Spatial and multi-scale data assimilation in EO-LDAS. Technical Note for EO-LDAS project/nceo. P. Lewis, UCL NERC NCEO

Spatial and multi-scale data assimilation in EO-LDAS. Technical Note for EO-LDAS project/nceo. P. Lewis, UCL NERC NCEO Spatial and multi-scale data assimilation in EO-LDAS Technical Note for EO-LDAS project/nceo P. Lewis, UCL NERC NCEO Abstract Email: p.lewis@ucl.ac.uk 2 May 2012 In this technical note, spatial data assimilation

More information

Nonparametric Methods Recap

Nonparametric Methods Recap Nonparametric Methods Recap Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods Kernel Density estimate (also Histogram) Weighted frequency Classification - K-NN Classifier Majority

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN MOTIVATION FOR RANDOM FOREST Random forest is a great statistical learning model. It works well with small to medium data. Unlike Neural Network which requires

More information

The Offset Tree for Learning with Partial Labels

The Offset Tree for Learning with Partial Labels The Offset Tree for Learning with Partial Labels Alina Beygelzimer IBM Research John Langford Yahoo! Research June 30, 2009 KDD 2009 1 A user with some hidden interests make a query on Yahoo. 2 Yahoo chooses

More information

Simulation Calibration with Correlated Knowledge-Gradients

Simulation Calibration with Correlated Knowledge-Gradients Simulation Calibration with Correlated Knowledge-Gradients Peter Frazier Warren Powell Hugo Simão Operations Research & Information Engineering, Cornell University Operations Research & Financial Engineering,

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Information Filtering for arxiv.org

Information Filtering for arxiv.org Information Filtering for arxiv.org Bandits, Exploration vs. Exploitation, & the Cold Start Problem Peter Frazier School of Operations Research & Information Engineering Cornell University with Xiaoting

More information

Classification by Support Vector Machines

Classification by Support Vector Machines Classification by Support Vector Machines Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Practical DNA Microarray Analysis 2003 1 Overview I II III

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Bioimage Informatics. Lecture 8, Spring Bioimage Data Analysis (II): Point Feature Detection

Bioimage Informatics. Lecture 8, Spring Bioimage Data Analysis (II): Point Feature Detection Bioimage Informatics Lecture 8, Spring 2012 Bioimage Data Analysis (II): Point Feature Detection Lecture 8 February 13, 2012 1 Outline Project assignment 02 Comments on reading assignment 01 Review: pixel

More information

Bayes Classifiers and Generative Methods

Bayes Classifiers and Generative Methods Bayes Classifiers and Generative Methods CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Stages of Supervised Learning To

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

TTEDesigner User s Manual

TTEDesigner User s Manual TTEDesigner User s Manual John D. Cook Department of Biostatistics, Box 447 The University of Texas, M. D. Anderson Cancer Center 1515 Holcombe Blvd., Houston, Texas 77030, USA cook@mdanderson.org September

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

A Computational Theory of Clustering

A Computational Theory of Clustering A Computational Theory of Clustering Avrim Blum Carnegie Mellon University Based on work joint with Nina Balcan, Anupam Gupta, and Santosh Vempala Point of this talk A new way to theoretically analyze

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

A Model Based Neuron Detection Approach Using Sparse Location Priors

A Model Based Neuron Detection Approach Using Sparse Location Priors A Model Based Neuron Detection Approach Using Sparse Location Priors Electronic Imaging, Burlingame, CA 30 th January 2017 Soumendu Majee 1 Dong Hye Ye 1 Gregery T. Buzzard 2 Charles A. Bouman 1 1 Department

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Introduction to Queueing Theory for Computer Scientists

Introduction to Queueing Theory for Computer Scientists Introduction to Queueing Theory for Computer Scientists Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These

More information

Heteroskedasticity and Homoskedasticity, and Homoskedasticity-Only Standard Errors

Heteroskedasticity and Homoskedasticity, and Homoskedasticity-Only Standard Errors Heteroskedasticity and Homoskedasticity, and Homoskedasticity-Only Standard Errors (Section 5.4) What? Consequences of homoskedasticity Implication for computing standard errors What do these two terms

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

The Effects of Outliers on Support Vector Machines

The Effects of Outliers on Support Vector Machines The Effects of Outliers on Support Vector Machines Josh Hoak jrhoak@gmail.com Portland State University Abstract. Many techniques have been developed for mitigating the effects of outliers on the results

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM 1 Introduction In this assignment you will implement a particle filter to localize your car within a known map. This will

More information

Topics in Machine Learning-EE 5359 Model Assessment and Selection

Topics in Machine Learning-EE 5359 Model Assessment and Selection Topics in Machine Learning-EE 5359 Model Assessment and Selection Ioannis D. Schizas Electrical Engineering Department University of Texas at Arlington 1 Training and Generalization Training stage: Utilizing

More information

Style-based Inverse Kinematics

Style-based Inverse Kinematics Style-based Inverse Kinematics Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic SIGGRAPH 04 Presentation by Peter Hess 1 Inverse Kinematics (1) Goal: Compute a human body pose from a set

More information

Virtual Frap User Guide

Virtual Frap User Guide Virtual Frap User Guide http://wiki.vcell.uchc.edu/twiki/bin/view/vcell/vfrap Center for Cell Analysis and Modeling University of Connecticut Health Center 2010-1 - 1 Introduction Flourescence Photobleaching

More information