FIL SPM Course Spatial Preprocessing

Size: px
Start display at page:

Download "FIL SPM Course Spatial Preprocessing"

Transcription

1 Registration, noralisation, segentation, VBM Matthan Caan, BIC/CSCA suer school 2012 Neuroiage, 2012 slides copied/adjusted fro: FIL SPM Course Spatial Preprocessing 1. smri 2. DTI 3. fmri By John Ashburner & Ged Ridgway 4

2 Preprocessing overview Preprocessing overview fmri tie-series Anatoical MRI TPMs Input Output Segentation Transforation (seg_sn.at) Kernel REALIGN COREG SEGMENT NORM WRITE SMOOTH REALIGN COREG SEGMENT NORM WRITE SMOOTH ANALYSIS Motion corrected Mean functional (Headers changed) MNI Space ANALYSIS Contents 1. Registration basics 2. Motion and realignent 3. Inter-odal coregistration 4. Spatial noralisation 5. Unified segentation Special cases of affine registration * Manual reorientation * Rigid intra-odal realignent * Motion correction of fmri tie-series * Within-subject longitudinal registration of serial smri * Rigid inter-odal coregistration * Aligning structural and (ean) functional iages * Multiodal structural registration, e.g. T1-T2 * Affine inter-subject registration * First stage of non-linear spatial noralisation * Approxiate alignent of tissue probability aps

3 Affine transforations * Rigid rotations have six degrees of freedo (DF) * Three translations and a 3D rotation (e.g. 3 axis rots.) * Voxel-world appings (spacing) usually include three scaling DF (for a possible total of 9 DF) * General 3D affine transforations add three shears (12 DF total) * Affine transfor properties * Parallel lines reain parallel Degrees of freedo (DOF) FSL 10 rigid (6) Degrees of freedo (DOF) SPM affine (12): Noralise: affine + non-linear Select 0 non-linear iterations Other types of registration in SPM * Non-linear spatial noralisation * Registering different subjects to a standard teplate * Unified segentation and noralisation * Warping standard-space tissue probability aps to a particular subject (can noralise using the inverse) * High-diensional warping * Modelling sall longitudinal deforations (e.g. AD) * DARTEL * Sooth large-deforation warps using flows * Noralisation to group s average shape teplate 11

4 Voxel-to-world apping Transforation atrix * Affine transfor associated with each iage * Maps fro voxels (x=1..n x, y=1..n y, z=1..n z ) to soe world coordinate syste. e.g. scanner co-ordinates * Registering iage B (source) to iage A (target) will update B s voxel-to-world apping (!!!) * If B is aligned with C, the apping should applied to both! T Contains translation, rotation, scaling, stretching, shearing. In MATLAB: n=nifti( T1.nii ) % read nifti-header n.at % display transforation In FSL: fslhd or fslinfo Manual reorientation Manual reorientation Iage headers contain inforation that lets us ap fro voxel indices to world coordinates in Modifying this apping lets us reorient (and realign or coregister) the iage(s)

5 Transforation/reorientation atrix SPM display SPM coreg result Interpolation (voxel size 1x1x3 ) (Bi)linear FSL flirt transforation atrix Nearest Neighbour (Bi)linear (Bi)linear Sinc 17 Interpolation / Reslicing Reslicing * Applying the transforation paraeters, and resapling the data onto the sae grid of voxels as the target iage * AKA writing (as in noralise - write) * Nearest neighbour gives the new voxel the value of the closest corresponding voxel in the source * Linear interpolation uses inforation fro all iediate neighbours (2 in 1D, 4 in 2D, 8 in 3D) * NN and linear interp. correspond to zeroth and first order B-spline interpolation, higher orders use ore inforation in the hope of iproving results * (Sinc interpolation is an alternative to B-spline) Reoriented (1x1x3 voxel size) Resliced (to 2 cubic)

6 Reslicing After coregistration (6 DOF), the transforation is updated in the header of the nifti-file and reslicing is not strictly needed. Reslicing affects the quality of your dataset, because of interpolation. Reslice as little as possible. Pay attention when spacing of source and target is different: source 3x3x7, target 1x1x1: source insufficiently large source 1x1x1, target 3x3x7: any details are lost source 3x3x7, target 3x3x7: any details are lost, because of thick slices. First reslice to 3x3x3 (isotropic) Quantifying iage alignent * Registration intuitively relies on the concept of aligning iages to increase their siilarity * This needs to be atheatically foralised * We need practical way(s) of easuring siilarity * Using interpolation we can find the intensity at equivalent voxels * (equivalent according to the current transforation paraeter estiates) Note: when reslicing label aps, use nearest neighbour interpolation. Otherwise your labels change. 21 Voxel siilarity easures Intra-odal siilarity easures I ref ( i, j, k ) I ref ( i 1, j, k ) I ref ( i, j 1, k ) Pairs of voxel intensities Mean-squared difference Correlation coefficient Joint histogra easures I src ( i, j, k ) I src ( i 1, j, k ) I src ( i, j 1, k ) * Mean squared error (iniise) * AKA su-squared error, RMS error, etc. * Assues siple relationship between intensities * Optial (only) if differences are i.i.d. Gaussian * Okay for fmri realignent or smri-smri coreg * Correlation-coefficient (axiise) * AKA Noralised Cross-Correlation, Zero-NCC * Slightly ore general, e.g. T1-T1 inter-scanner * Invariant under affine transforation of intensities

7 Autoatic iage registration Optiisation * Quantifying the quality of the alignent with a easure of iage siilarity allows coputational estiation of transforation paraeters * This is the basis of both realignent and coregistration in SPM * Allowing ore coplex geoetric transforations or warps leads to ore flexible spatial noralisation * Autoating registration requires optiisation... * Find the best paraeters according to an objective function (iniised or axiised) * Optiise: translation, rotation, scaling, shearing * Challenges: local inia, noise Objective function Global optiu (ost probable) Local optiu Local optiu Value of paraeter optialisatie verplaatsing verplaatsing

8 stap voor stap rotatie rotatie 2 verplaatsing verplaatsing schaling 1 schaling 1 schaling 2

9 lokale inia? schaling 1 3 schaling 2 4 verplaatsing ruis vervoring? verplaatsing

10 Inter-odal coregistration Match iages fro sae subject but different odalities: anatoical localisation of single subject activations achieve ore precise spatial noralisation of functional iage using anatoical iage. Inter-odal siilarity easures * Coonly derived fro joint and arginal entropies * Entropies via probabilities, fro histogras * H(a) = -a P(a) log 2 P(a) * H(a,b) = -a P(a,b) log 2 P(a,b) * Miniise joint entropy H(a,b) * Maxiise utual Inforation * MI = H(a) + H(b) - H(a,b) * Maxiise noralised MI * NMI = (H(a) + H(b)) / H(a,b) Noralised Mutual Inforation Measure for copactness of joint histogra. Use for inter-odal registration. Also robust to issing data in one scan. Joint histogra T 1 T 1 T 2 T 2

11 FSL flirt: no histogra iage, but you can change nr. of bins Contents 1. Registration basics 2. Motion and realignent 3. Inter-odal coregistration 4. Spatial noralisation 5. Unified segentation 43

12 Spatial Noralisation Spatial Noralisation - Reasons * Inter-subject averaging * Increase sensitivity with ore subjects * Fixed-effects analysis * Extrapolate findings to the population as a whole * Mixed-effects analysis * Make results fro different studies coparable by aligning the to standard space * e.g. using the MNI teplate Spatial Noralisation Procedure Spatial Noralisation Warping * Start with a 12 DF affine registration * 3 translations, 3 rotations 3 zoos, 3 shears * Fits overall shape and size * Refine the registration with non-linear deforations Deforations are odelled with a linear cobination of non-linear basis functions

13 Standard spaces Spatial Noralisation Teplates The Talairach Atlas The MNI/ICBM AVG152 Teplate T2 T1 Trans EPI PD PET sp8/teplates The MNI teplate follows the convention of T&T, but doesn t atch the particular brain Recoended reading: Masking in registration Spatial Noralisation Results Spatial noralisation can be weighted so that non-brain voxels do not influence the result. FSL: SPM: use BET coregistration is robust on non-brain areas noralisation: use the brain ask in MNI-space need a subject s brain ask? segent, su GM/WM/CSF-asks sp8/apriori/brainask.nii Affine registration Non-linear registration 51

14 Practical suggestions Viewing registration results / alignent Use dc2nii (ricron) to convert PARREC / DICOM to nifti. It preserves your scan orientation. Make a copy of your data before you start. SPM overwrites transforation in nifti-header. High intensity peaks and negative values distort histogra. Fix before registration. SPM check reg: checking aligned datasets of different size FSLview (also for windows): view 4D-datasets as a ovie anually adjust thresholds, colorap, transparancy Use both! If your scan s orientation inforation is lost, initialize to MNIspace using initniftitomni Contents 1. Registration basics 2. Motion and realignent 3. Inter-odal coregistration 4. Spatial noralisation 5. Unified segentation Unified segentation and noralisation * MRI iperfections ake noralisation harder * Noise, artefacts, partial volue effect * Intensity inhoogeneity or bias field * Differences between sequences * Noralising segented tissue aps should be ore robust and precise than using the original iages... * Tissue segentation benefits fro spatially-aligned prior tissue probability aps (fro other segentations) * This circularity otivates siultaneous segentation and noralisation in a unified odel

15 Modelling inhoogeneity * Intensity in T1-scan is globally inhoogeneous * A ultiplicative bias field is odelled as a linear cobination of basis functions. Tissue Probability Maps * Tissue probability aps (TPMs) are used as the prior, instead of the proportion of voxels in each class Corrupted iage Bias Field Corrected iage ICBM Tissue Probabilistic Atlases. These tissue probability aps are kindly provided by the International Consortiu for Brain Mapping, John C. Mazziotta and Arthur W. Toga. Deforing the Tissue Probability Maps * Tissue probability iages are warped to atch the subject * The inverse transfor warps to the TPMs

16 Exaple output SPM segentation: light cleanup ight be needed (specify in setup) No cleanup Light cleanup Tissue probability aps of GM and WM Cocosco, Kollokian, Kwan & Evans. BrainWeb: Online Interface to a 3D MRI Siulated Brain Database. NeuroIage 5(4):S425 (1997)

17 References * Friston et al. Spatial registration and noralisation of iages. Huan Brain Mapping 3: (1995). * Collignon et al. Autoated ulti-odality iage registration based on inforation theory. IPMI 95 pp (1995). * Ashburner et al. Incorporating prior knowledge into iage registration. NeuroIage 6: (1997). * Ashburner & Friston. Nonlinear spatial noralisation using basis functions. Huan Brain Mapping 7: (1999). * Thévenaz et al. Interpolation revisited. IEEE Trans. Med. Iaging 19: (2000). * Andersson et al. Modeling geoetric deforations in EPI tie series. Neuroiage 13: (2001). * Ashburner & Friston. Unified Segentation. NeuroIage 26: (2005). * Ashburner. A Fast Diffeoorphic Iage Registration Algorith. NeuroIage 38: (2007). Preprocessing overview fmri tie-series REALIGN Anatoical MRI COREG TPMs SEGMENT NORM WRITE Input Output Segentation Transforation (seg_sn.at) Kernel SMOOTH Motion corrected Mean functional (Headers changed) MNI Space ANALYSIS Preprocessing (fmri only) fmri tie-series TPMs Input Output Segentation Preprocessing overview fmri tie-series Anatoical MRI TPMs Input Output Segentation Mean functional Transforation (seg_sn.at) Kernel Transforation (seg_sn.at) Kernel REALIGN SEGMENT NORM WRITE SMOOTH REALIGN COREG SEGMENT NORM WRITE SMOOTH Motion corrected MNI Space ANALYSIS Motion corrected Mean functional (Headers changed) MNI Space ANALYSIS

18 Preprocessing with Dartel fmri tie-series Anatoical MRI TPMs... DARTEL CREATE TEMPLATE REALIGN COREG SEGMENT DARTEL NORM 2 MNI & SMOOTH w.a.caan@ac.nl Motion corrected Mean functional (Headers changed) ANALYSIS

Image Processing for fmri John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.

Image Processing for fmri John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Iage Processing for fmri John Ashburner Wellcoe Trust Centre for Neuroiaging, 12 Queen Square, London, UK. Contents * Preliinaries * Rigid-Body and Affine Transforations * Optiisation and Objective Functions

More information

Preprocessing I: Within Subject John Ashburner

Preprocessing I: Within Subject John Ashburner Preprocessing I: Within Subject John Ashburner Pre-processing Overview Statistics or whatever fmri tie-series Anatoical MRI Teplate Soothed Estiate Spatial Nor Motion Correct Sooth Coregister 11 21 31

More information

Data pre-processing framework in SPM. Bogdan Draganski

Data pre-processing framework in SPM. Bogdan Draganski Data pre-processing fraework in SPM Bogdan Draganski Outline Why do we need pre-processing? Overview Structural MRI pre-processing fmri pre-processing Why do we need pre-processing? What do we want? Reason

More information

Signal, Noise and Preprocessing*

Signal, Noise and Preprocessing* Translational Neuroodeling Unit SNR & Preproc Teporal Spatial General Realign Coreg Noralise Sooth Signal, Noise and Preprocessing* Methods and Models for fmri Analysis Septeber 25 th, 2015 Lars Kasper,

More information

Spatial Special Preprocessing

Spatial Special Preprocessing Spatial Special Preprocessing Methods & Models for fmri Data Analysis Septeber 26, 2014 Lars Kasper, PhD TNU & MR-Technology Group Institute for Bioedical Engineering, UZH & ETHZ Generous slide support:

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Signal, Noise and Preprocessing*

Signal, Noise and Preprocessing* Translational Neuroodeling Unit Signal, Noise and Preprocessing* Methods and Models for fmri Analysis Septeber 27 th, 2016 Lars Kasper, PhD TNU & MR-Technology Group Institute for Bioedical Engineering,

More information

Preprocessing of fmri data (basic)

Preprocessing of fmri data (basic) Preprocessing of fmri data (basic) Practical session SPM Course 2016, Zurich Andreea Diaconescu, Maya Schneebeli, Jakob Heinzle, Lars Kasper, and Jakob Sieerkus Translational Neuroodeling Unit (TNU) Institute

More information

The Art and Pitfalls of fmri Preprocessing

The Art and Pitfalls of fmri Preprocessing Translational Neuroodeling Unit The Art and Pitfalls of fmri Preprocessing Lars Kasper June 14 th, 2015 - An SPM Perspective MR-Technology Group & Translational Neuroodeling Unit Institute for Bioedical

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

Spatial Preprocessing

Spatial Preprocessing Spatial Preprocessing Overview of SPM Analysis fmri time-series Design matrix Statistical Parametric Map John Ashburner john@fil.ion.ucl.ac.uk Motion Correction Smoothing General Linear Model Smoothing

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

The Australian National University, Canberra Australia

The Australian National University, Canberra Australia Iproved Precision in the Measureent of Longitudinal Global and Regional Voluetric Changes via a Novel MRI Gradient Distortion Characterization and Correction Technique Vladiir S. Fonov 1, Andrew Janke

More information

Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation

Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation Quantitative Coparison of Sinc-Approxiating Kernels for Medical Iage Interpolation Erik H. W. Meijering, Wiro J. Niessen, Josien P. W. Plui, Max A. Viergever Iage Sciences Institute, Utrecht University

More information

Novel Image Representation and Description Technique using Density Histogram of Feature Points

Novel Image Representation and Description Technique using Density Histogram of Feature Points Novel Iage Representation and Description Technique using Density Histogra of Feature Points Keneilwe ZUVA Departent of Coputer Science, University of Botswana, P/Bag 00704 UB, Gaborone, Botswana and Tranos

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

Clustering. Cluster Analysis of Microarray Data. Microarray Data for Clustering. Data for Clustering

Clustering. Cluster Analysis of Microarray Data. Microarray Data for Clustering. Data for Clustering Clustering Cluster Analysis of Microarray Data 4/3/009 Copyright 009 Dan Nettleton Group obects that are siilar to one another together in a cluster. Separate obects that are dissiilar fro each other into

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2015 Voxel-Based Morphometry Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Examples applications of VBM Many scientifically or clinically interesting

More information

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing Motion Correction Last Time Mutual Information Optimiation Decoupling Translation & Rotation Interpolation SPM Example (Least Squares & MI) A Simple Derivation This Time Reslice example SPM Example : Remind

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Brain Extraction, Registration & EPI Distortion Correction

Brain Extraction, Registration & EPI Distortion Correction Brain Extraction, Registration & EPI Distortion Correction What use is Registration? Some common uses of registration: Combining across individuals in group studies: including fmri & diffusion Quantifying

More information

Affine Invariant Texture Analysis Based on Structural Properties 1

Affine Invariant Texture Analysis Based on Structural Properties 1 ACCV: The 5th Asian Conference on Coputer Vision, --5 January, Melbourne, Australia Affine Invariant Texture Analysis Based on tructural Properties Jianguo Zhang, Tieniu Tan National Laboratory of Pattern

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

A simplified approach to merging partial plane images

A simplified approach to merging partial plane images A siplified approach to erging partial plane iages Mária Kruláková 1 This paper introduces a ethod of iage recognition based on the gradual generating and analysis of data structure consisting of the 2D

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3 2017 2nd International Conference on Coputational Modeling, Siulation and Applied Matheatics (CMSAM 2017) ISBN: 978-1-60595-499-8 TensorFlow and Keras-based Convolutional Neural Network in CAT Iage Recognition

More information

Resolution. Super-Resolution Imaging. Problem

Resolution. Super-Resolution Imaging. Problem Resolution Super-Resolution Iaging Resolution: Sallest easurable detail in a visual presentation Subhasis Chaudhuri Departent of Electrical Engineering Indian institute of Technology Bobay Powai, Mubai-400

More information

Analysis of fmri data within Brainvisa Example with the Saccades database

Analysis of fmri data within Brainvisa Example with the Saccades database Analysis of fmri data within Brainvisa Example with the Saccades database 18/11/2009 Note : All the sentences in italic correspond to informations relative to the specific dataset under study TP participants

More information

Region Segmentation Region Segmentation

Region Segmentation Region Segmentation /7/ egion Segentation Lecture-7 Chapter 3, Fundaentals of Coputer Vision Alper Yilaz,, Mubarak Shah, Fall UCF egion Segentation Alper Yilaz,, Mubarak Shah, Fall UCF /7/ Laer epresentation Applications

More information

IMAGE MOSAICKING FOR ESTIMATING THE MOTION OF AN UNDERWATER VEHICLE. Rafael García, Xevi Cufí and Lluís Pacheco

IMAGE MOSAICKING FOR ESTIMATING THE MOTION OF AN UNDERWATER VEHICLE. Rafael García, Xevi Cufí and Lluís Pacheco IMAGE MOSAICKING FOR ESTIMATING THE MOTION OF AN UNDERWATER VEHICLE Rafael García, Xevi Cufí and Lluís Pacheco Coputer Vision and Robotics Group Institute of Inforatics and Applications, University of

More information

Spectral Clustering with Two Views

Spectral Clustering with Two Views Spectral Clustering with Two Views Virginia R. de Sa Departent of Cognitive Science, 55 University of California, San Diego 95 Gilan Dr. La Jolla, CA 993-55 desa@ucsd.edu Abstract In this paper we develop

More information

COLOR HISTOGRAM AND DISCRETE COSINE TRANSFORM FOR COLOR IMAGE RETRIEVAL

COLOR HISTOGRAM AND DISCRETE COSINE TRANSFORM FOR COLOR IMAGE RETRIEVAL COLOR HISTOGRAM AND DISCRETE COSINE TRANSFORM FOR COLOR IMAGE RETRIEVAL 1 Te-Wei Chiang ( 蔣德威 ), 2 Tienwei Tsai ( 蔡殿偉 ), 3 Jeng-Ping Lin ( 林正平 ) 1 Dept. of Accounting Inforation Systes, Chilee Institute

More information

NON-RIGID OBJECT TRACKING: A PREDICTIVE VECTORIAL MODEL APPROACH

NON-RIGID OBJECT TRACKING: A PREDICTIVE VECTORIAL MODEL APPROACH NON-RIGID OBJECT TRACKING: A PREDICTIVE VECTORIAL MODEL APPROACH V. Atienza; J.M. Valiente and G. Andreu Departaento de Ingeniería de Sisteas, Coputadores y Autoática Universidad Politécnica de Valencia.

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

EE 364B Convex Optimization An ADMM Solution to the Sparse Coding Problem. Sonia Bhaskar, Will Zou Final Project Spring 2011

EE 364B Convex Optimization An ADMM Solution to the Sparse Coding Problem. Sonia Bhaskar, Will Zou Final Project Spring 2011 EE 364B Convex Optiization An ADMM Solution to the Sparse Coding Proble Sonia Bhaskar, Will Zou Final Project Spring 20 I. INTRODUCTION For our project, we apply the ethod of the alternating direction

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

(Geometric) Camera Calibration

(Geometric) Camera Calibration (Geoetric) Caera Calibration CS635 Spring 217 Daniel G. Aliaga Departent of Coputer Science Purdue University Caera Calibration Caeras and CCDs Aberrations Perspective Projection Calibration Caeras First

More information

Ming-Wei Lee 1, Wei-Tso Lin 1, Yu-Ching Ni 2, Meei-Ling Jan 2, Yi-Chun Chen 1 * National Central University

Ming-Wei Lee 1, Wei-Tso Lin 1, Yu-Ching Ni 2, Meei-Ling Jan 2, Yi-Chun Chen 1 * National Central University Rapid Constructions of Circular-Orbit Pinhole SPECT Iaging Syste Matrices by Gaussian Interpolation Method Cobined with Geoetric Paraeter Estiations (GIMGPE Ming-Wei Lee, Wei-Tso Lin, Yu-Ching Ni, Meei-Ling

More information

Preprocessing of fmri data

Preprocessing of fmri data Preprocessing of fmri data Pierre Bellec CRIUGM, DIRO, UdM Flowchart of the NIAK fmri preprocessing pipeline fmri run 1 fmri run N individual datasets CIVET NUC, segmentation, spatial normalization slice

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

Feature Based Registration for Panoramic Image Generation

Feature Based Registration for Panoramic Image Generation IJCSI International Journal of Coputer Science Issues, Vol. 10, Issue 6, No, Noveber 013 www.ijcsi.org 13 Feature Based Registration for Panoraic Iage Generation Kawther Abbas Sallal 1, Abdul-Mone Saleh

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

A Directional Space-scale Based Analysis Method for Three-dimensional Profile Detection by Fringe Projection Technique

A Directional Space-scale Based Analysis Method for Three-dimensional Profile Detection by Fringe Projection Technique International Journal of Optics and Applications 213, 3(5): 111-117 DOI: 1.5923/j.optics.21335.5 A Directional Space-scale Based Analysis Method for Three-diensional Profile Detection by Fringe Projection

More information

Action Recognition Using Local SpatioTemporal Oriented Energy Features and Additive. Kernel SVMs

Action Recognition Using Local SpatioTemporal Oriented Energy Features and Additive. Kernel SVMs International Journal of Electronics and Electrical Engineering Vol., No., June, 4 Action Recognition Using Local SpatioTeporal Oriented Energy Features and Additive Kernel SVMs Jiangfeng Yang and Zheng

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor Willia Hoff Dept of Electrical Engineering &Coputer Science http://inside.ines.edu/~whoff/ 1 Caera Calibration 2 Caera Calibration Needed for ost achine vision and photograetry tasks (object

More information

CAMERA-GUIDED MRI-MEG COREGISTRATION

CAMERA-GUIDED MRI-MEG COREGISTRATION CAMERA-GUIDED MRI-MEG COREGISTRATION Chou-Ming Cheng 1,2 ( 鄭州閔 ), Li-Fen Chen 3,1 ( 陳麗芬 ), Yu-Te Wu 2,1 ( 吳育德 ), Jen-Chuen Hsieh 1,4,5,6 ( 謝仁俊 ), and Yong-Sheng Chen 7,* ( 陳永昇 ) 1 Laboratory of Integrated

More information

A NEW METHOD FOR COLOURIZING OF MULTICHANNEL MR IMAGES BASED ON REAL COLOUR OF HUMAN BRAIN

A NEW METHOD FOR COLOURIZING OF MULTICHANNEL MR IMAGES BASED ON REAL COLOUR OF HUMAN BRAIN A NEW METHOD FOR OLOURIZING OF MULTIHANNEL MR IMAGES BASED ON REAL OLOUR OF HUMAN BRAIN Mohaad Hossein Kadbi; Eadoddin Fateizaheh; Abouzar Eslai; and arya khosroshahi Electrical Engineering Dept., Sharif

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

HIGH PERFORMANCE PRE-SEGMENTATION ALGORITHM FOR SONAR IMAGES

HIGH PERFORMANCE PRE-SEGMENTATION ALGORITHM FOR SONAR IMAGES HIGH PERFORMANCE PRE-SEGMENTATION ALGORITHM FOR SONAR IMAGES Benjain Lehann*, Konstantinos Siantidis*, Dieter Kraus** *ATLAS ELEKTRONIK GbH Sebaldsbrücker Heerstraße 235 D-28309 Breen, GERMANY Eail: benjain.lehann@atlas-elektronik.co

More information

Medical Biophysics 302E/335G/ st1-07 page 1

Medical Biophysics 302E/335G/ st1-07 page 1 Medical Biophysics 302E/335G/500 20070109 st1-07 page 1 STEREOLOGICAL METHODS - CONCEPTS Upon copletion of this lesson, the student should be able to: -define the ter stereology -distinguish between quantitative

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Image Filter Using with Gaussian Curvature and Total Variation Model

Image Filter Using with Gaussian Curvature and Total Variation Model IJECT Vo l. 7, Is s u e 3, Ju l y - Se p t 016 ISSN : 30-7109 (Online) ISSN : 30-9543 (Print) Iage Using with Gaussian Curvature and Total Variation Model 1 Deepak Kuar Gour, Sanjay Kuar Shara 1, Dept.

More information

Detection of Outliers and Reduction of their Undesirable Effects for Improving the Accuracy of K-means Clustering Algorithm

Detection of Outliers and Reduction of their Undesirable Effects for Improving the Accuracy of K-means Clustering Algorithm Detection of Outliers and Reduction of their Undesirable Effects for Iproving the Accuracy of K-eans Clustering Algorith Bahan Askari Departent of Coputer Science and Research Branch, Islaic Azad University,

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

Manual image registration in BrainVoyager QX Table of Contents

Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX......1 Performing manual alignment for functional to anatomical images......2 Step 1: preparation......2

More information

An Integrated Processing Method for Multiple Large-scale Point-Clouds Captured from Different Viewpoints

An Integrated Processing Method for Multiple Large-scale Point-Clouds Captured from Different Viewpoints 519 An Integrated Processing Method for Multiple Large-scale Point-Clouds Captured fro Different Viewpoints Yousuke Kawauchi 1, Shin Usuki, Kenjiro T. Miura 3, Hiroshi Masuda 4 and Ichiro Tanaka 5 1 Shizuoka

More information

Evaluation of a multi-frame blind deconvolution algorithm using Cramér-Rao bounds

Evaluation of a multi-frame blind deconvolution algorithm using Cramér-Rao bounds Evaluation of a ulti-frae blind deconvolution algorith using Craér-Rao bounds Charles C. Beckner, Jr. Air Force Research Laboratory, 3550 Aberdeen Ave SE, Kirtland AFB, New Mexico, USA 87117-5776 Charles

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Playing with data from lab

Playing with data from lab Playing with data from lab Getting data off the scanner From the Patient Browser, select the folder for the study you want (or within that study, the set of images you want), and then from the Transfer

More information

Comparison of Navigator Echo and Centroid Corrections of Image Displacement Induced by Static Magnetic Field Drift on Echo Planar Functional MRI

Comparison of Navigator Echo and Centroid Corrections of Image Displacement Induced by Static Magnetic Field Drift on Echo Planar Functional MRI JOURNAL OF MAGNETIC RESONANCE IMAGING 13:308 312 (2001) Technical Note Coparison of Navigator Echo and Centroid Corrections of Iage Displaceent Induced by Static Magnetic Field Drift on Echo Planar Functional

More information

Predicting x86 Program Runtime for Intel Processor

Predicting x86 Program Runtime for Intel Processor Predicting x86 Progra Runtie for Intel Processor Behra Mistree, Haidreza Haki Javadi, Oid Mashayekhi Stanford University bistree,hrhaki,oid@stanford.edu 1 Introduction Progras can be equivalent: given

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

Robust Realignment of fmri Time Series Data

Robust Realignment of fmri Time Series Data Robust Realignment of fmri Time Series Data Ben Dodson bjdodson@stanford.edu Olafur Gudmundsson olafurg@stanford.edu December 12, 2008 Abstract FMRI data has become an increasingly popular source for exploring

More information

Abstract. 2. Segmentation Techniques. Keywords. 1. Introduction. 3. Threshold based Image Segmentation

Abstract. 2. Segmentation Techniques. Keywords. 1. Introduction. 3. Threshold based Image Segmentation International Journal of Advanced Coputer Research (ISSN (print): 49-777 ISSN (online): 77-7970) Volue-3 Nuber- Issue-8 March-03 MRI Brain Iage Segentation based on hresholding G. Evelin Sujji, Y.V.S.

More information

AGV PATH PLANNING BASED ON SMOOTHING A* ALGORITHM

AGV PATH PLANNING BASED ON SMOOTHING A* ALGORITHM International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, Septeber 205 AGV PATH PLANNING BASED ON SMOOTHING A* ALGORITHM Xie Yang and Cheng Wushan College of Mechanical Engineering,

More information

3D Building Detection and Reconstruction from Aerial Images Using Perceptual Organization and Fast Graph Search

3D Building Detection and Reconstruction from Aerial Images Using Perceptual Organization and Fast Graph Search 436 Journal of Electrical Engineering & Technology, Vol. 3, No. 3, pp. 436~443, 008 3D Building Detection and Reconstruction fro Aerial Iages Using Perceptual Organization and Fast Graph Search Dong-Min

More information

3 Conference on Inforation Sciences and Systes, The Johns Hopkins University, March, 3 Sensitivity Characteristics of Cross-Correlation Distance Metric and Model Function F. Porikli Mitsubishi Electric

More information

An Integrated Probabilistic Model for Scan-Matching, Moving Object Detection and Motion Estimation

An Integrated Probabilistic Model for Scan-Matching, Moving Object Detection and Motion Estimation 2 IEEE International Conference on Robotics and Autoation Anchorage Convention District May 3-8, 2, Anchorage, Alaska, USA An Integrated Probabilistic Model for Scan-Matching, Moving Object Detection and

More information

Homework 1. An Introduction to Neural Networks

Homework 1. An Introduction to Neural Networks Hoework An Introduction to Neural Networks -785: Introduction to Deep Learning Spring 09 OUT: January 4, 09 DUE: February 6, 09, :59 PM Start Here Collaboration policy: You are expected to coply with the

More information

Comparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types

Comparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types Coparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types Aritz Sánchez de la Fuente, Patrick Ndjiki-Nya, Karsten Sühring, Tobias Hinz, Karsten üller, and Thoas

More information

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5 1. Introduction This manual describes how to use the Field Map Toolbox Version 2.0 for creating unwrapped field maps that can be used to do geometric distortion correction of EPI images in SPM5. 1. 1.

More information

On the Computation and Application of Prototype Point Patterns

On the Computation and Application of Prototype Point Patterns On the Coputation and Application of Prototype Point Patterns Katherine E. Tranbarger Freier 1 and Frederic Paik Schoenberg 2 Abstract This work addresses coputational probles related to the ipleentation

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2007 Revision 1.7

More information

On computing global similarity in images

On computing global similarity in images On coputing global siilarity in iages S Ravela and R Manatha Coputer Science Departent University of Massachusetts, Aherst, MA 01003 Eail: ravela,anatha @csuassedu Abstract The retrieval of iages based

More information

KS3 Maths Progress Delta 2-year Scheme of Work

KS3 Maths Progress Delta 2-year Scheme of Work KS3 Maths Progress Delta 2-year Schee of Work See the spreadsheet for the detail. Essentially this is an express route through our higher-ability KS3 Maths Progress student books Delta 1, 2 and 3 as follows:

More information

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Image Registration Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Introduction Visualize objects inside the human body Advances in CS methods to diagnosis, treatment planning and medical

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

Data Acquisition of Obstacle Shapes for Fish Robots

Data Acquisition of Obstacle Shapes for Fish Robots Proceedings of the 2nd WEA International Conference on Dynaical ystes and Control, Bucharest, oania, October -17, 6 Data Acquisition of Obstacle hapes for Fish obots EUNG Y. NA, DAEJUNG HIN, JIN Y. KIM,

More information

Feature Selection to Relate Words and Images

Feature Selection to Relate Words and Images The Open Inforation Systes Journal, 2009, 3, 9-13 9 Feature Selection to Relate Words and Iages Wei-Chao Lin 1 and Chih-Fong Tsai*,2 Open Access 1 Departent of Coputing, Engineering and Technology, University

More information

Depth Estimation of 2-D Magnetic Anomalous Sources by Using Euler Deconvolution Method

Depth Estimation of 2-D Magnetic Anomalous Sources by Using Euler Deconvolution Method Aerican Journal of Applied Sciences 1 (3): 209-214, 2004 ISSN 1546-9239 Science Publications, 2004 Depth Estiation of 2-D Magnetic Anoalous Sources by Using Euler Deconvolution Method 1,3 M.G. El Dawi,

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

Introduction to MRI data processing with FSL. Anna Blazejewska

Introduction to MRI data processing with FSL. Anna Blazejewska Introduction to MRI data processing with FSL Anna Blazejewska FSL = FMRIB Software Library FMRIB = Functional Magnetic Resonance Imaging of the Brain @ Oxford since 2000, last stable FSL 5.0, free! for

More information

Brian Noguchi CS 229 (Fall 05) Project Final Writeup A Hierarchical Application of ICA-based Feature Extraction to Image Classification Brian Noguchi

Brian Noguchi CS 229 (Fall 05) Project Final Writeup A Hierarchical Application of ICA-based Feature Extraction to Image Classification Brian Noguchi A Hierarchical Application of ICA-based Feature Etraction to Iage Classification Introduction Iage classification poses one of the greatest challenges in the achine vision and achine learning counities.

More information

HUMAN pose estimation is an important problem in computer

HUMAN pose estimation is an important problem in computer JOURNAL OF L A T E X CLASS FILES, VOL. 6, NO., JANUARY 7 Robust 3D Huan Pose Estiation fro Single Iages or Video Sequences Chunyu Wang, Student Meber, IEEE, Yizhou Wang, Meber, IEEE, Zhouchen Lin, Meber,

More information