Blending. To blend (combine) the pixels. To render semi-transparent objects. Currently Rasterizing. Previous on the Back Buffer.

Size: px
Start display at page:

Download "Blending. To blend (combine) the pixels. To render semi-transparent objects. Currently Rasterizing. Previous on the Back Buffer."

Transcription

1 Blending 4 th Week, 2009 Blending To blend (combine) the pixels To render semi-transparent objects Source Pixel p ij Currently Rasterizing Destination Pixel b ij Previous on the Back Buffer Opaque Teapot Transparent Teapot

2 Objectives To understand how blending works and how to use it To learn about the different blend modes that t Direct3D supports To find out how the alpha component can be used to control the transparency of a primitive To learn how we can prevent a pixel from being drawn to the back buffer altogether by employing the alpha test Blending Equation (1) Combining the pixel values that are currently being computed (source pixel) with the pixel values previously written on the back buffer (destination pixel) Draw objects that do not use blending first Sort the objects that use blending by their distance from the camera Draw the objects that use blending in a back-to-front order

3 Blending Equation (2) Alpha blending equation OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor Variables: 4D color vector (r, g, b, a) ) : component-wise multiplication Source and destination blend factors: to modify the original source and destination pixels in a variety of ways Enabling blending (default: disabled) Device->SetRenderState(D3DRS D3DRS_ ALPHABLENDENABLE, true); Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false); Only be enabled for the geometry that needs it Try to batch triangles that use blending and render them at once Blending Equation (3) The + operator used in the blending equation can be changed Device->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT); D3DBLENDOP_ADD: OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor D3DBLENDOP_SUBTRACT: OutputPixel = SourcePixel SourceBlendFactor DestPixel DestBlendFactor D3DBLENDOP_REVSUBTRACT: OutputPixel = DestPixel DestBlendFactor SourcePixel SourceBlendFactor D3DBLENDOP_MIN: OutputPixel = min(sourcepixel SourceBlendFactor, DestPixel DestBlendFactor) D3DBLENDOP_MAX: OutputPixel = max(sourcepixel SourceBlendFactor, DestPixel DestBlendFactor)

4 Blend Factors (1) Setting different combinations for the source and destination blend factors dozens of different blending effect Device->SetRenderState(D3DRS_SRCBLEND, Source); Device->SetRenderState(D3DRS_DESTBLEND, Destination); D3DBLEND_ZERO: blendfactor=(0, 0, 0, 0) D3DBLEND_ONE: blendfactor=(1, 1, 1, 1) D3DBLEND_SRCCOLOR: blendfactor=(r s, g s, b s, a s ) D3DBLEND_INVSRCCOLOR: blendfactor=(1 r s, 1 g s, 1 b s, 1 a s ) D3DBLEND_SRCALPHA: blendfactor=(a s, a s, a s, a s ) D3DBLEND_INVSRCALPHA: blendfactor=(1 aa s, 1 a s, 1 a s, 1 a s ) Blend Factors (2) D3DBLEND_DESTCOLOR: DESTCOLOR: blendfactor=(r d, g d, b d,a d ) D3DBLEND_INVDESTCOLOR: blendfactor=(1 r d, 1 g d, 1 b d, 1 a d ) D3DBLEND_DESTALPHA: blendfactor=(a d, a d, a d, a d ) D3DBLEND_INVDESTALPHA: blendfactor=(1 a d, 1 a d, 1 a d, 1 a d ) D3DBLEND_SRCALPHASAT: blendfactor=(f, f, f, 1) where f=min(a s, 1-a d ) D3DBLEND_BOTHINVSRCALPHA: source blend factor=(1 a s, 1 a s, 1 a s, 1 a s), destination blend factor=(a s, a s, a s, a s ), only valid for D3DRS_SRCBLEND Default: Source D3DBLEND_SRCALPHA Destination D3DBLEND_INVSRCALPHA

5 Blend Factors (3) Setting the source and destination blend factor directly in an effect file pass P0 { vertexshader = compile vs_2_0 VS(); pixelshader = compile ps_2_0 PS(); } AlphaBlendEnable = true; SrcBlend = One; DestBlend = One; BlendOp = RevSubtract; To blend the alpha component differently than the RGB components Set the D3DRS_SEPARATEALPHABLENDENABLE render state t to true Blend Factor Example 1 To keep the original destination pixel and not overwrite or blend it with the source pixel Source blend factor = D3DBLEND_ZERO Destination blend factor = D3DBLEND_ONE OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor OutputPixel = SourcePixel (0, 0, 0, 0) + DestPixel (1, 1, 1, 1) OutputPixel = (0,0,0,0)+ 0) DestPixel OutputPixel = DestPixel

6 Blend Factor Example 2 To directly two images together to form a new image Source blend factor = D3DBLEND_ONE Destination blend factor = D3DBLEND_ONE OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor OutputPixel = SourcePixel (1, 1, 1, 1) + DestPixel (1, 1, 1, 1) OutputPixel = SourcePixel + DestPixel Blend Factor Example 3 To multiply a source pixel with its corresponding destination pixel Source blend factor = D3DBLEND_ZERO Destination blend factor = D3DBLEND_SRCCOLOR OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor OutputPixel = SourcePixel (0, 0, 0, 0) + DestPixel SourcePixel OutputPixel = DestPixel SourcePixel

7 Blend Factor Example 4 To blend the source and destination pixels based on the transparency percent of the source pixel Alpha: percent to control the transparency 0 100% transparent % transparent 1.0 0% transparent or 100% opaque Source blend factor = D3DBLEND_SRCALPHA Destination blend factor = D3DBLEND_INVSRCALPHA OutputPixel = SourcePixel SourceBlendFactor + DestPixel DestBlendFactor OutputPixel = SourcePixel (a s, a s, a s, a s ) + DestPixel (1 a s, 1 a s, 1 a s, 1 a s ) OutputPixel = a s SourcePixel +(1 a s ) DestPixel Teapot Demo

8 Result Teapot Demo Drawing a Transparent Teapot (1)

9 Drawing a Transparent Teapot (2) Drawing a Transparent Teapot (3)

10 Teapot with TexAlpha Demo Result Teapot with TexAlpha Demo

11 Transparent Teapot Demo with Texture Alpha Channel (1) Alpha channel Fourth channel to add alpha information to a texture To control the transparency at a finer level of detail (e.g. at pixel level) RGB Channels Alpha Channel Transparent Teapot Demo with Texture Alpha Channel (2) Ex) brick.jpg jpg (24-bit RGB texture) To change the format to support an alpha channel Format Change Surface Format DXT3 format

12 Transparent Teapot Demo with Texture Alpha Channel (3) Ex) brick.jpg jpg bricka.dds dds (DXT3 format) File Open Onto Alpha Channel Of This Texture alpha.jpg Transparent Teapot Demo with Texture Alpha Channel (4)

13 Transparent Teapot Demo with Texture Alpha Channel (5) The Alpha Test (1) To discard a pixel (i.e., not render it) based on its alpha value in comparison to some reference value a s : the source alpha component ref: an application-defined reference value IF a s ref == true THEN accept pixel ELSE reject pixel : an operation specified by the D3DCMPFUNC enumerated type typedef enum _D3DCMPFUNC { D3DCMP_NEVER = 1, D3DCMP_LESS = 2, D3DCMP_EQUAL = 3, D3DCMP_LESSEQUAL = 4, D3DCMP_GREATER = 5, D3DCMP_NOTEQUAL = 6, D3DCMP_GREATEREQUAL = 7, D3DCMP_ALWAYS = 8, D3DCMP_FORCE_DWORD = 0x7fffffff } D3DCMPFUNC;

14 The Alpha Test (2) : an operation specified by the D3DCMPFUNC (cont ) D3DCMP_NEVER: alpha test always fails (the pixel is always rejected) D3DCMP_LESS: replace with < operator D3DCMP_EQUAL: replace with == operator D3DCMP_LESSEQUAL: replace with operator D3DCMP_ GREATER: replace with > operator D3DCMP_NOTEQUAL: replace with!= operator D3DCMP_GREATEREQUAL: replace with operator D3DCMP_ALWAYS: alpha test always succeeds (the pixel is always drawn) The Alpha Test (3) Ex) only pixels with alpha value 100 are drawn Device->SetRenderState(D3DRS_ALPHATESTENABLE, true); Device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL); Device->SetRenderState(D3DRS_ALPHAREF, 100); Setting the alpha test in an effect file in a pass block block pass P0 { vertexshader = compile vs_2_0 VS(); pixelshader = compile ps_2_0 _ PS(); } AlphaTestEnable = true; AlphaFunc = GreaterEqual; AlphaRef = 100;

15 Gate Demo Result Gate Demo

16 Gate Demo Alpha Test A gate texture with alpha channel The pixels with black alpha rejected by the alpha test not drawn RGB Channels Alpha Channel Building the Gate Geometry

17 Drawing the Gate (1) Drawing the Gate (2)

18 Exercises When trees are far away, a billboarding technique is used for efficiency. That is instead of rendering the geometry for a full 3D tree, a 2D polygon is used with a picture of a 3D tree painted on it. RGB Channels Alpha Channel Billboarding (1) To make sure that the billboard always faces the camera For trees billboards will generally be aligned with y-axis and just face the camera in the xz-plane r World matrix x ry r 0 c z x px, 0, cz f = ux u y uz 0 cx px, 0, cz r f x f y f 0 u = ( 0,1, 0) z r r r px py pz 1 = u f c r : the position of the camera in world space p r r ( pz ) ( p ) : the billboard s world space position z

19 Billboarding (2) To compute the world matrix of a vertex in the vertex shader To avoid the inefficiency the hardware likes to draw large batches at a time OutputVS AABillBoardVS(float3 posl: POSITION0, float3 bboffset: TEXCOORD0, float2 tex0: TEXCOORD1 ) { OutputVS outvs = (OutputVS)0; float3 tempposw = posl + bboffset; float3 look = geyeposw tempposw; look.y = 0.0f; look = normalize(look); float3 up = float3(0.0f, 0f 1.0f, 0.0f); 0f) float3 right = cross(up, look); Billboarding (3) } float3x3 R; R[0] = right; R[1] = up; R[2] = look; float3 posw = mul(posl, R) + bboffset; outvs.posh = mul(float4(posw, 1.0f), gwvp); outvs.tex0 = tex0; return outvs;

Double-click on CS470_Lab09.zip and extract the contents of the archive into a subdirectory called CS470_Lab09

Double-click on CS470_Lab09.zip and extract the contents of the archive into a subdirectory called CS470_Lab09 Lab 9: Blending CS 470 Labs Lab 9 In our application thus far, we have used effects such as timers, user interaction, lighting, and textures. In this lab, we will combine all of these and introduce the

More information

Blending Equation Blend Factors & Mode Transparency Creating an Alpha Channel Using DX Tex Tool Render Semi-Transparent Objects.

Blending Equation Blend Factors & Mode Transparency Creating an Alpha Channel Using DX Tex Tool Render Semi-Transparent Objects. Overview Blending Blend Factors & Mode Transparency Creating an Alpha Channel Using DX Tex Tool Render Semi-Transparent Objects 305890 Spring 2014 5/27/2014 Kyoung Shin Park Blending Allows us to blend

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline (and its implementation on GPUs) Computer Graphics CMU 15-462/15-662, Fall 2015 What you know how to do (at this point in the course) y y z x (w, h) z x Position objects

More information

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing EECE 478 Rasterization & Scenes Rasterization Learning Objectives Be able to describe the complete graphics pipeline. Describe the process of rasterization for triangles and lines. Compositing Manipulate

More information

Intel Core 4 DX11 Extensions Getting Kick Ass Visual Quality out of the Latest Intel GPUs

Intel Core 4 DX11 Extensions Getting Kick Ass Visual Quality out of the Latest Intel GPUs Intel Core 4 DX11 Extensions Getting Kick Ass Visual Quality out of the Latest Intel GPUs Steve Hughes: Senior Application Engineer - Intel www.intel.com/software/gdc Be Bold. Define the Future of Software.

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Shadow Buffer Theory Observation:

More information

Chapter Answers. Appendix A. Chapter 1. This appendix provides answers to all of the book s chapter review questions.

Chapter Answers. Appendix A. Chapter 1. This appendix provides answers to all of the book s chapter review questions. Appendix A Chapter Answers This appendix provides answers to all of the book s chapter review questions. Chapter 1 1. What was the original name for the first version of DirectX? B. Games SDK 2. Which

More information

Rasterization. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 16

Rasterization. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 16 Rasterization CS 4620 Lecture 16 1 Announcements A3 due on Thu Will send mail about grading once finalized 2 Pipeline overview you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

1.2.3 The Graphics Hardware Pipeline

1.2.3 The Graphics Hardware Pipeline Figure 1-3. The Graphics Hardware Pipeline 1.2.3 The Graphics Hardware Pipeline A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage receives its input from the prior

More information

Computer Graphics - Treasure Hunter

Computer Graphics - Treasure Hunter Computer Graphics - Treasure Hunter CS 4830 Dr. Mihail September 16, 2015 1 Introduction In this assignment you will implement an old technique to simulate 3D scenes called billboarding, sometimes referred

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information

Introduction to 3D Graphics

Introduction to 3D Graphics Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is

More information

Shaders in Eve Online Páll Ragnar Pálsson

Shaders in Eve Online Páll Ragnar Pálsson Shaders in Eve Online Páll Ragnar Pálsson EVE Online Eve Online Trinity First released 2003 Proprietary graphics engine DirectX 9 (DX11 on its way) Shader Model 3 (4 & 5 in development) HLSL Turning this

More information

Chapter IV Fragment Processing and Output Merging. 3D Graphics for Game Programming

Chapter IV Fragment Processing and Output Merging. 3D Graphics for Game Programming Chapter IV Fragment Processing and Output Merging Fragment Processing The per-fragment attributes may include a normal vector, a set of texture coordinates, a set of color values, a depth, etc. Using these

More information

Special Effects with DirectX 9

Special Effects with DirectX 9 Special Effects with DirectX 9 Alex Vlachos AVlachos@ati.com Greg James GJames@nvidia.com Outline Glow effect Developed for Disney/Monolith s Tron 2.0 Volume fog from polygon objects Used in Bandai/Dimps

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Lab 3 Shadow Mapping. Giuseppe Maggiore

Lab 3 Shadow Mapping. Giuseppe Maggiore Lab 3 Shadow Giuseppe Maggiore Adding Shadows to the Scene First we need to declare a very useful helper object that will allow us to draw textures to the screen without creating a quad vertex buffer //

More information

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers Order Independent Transparency with Dual Depth Peeling Louis Bavoil, Kevin Myers Document Change History Version Date Responsible Reason for Change 1.0 February 9 2008 Louis Bavoil Initial release Abstract

More information

How to Work on Next Gen Effects Now: Bridging DX10 and DX9. Guennadi Riguer ATI Technologies

How to Work on Next Gen Effects Now: Bridging DX10 and DX9. Guennadi Riguer ATI Technologies How to Work on Next Gen Effects Now: Bridging DX10 and DX9 Guennadi Riguer ATI Technologies Overview New pipeline and new cool things Simulating some DX10 features in DX9 Experimental techniques Why This

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

DirectX Programming #4. Kang, Seongtae Computer Graphics, 2009 Spring

DirectX Programming #4. Kang, Seongtae Computer Graphics, 2009 Spring DirectX Programming #4 Kang, Seongtae Computer Graphics, 2009 Spring Programmable Shader For recent hardwares, vertex and pixel processing stage of the graphics pipeline is programmable Programmable Vertex

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH VISIBILITY & CULLING Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH Visibility Visibility Given a set of 3D objects, which surfaces are visible from a specific point

More information

CSE 167: Introduction to Computer Graphics Lecture #9: Visibility. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018

CSE 167: Introduction to Computer Graphics Lecture #9: Visibility. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018 CSE 167: Introduction to Computer Graphics Lecture #9: Visibility Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018 Announcements Midterm Scores are on TritonEd Exams to be

More information

Chapter 3. Texture mapping. Learning Goals: Assignment Lab 3: Implement a single program, which fulfills the requirements:

Chapter 3. Texture mapping. Learning Goals: Assignment Lab 3: Implement a single program, which fulfills the requirements: Chapter 3 Texture mapping Learning Goals: 1. To understand texture mapping mechanisms in VRT 2. To import external textures and to create new textures 3. To manipulate and interact with textures 4. To

More information

Computer Graphics. Shadows

Computer Graphics. Shadows Computer Graphics Lecture 10 Shadows Taku Komura Today Shadows Overview Projective shadows Shadow texture Shadow volume Shadow map Soft shadows Why Shadows? Shadows tell us about the relative locations

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Project 1, 467. (Note: This is not a graphics class. It is ok if your rendering has some flaws, like those gaps in the teapot image above ;-)

Project 1, 467. (Note: This is not a graphics class. It is ok if your rendering has some flaws, like those gaps in the teapot image above ;-) Project 1, 467 Purpose: The purpose of this project is to learn everything you need to know for the next 9 weeks about graphics hardware. What: Write a 3D graphics hardware simulator in your language of

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

PowerVR Performance Recommendations The Golden Rules. October 2015

PowerVR Performance Recommendations The Golden Rules. October 2015 PowerVR Performance Recommendations The Golden Rules October 2015 Paul Ly Developer Technology Engineer, PowerVR Graphics Understanding Your Bottlenecks Based on our experience 3 The Golden Rules 1. The

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Billboards!! A texture mapped polygon, which always faces the viewer

Billboards!! A texture mapped polygon, which always faces the viewer 38(58) Information Coding / Computer Graphics, ISY, LiTH Billboards A texture mapped polygon, which always faces the viewer 38(58) Billboards 2D images placed on surfaces that are always facing the camera

More information

Ciril Bohak. - INTRODUCTION TO WEBGL

Ciril Bohak. - INTRODUCTION TO WEBGL 2016 Ciril Bohak ciril.bohak@fri.uni-lj.si - INTRODUCTION TO WEBGL What is WebGL? WebGL (Web Graphics Library) is an implementation of OpenGL interface for cmmunication with graphical hardware, intended

More information

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil Real-Time Hair Simulation and Rendering on the GPU Sarah Tariq Louis Bavoil Results 166 simulated strands 0.99 Million triangles Stationary: 64 fps Moving: 41 fps 8800GTX, 1920x1200, 8XMSAA Results 166

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Rendering Grass with Instancing in DirectX* 10

Rendering Grass with Instancing in DirectX* 10 Rendering Grass with Instancing in DirectX* 10 By Anu Kalra Because of the geometric complexity, rendering realistic grass in real-time is difficult, especially on consumer graphics hardware. This article

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Rasterization. CS4620 Lecture 13

Rasterization. CS4620 Lecture 13 Rasterization CS4620 Lecture 13 2014 Steve Marschner 1 The graphics pipeline The standard approach to object-order graphics Many versions exist software, e.g. Pixar s REYES architecture many options for

More information

Computer Graphics. Lecture 02 Graphics Pipeline. Edirlei Soares de Lima.

Computer Graphics. Lecture 02 Graphics Pipeline. Edirlei Soares de Lima. Computer Graphics Lecture 02 Graphics Pipeline Edirlei Soares de Lima What is the graphics pipeline? The Graphics Pipeline is a special software/hardware subsystem

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Parallax Occlusion in Direct3D 11

Parallax Occlusion in Direct3D 11 Parallax Occlusion in Direct3D 11 Frank Luna February 11, 2012 www.d3dcoder.net Introduction to 3D Game Programming with DirectX 11 has a chapter explaining normal mapping and displacement mapping (implemented

More information

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing DirectX Graphics Richard Huddy European Developer Relations Manager Some early observations Bear in mind that graphics performance problems are both commoner and rarer than you d think The most

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Fall 2016 Lecture 6/7 September 26-28 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

Render-To-Texture Caching. D. Sim Dietrich Jr.

Render-To-Texture Caching. D. Sim Dietrich Jr. Render-To-Texture Caching D. Sim Dietrich Jr. What is Render-To-Texture Caching? Pixel shaders are becoming more complex and expensive Per-pixel shadows Dynamic Normal Maps Bullet holes Water simulation

More information

The graphics pipeline. Pipeline and Rasterization. Primitives. Pipeline

The graphics pipeline. Pipeline and Rasterization. Primitives. Pipeline The graphics pipeline Pipeline and Rasterization CS4620 Lecture 9 The standard approach to object-order graphics Many versions exist software, e.g. Pixar s REYES architecture many options for quality and

More information

Introduction to OpenGL. CS 4620 Balazs Kovacs, 2014 Daniel Schroeder, 2013 Pramook Khungurn, 2012

Introduction to OpenGL. CS 4620 Balazs Kovacs, 2014 Daniel Schroeder, 2013 Pramook Khungurn, 2012 Introduction to OpenGL CS 4620 Balazs Kovacs, 2014 Daniel Schroeder, 2013 Pramook Khungurn, 2012 Introduction Show how to produce graphics using OpenGL Introduce our framework for OpenGL programming OpenGL

More information

Shaders Part II. Traditional Rendering Pipeline

Shaders Part II. Traditional Rendering Pipeline Shaders Part II Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders Part II 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture and the 3-term lighting

More information

Pipeline and Rasterization. COMP770 Fall 2011

Pipeline and Rasterization. COMP770 Fall 2011 Pipeline and Rasterization COMP770 Fall 2011 1 The graphics pipeline The standard approach to object-order graphics Many versions exist software, e.g. Pixar s REYES architecture many options for quality

More information

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object...

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object... Rendering approaches 1.image-oriented foreach pixel... 2.object-oriented foreach object... geometry 3D rendering pipeline image 3D graphics pipeline Vertices Vertex processor Clipper and primitive assembler

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

DH2323 DGI13 Lab 3 Rasterization

DH2323 DGI13 Lab 3 Rasterization DH2323 DGI13 Lab 3 Rasterization Raytracing is the simplest way of computing a 2D image of a 3D scene. It can be used to simulate all kinds of phenomena, much more than we implemented in the second lab.

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Fall 2015 Lecture 9 October 1, 2015 What I was going to say last time How are the ideas we ve learned about implemented in hardware so they are fast. Important:

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

Scene Modeling for a Single View

Scene Modeling for a Single View on to 3D Scene Modeling for a Single View We want real 3D scene walk-throughs: rotation translation Can we do it from a single photograph? Reading: A. Criminisi, I. Reid and A. Zisserman, Single View Metrology

More information

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU FROM VERTICES TO FRAGMENTS Lecture 5 Comp3080 Computer Graphics HKBU OBJECTIVES Introduce basic implementation strategies Clipping Scan conversion OCTOBER 9, 2011 2 OVERVIEW At end of the geometric pipeline,

More information

Surface shading: lights and rasterization. Computer Graphics CSE 167 Lecture 6

Surface shading: lights and rasterization. Computer Graphics CSE 167 Lecture 6 Surface shading: lights and rasterization Computer Graphics CSE 167 Lecture 6 CSE 167: Computer Graphics Surface shading Materials Lights Rasterization 2 Scene data Rendering pipeline Modeling and viewing

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Jonathan Zarge, Team Lead Performance Tools Richard Huddy, European Developer Relations Manager ATI

More information

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

COMP3421. Vector geometry, Clipping

COMP3421. Vector geometry, Clipping COMP3421 Vector geometry, Clipping Transformations Object in model co-ordinates Transform into world co-ordinates Represent points in object as 1D Matrices Multiply by matrices to transform them Coordinate

More information

Textures. Texture coordinates. Introduce one more component to geometry

Textures. Texture coordinates. Introduce one more component to geometry Texturing & Blending Prof. Aaron Lanterman (Based on slides by Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technology Textures Rendering tiny triangles

More information

Advanced Lighting Techniques Due: Monday November 2 at 10pm

Advanced Lighting Techniques Due: Monday November 2 at 10pm CMSC 23700 Autumn 2015 Introduction to Computer Graphics Project 3 October 20, 2015 Advanced Lighting Techniques Due: Monday November 2 at 10pm 1 Introduction This assignment is the third and final part

More information

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games Bringing AAA graphics to mobile platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Platform team at Epic Games Unreal Engine 15 years in the industry 30 years of programming

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Real-Time Hair Rendering on the GPU NVIDIA

Real-Time Hair Rendering on the GPU NVIDIA Real-Time Hair Rendering on the GPU Sarah Tariq NVIDIA Motivation Academia and the movie industry have been simulating and rendering impressive and realistic hair for a long time We have demonstrated realistic

More information

Performance OpenGL Programming (for whatever reason)

Performance OpenGL Programming (for whatever reason) Performance OpenGL Programming (for whatever reason) Mike Bailey Oregon State University Performance Bottlenecks In general there are four places a graphics system can become bottlenecked: 1. The computer

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

CEng 477 Introduction to Computer Graphics Fall 2007

CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Computer Graphics. Lecture 9 Environment mapping, Mirroring

Computer Graphics. Lecture 9 Environment mapping, Mirroring Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2017 Lecture 6 February 2, 2017 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

Adaptive Point Cloud Rendering

Adaptive Point Cloud Rendering 1 Adaptive Point Cloud Rendering Project Plan Final Group: May13-11 Christopher Jeffers Eric Jensen Joel Rausch Client: Siemens PLM Software Client Contact: Michael Carter Adviser: Simanta Mitra 4/29/13

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

POWERVR MBX. Technology Overview

POWERVR MBX. Technology Overview POWERVR MBX Technology Overview Copyright 2009, Imagination Technologies Ltd. All Rights Reserved. This publication contains proprietary information which is subject to change without notice and is supplied

More information

Hidden surface removal. Computer Graphics

Hidden surface removal. Computer Graphics Lecture Hidden Surface Removal and Rasterization Taku Komura Hidden surface removal Drawing polygonal faces on screen consumes CPU cycles Illumination We cannot see every surface in scene We don t want

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

Project report Augmented reality with ARToolKit

Project report Augmented reality with ARToolKit Project report Augmented reality with ARToolKit FMA175 Image Analysis, Project Mathematical Sciences, Lund Institute of Technology Supervisor: Petter Strandmark Fredrik Larsson (dt07fl2@student.lth.se)

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

Point Sample Rendering

Point Sample Rendering Point Sample Rendering Efficient Screen Space Approach for HW Accelerated Surfel Rendering VMV03, november 2003 Gaël GUENNEBAUD - Mathias PAULIN IRIT-CNRS-UPS TOULOUSE-FRANCE http://www.irit.fr/recherches/sirv/vis/surfel/index.html

More information

Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design:

Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design: Software Engineering ò Look up Design Patterns ò Code Refactoring ò Code Documentation? ò One of the lessons to learn for good design: ò Coupling: the amount of interconnectedness between classes ò Cohesion:

More information