A new simple concept for ocean colour remote sensing using parallel polarisation radiance

Size: px
Start display at page:

Download "A new simple concept for ocean colour remote sensing using parallel polarisation radiance"

Transcription

1 Supplement Figures A new simple concept for ocean colour remote sensing using parallel polarisation radiance Xianqiang He 1, 3, Delu Pan 1, 2, Yan Bai 1, 2, Difeng Wang 1, Zengzhou Hao 1 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China 2 Institute of Remote Sensing and Earth Sciences, Hangzhou Normal University, Hangzhou, China 3 Department of Ocean Science and Engineering, Zhejiang University, Hangzhou, China Supplementary Figure S1: The upward total radiance and PPR (with units of mw/(cm 2 m sr)) at the TOA simulated by PCOART under rough surface with wind speed of 7.0 m/s. The solar zenith angles were taken from 0º to 70º with a step of 1º. It should be noted that the discrete peaks were caused by the interpolation, and the actual value should be a continuous curve. (a) The total radiance at 443 nm, (b) PPR at 443 nm, (c) total radiance at 670 nm, (d) PPR at 670 nm. Supplementary Figure S2: Comparisons of the I, Q and U at the TOA simulated by PCOART between the two-layer model atmosphere and mixed-layer atmosphere. In the simulations, the wavelength is 443nm; the solar zenith angle is 30º; the wind speed is 7.0 m/s; aerosol model is the maritime aerosol with 90% relative humidity, and aerosol optical thickness is 0.2. Supplementary Figure S3: Same as Fig.S2, but for the solar zenith angle of 60º. Supplementary Figure S4:Comparison of the normalised water-leaving radiance (Lwn) retrieved by the total radiance (upper row) and the PPR (bottom row) from POLDER data on 10 July 2003 under the 1th observing angle. The red areas are the regions masked by sun glint. (a) Lwn at 443nm retrieved by the total radiance, (b) Lwn at 670nm retrieved by the total radiance, (c) Lwn at 443nm retrieved by the PPR, (d) Lwn at 670nm retrieved by the PPR. The maps were generated by the Microsoft Visual C and Supplementary Figure S5: Same as Fig. S4, but for the 2th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S6: Same as Fig. S4, but for the 3th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S7: Same as Fig. S4, but for the 4th observing angle. The maps were

2 generated by the Microsoft Visual C and Supplementary Figure S8: Same as Fig. S4, but for the 5th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S9: Same as Fig. S4, but for the 6th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S10: Same as Fig. S4, but for the 7th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S11: Same as Fig. S4, but for the 8th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S12: Same as Fig. S4, but for the 9th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S13: Same as Fig. S4, but for the 10th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S14: Same as Fig. S4, but for the 11th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S15: Same as Fig. S4, but for the 12th observing angle. The maps were generated by the Microsoft Visual C and Supplementary Figure S16: Comparison of the normalized water-leaving radiances at 443nm (unit of mw/(cm 2 m sr)) retrieved by the total radiance and the PPR at the TOA from different observing angles of the POLDER data on 10 July Supplementary Figure S17: Same as Fig. S16, but for the 670nm.

3 Supplementary Figure S1: The upward total radiance and PPR (with units of mw/(cm 2 m sr)) at the TOA simulated by PCOART under rough surface with wind speed of 7.0 m/s. The solar zenith angles were taken from 0º to 70º with a step of 1º. It should be noted that the discrete peaks were caused by the interpolation, and the actual value should be a continuous curve. (a) The total radiance at 443 nm, (b) PPR at 443 nm, (c) total radiance at 670 nm, (d) PPR at 670 nm.

4 Supplementary Figure S2: Comparisons of the I, Q and U at the TOA simulated by PCOART between the two-layer model atmosphere and mixed-layer atmosphere. In the simulations, the wavelength is 443nm; the solar zenith angle is 30º; the wind speed is 7.0 m/s; aerosol model is the maritime aerosol with 90% relative humidity, and aerosol optical thickness is 0.2. Supplementary Figure S3: Same as Fig.S1, but for the solar zenith angle of 60º.

5 Supplementary Figure S4: Comparison of the normalized water-leaving radiance (Lwn) retrieved by the total radiance (upper row) and PPR (bottom row) from POLDER data on 10 July 2003 under the 1th observing angle. The red areas are the regions masked by sun glints. (a) Lwn at 443nm retrieved by the total radiance, (b) Lwn at 670nm retrieved by the total radiance, (c) Lwn at 443nm retrieved by the PPR, (d) Lwn at 670nm retrieved by the PPR. The maps were generated by the Microsoft Visual C and

6 Supplementary Figure S5: Same as the supplementary Figure S4, but for the 2th viewing angle. The maps were generated by the Microsoft Visual C and

7 Supplementary Figure S6: Same as the supplementary Figure S4, but for the 3th viewing angle. The maps were generated by the Microsoft Visual C and

8 Supplementary Figure S7: Same as the supplementary Figure S4, but for the 4th viewing angle. The maps were generated by the Microsoft Visual C and

9 Supplementary Figure S8: Same as the supplementary Figure S4, but for the 5th viewing angle. The maps were generated by the Microsoft Visual C and

10 Supplementary Figure S9: Same as the supplementary Figure S4, but for the 6th viewing angle. The maps were generated by the Microsoft Visual C and

11 Supplementary Figure S10: Same as the supplementary Figure S4, but for the 7th viewing angle. The maps were generated by the Microsoft Visual C and

12 Supplementary Figure S11: Same as the supplementary Figure S4, but for the 8th viewing angle. The maps were generated by the Microsoft Visual C and

13 Supplementary Figure S12: Same as the supplementary Figure S4, but for the 9th viewing angle. The maps were generated by the Microsoft Visual C and

14 Supplementary Figure S13: Same as the supplementary Figure S4, but for the 10th viewing angle. The maps were generated by the Microsoft Visual C and

15 Supplementary Figure S14: Same as the supplementary Figure S4, but for the 11th viewing angle. The maps were generated by the Microsoft Visual C and

16 Supplementary Figure S15: Same as the supplementary Figure S4, but for the 12th viewing angle. The maps were generated by the Microsoft Visual C and

17 Supplementary Figure S16: Comparison of the normalized water-leaving radiances at 443nm (unit of mw/(cm 2 m sr)) retrieved by total radiance and PPR for different observing angles of the POLDER data on 10 July Color bars show the point densities.

18 Supplementary Figure S17: Same as the supplementary Figure S16, but for the 670nm.

T he successful launch of the Coastal Zone Colour Scanner (CZCS) in 1978 was a milestone in the history of

T he successful launch of the Coastal Zone Colour Scanner (CZCS) in 1978 was a milestone in the history of OPEN SUBJECT AREAS: ATMOSPHERIC OPTICS ENVIRONMENTAL MONITORING MARINE BIOLOGY PHYSICAL OCEANOGRAPHY Received 27 June 2013 Accepted 23 December 2013 Published 17 January 2014 Correspondence and requests

More information

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA

Menghua Wang NOAA/NESDIS/STAR Camp Springs, MD 20746, USA Ocean EDR Product Calibration and Validation Plan Progress Report: VIIRS Ocean Color Algorithm Evaluations and Data Processing and Analyses Define a VIIRS Proxy Data Stream Define the required in situ

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor

A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor Hao Zhang 1, Haiwei Li 1, Benyong Yang 2, Zhengchao Chen 1 1. Institute of Remote Sensing and Digital Earth (RADI), Chinese

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors

Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Calibration Techniques for NASA s Remote Sensing Ocean Color Sensors Gerhard Meister, Gene Eplee, Bryan Franz, Sean Bailey, Chuck McClain NASA Code 614.2 Ocean Biology Processing Group October 21st, 2010

More information

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005 Assessing the Impact of the Plane-Parallel Cloud Assumption used in Computing Shortwave Heating Rate Profiles for the Broadband Heating Rate Profile Project W. O Hirok Institute for Computational Earth

More information

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Yves Govaerts and Marta Luffarelli Rayference Radiometric Calibration Workshop for European Missions ESRIN, 30-31

More information

Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors

Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors 1 Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors Bertrand Fougnie, Patrice Henry CNES 2 nd July, 2013 1. Introduction

More information

Curt Mobley from my summer course lecture

Curt Mobley from my summer course lecture This is a placeholder for the web book section on polarization Polari zation Curt Mobley from my summer course lecture from Ken Voss PhD Dissertation Fun with Polarization (1) Using polarization

More information

Use of the Polarized Radiance Distribution Camera System in the RADYO Program

Use of the Polarized Radiance Distribution Camera System in the RADYO Program DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Use of the Polarized Radiance Distribution Camera System in the RADYO Program Kenneth J. Voss Physics Department, University

More information

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies

Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies Application of the SCAPE-M atmospheric correction algorithm to the processing of MERIS data over continental water bodies L. Guanter 1, J. A. Domínguez 2, L. Conde 2, A. Ruiz-Verdú 2, V. Estellés 3, R.

More information

The influence of coherent waves on the remotely sensed reflectance

The influence of coherent waves on the remotely sensed reflectance The influence of coherent waves on the remotely sensed reflectance J. Ronald V. Zaneveld and Emmanuel Boss College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis OR 97330 zaneveld@oce.orst.edu,

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors

Motivation. Aerosol Retrieval Over Urban Areas with High Resolution Hyperspectral Sensors Motivation Aerosol etrieval Over Urban Areas with High esolution Hyperspectral Sensors Barry Gross (CCNY) Oluwatosin Ogunwuyi (Ugrad CCNY) Brian Cairns (NASA-GISS) Istvan Laszlo (NOAA-NESDIS) Aerosols

More information

contributions Radiance distribution over a ruffled sea: from glitter, sky, and ocean

contributions Radiance distribution over a ruffled sea: from glitter, sky, and ocean Radiance distribution over a ruffled sea: from glitter, sky, and ocean contributions Gilbert N. Plass, George W. Kattawar, and John A. Guinn, Jr. The upward radiance just above the ocean surface and at

More information

ICOL Improve Contrast between Ocean & Land

ICOL Improve Contrast between Ocean & Land - MEIS Level-1C eport D6 Issue: 1 ev.: 1 Page: 1 Project Title: Document Title: ICOL The MEIS Level-1C Version: 1.1 Author(s): Affiliation(s):. Santer, F. Zagolski ULCO, Université du Littoral Côte d Opale,

More information

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Presented by: Amir Ibrahim Optical Remote Sensing Laboratory, The City College of the City University

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) August 2018 1 JAXA Himawari Monitor JAXA has been developing Himawari 8 products using the retrieval algorithms based

More information

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD

Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Correction ATBD DOC: GKSS-KOF--ATBD01 Name: Case II ATBD-ATMO Page: 1 Algorithm Theoretical Basis Document (ATBD) Regional Coastal and Lake Case 2 Water Project Version 1.0, 18. May 2008 Roland Doerffer & Helmut Schiller

More information

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project 1. Differences of processing algorithm between SWIR L2 V01.xx and V02.xx

More information

Use of the Polarized Radiance Distribution Camera System in the RADYO Program

Use of the Polarized Radiance Distribution Camera System in the RADYO Program DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Use of the Polarized Radiance Distribution Camera System in the RADYO Program Kenneth J. Voss Physics Department, University

More information

Improved Global Ocean Color using POLYMER Algorithm

Improved Global Ocean Color using POLYMER Algorithm Improved Global Ocean Color using POLYMER Algorithm François Steinmetz 1 Didier Ramon 1 Pierre-Yves Deschamps 1 Jacques Stum 2 1 Hygeos 2 CLS June 29, 2010 ESA Living Planet Symposium, Bergen, Norway c

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) September 2018 1 2 JAXA Himawari Monitor JAXA has been developing Himawari-8 products using the retrieval algorithms

More information

Spectral Extinction Coefficient measurements of inland waters

Spectral Extinction Coefficient measurements of inland waters Spectral Extinction Coefficient measurements of inland waters M. Potes, M. J. Costa, R. Salgado and P. Le Moigne Évora Geophysics Centre, PORTUGAL CNRM/GMME/MOSAYC Météo-France, FRANCE Third Workshop on

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic

Estimating oceanic primary production using. vertical irradiance and chlorophyll profiles. from ocean gliders in the North Atlantic Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic Victoria S. Hemsley* 1,2, Timothy J. Smyth 3, Adrian P. Martin 2, Eleanor

More information

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle Sensor Calibration - Application Station Identifier ASN Scene Center atitude 34.840 (34 3'0.64"N) Day Night DAY Scene Center ongitude 33.03270 (33 0'7.72"E) WRS Path WRS Row 76 036 Corner Upper eft atitude

More information

Improvements to the SHDOM Radiative Transfer Modeling Package

Improvements to the SHDOM Radiative Transfer Modeling Package Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center

More information

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007 OMAERO README File B. Veihelmann, J.P. Veefkind, KNMI Last update: November 23, 2007 Overview The OMAERO Level 2 data product contains aerosol characteristics such as aerosol optical thickness (AOT), aerosol

More information

The status of the RTTOV forward model and an assessment of its accuracy using high spectral resolution satellite data Marco Matricardi

The status of the RTTOV forward model and an assessment of its accuracy using high spectral resolution satellite data Marco Matricardi The status of the RTTOV forward model and an assessment of its accuracy using high spectral resolution satellite data Marco Matricardi Advanced High Resolution Infrared Observations EUMETSAT Darmstadt,

More information

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT M. Schroeder, R. Müller, P. Reinartz German Aerospace Center, DLR Institute of Optoelectronics, Optical Remote

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Apparent Optical Properties and the BRDF 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Apparent Optical Properties and the BRDF Delivered at the Darling Marine Center, University of Maine July 2017 Copyright

More information

Preprocessed Input Data. Description MODIS

Preprocessed Input Data. Description MODIS Preprocessed Input Data Description MODIS The Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured

More information

MATISSE : version 1.4 and future developments

MATISSE : version 1.4 and future developments MATISSE : version 1.4 and future developments Advanced Earth Modeling for Imaging and the Simulation of the Scenes and their Environment Page 1 Pierre Simoneau, Karine Caillault, Sandrine Fauqueux, Thierry

More information

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Jose Moreno 3 September 2007, Lecture D1Lb2 OPTICAL THEORY-FUNDAMENTALS (2) Radiation laws: definitions and nomenclature Sources

More information

Improving remotely sensed fused ocean data products through crosssensor

Improving remotely sensed fused ocean data products through crosssensor Improving remotely sensed fused ocean data products through crosssensor calibration Mark David Lewis Ruhul Amin Sonia Gallegos Richard W. Gould, Jr. Sherwin Ladner Adam Lawson Rong-rong Li Improving remotely

More information

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12 Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 1 3. EM INTERACTIONS WITH MATERIALS In order for an object to be sensed, the object must reflect,

More information

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS

The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS The NIR- and SWIR-based On-orbit Vicarious Calibrations for VIIRS Menghua Wang NOAA/NESDIS/STAR E/RA3, Room 3228, 5830 University Research Ct. College Park, MD 20746, USA Menghua.Wang@noaa.gov Workshop

More information

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves Lecture 6: Geometrical Optics Reflection Refraction Critical angle Total internal reflection Polarisation of light waves Geometrical Optics Optics Branch of Physics, concerning the interaction of light

More information

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Verification of non-linear mixed pixel model with real remote sensing satellite images

More information

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements Tristan Harmel, 1, * Alexander Gilerson, 2 Alberto Tonizzo, 2 Jacek Chowdhary, 3 Alan Weidemann, 4

More information

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan Sensitivity Analysis and Error Analysis of Reflectance Based Vicarious Calibration with Estimated Aerosol Refractive Index and Size Distribution Derived from Measured Solar Direct and Diffuse Irradiance

More information

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission

HICO User Annual Report. Using HICO data for the preparation of the future EnMAP satellite mission August 31, 2012 HICO User Annual Report Using HICO data for the preparation of the future EnMAP satellite mission Nicole Pinnel 1, Rolf Richter 1, Slava Kiselev 2, Martin Bachmann 1 1 DLR, Earth Observation

More information

Aerosol Remote Sensing from PARASOL and the A-Train

Aerosol Remote Sensing from PARASOL and the A-Train Aerosol Remote Sensing from PARASOL and the A-Train J.-F. Léon, D. Tanré, J.-L. Deuzé, M. Herman, P. Goloub, P. Lallart Laboratoire d Optique Atmosphérique, France A. Lifermann Centre National d Etudes

More information

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a

Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a Prototyping GOES-R Albedo Algorithm Based on MODIS Data Tao He a, Shunlin Liang a, Dongdong Wang a a. Department of Geography, University of Maryland, College Park, USA Hongyi Wu b b. University of Electronic

More information

CHRIS Proba Workshop 2005 II

CHRIS Proba Workshop 2005 II CHRIS Proba Workshop 25 Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC Progress in the Upper Rhine Valley and Baasdorf test-sites Dr.

More information

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Peter Mantica, Chris Lietzke, Jer Zimmermann ITT Industries, Advanced Engineering and Sciences Division Fort Wayne, Indiana Fran

More information

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan Monte Carlo Ray Tracing Simulation of Polarization Characteristics of Sea Water Which Contains Spherical and Non-Spherical Particles of Suspended Solid and Phytoplankton Kohei Arai 1 Graduate School of

More information

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products

IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products IOCS San Francisco 2015 Uncertainty algorithms for MERIS / OLCI case 2 water products Roland Doerffer Brockmann Consult The problem of optically complex water high variability of optical properties of

More information

Estimating land surface albedo from polar orbiting and geostationary satellites

Estimating land surface albedo from polar orbiting and geostationary satellites Estimating land surface albedo from polar orbiting and geostationary satellites Dongdong Wang Shunlin Liang Tao He Yuan Zhou Department of Geographical Sciences University of Maryland, College Park Nov

More information

Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. UESAWA Daisaku* Abstract

Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. UESAWA Daisaku* Abstract Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) has developed

More information

Compact Multilayer Film Structure for Angle Insensitive. Color Filtering

Compact Multilayer Film Structure for Angle Insensitive. Color Filtering 1 Compact Multilayer Film Structure for Angle Insensitive Color Filtering Chenying Yang, Weidong Shen*, Yueguang Zhang, Kan Li, Xu Fang, Xing Zhang, and Xu Liu * E-mail: adongszju@hotmail.com

More information

SEA BOTTOM MAPPING FROM ALOS AVNIR-2 AND QUICKBIRD SATELLITE DATA

SEA BOTTOM MAPPING FROM ALOS AVNIR-2 AND QUICKBIRD SATELLITE DATA SEA BOTTOM MAPPING FROM ALOS AVNIR-2 AND QUICKBIRD SATELLITE DATA Mohd Ibrahim Seeni Mohd, Nurul Nadiah Yahya, Samsudin Ahmad Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310

More information

Results of Cross-comparisons using multiple sites

Results of Cross-comparisons using multiple sites Results of Cross-comparisons using multiple sites Dave Smith CEOS WGCV IVOS workshop 18-20 Oct 2010 1 Content AATSR Drift Analysis AATSR vs. MERIS comparisons over Deserts Intercomparisons Over Dome-C

More information

Lecture 1a Overview of Radiometry

Lecture 1a Overview of Radiometry Lecture 1a Overview of Radiometry Curtis Mobley Vice President for Science Senior Scientist Sequoia Scientific, Inc. Bellevue, Washington 98005 USA curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

Multi-sensors vicarious calibration activities at CNES

Multi-sensors vicarious calibration activities at CNES Multi-sensors vicarious calibration activities at CNES Patrice Henry, Bertrand Fougnie June 11, 2013 CNES background in image quality monitoring of operational Earth observation systems Since the launch

More information

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2)

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) Update of post launch vicarious, lunar calibrations & current status Presented by Prakash Chauhan Space Applications Centre Indian Space Research Organistaion Ahmedabad-

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing ENMAP Summer School on Remote Sensing Data Analysis Uncertainties in ocean colour remote sensing Roland Doerffer Retired from Helmholtz Zentrum Geesthacht Institute of Coastal Research Now: Brockmann Consult

More information

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters Samir Ahmed Department of Electrical

More information

The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy

The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy Journal of Oceanography, Vol. 54, pp. 437 to 442. 1998 The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy FUTOKI SAKAIDA 1, MASAO MORIYAMA

More information

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements Tristan Harmel, 1 * Alexander Gilerson, 2 Alberto Tonizzo, 2 Jacek Chowdhary, 3 Alan Weidemann, 4

More information

Kohei Arai Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai Graduate School of Science and Engineering Saga University Saga City, Japan Comparison Between Linear and Nonlinear Models of Mixed Pixels in Remote Sensing Satellite Images Based on Cierniewski Surface BRDF Model by Means of Monte Carlo Ray Tracing Simulation Kohei Arai Graduate

More information

Update on S3 SYN-VGT algorithm status PROBA-V QWG 4 24/11/2016

Update on S3 SYN-VGT algorithm status PROBA-V QWG 4 24/11/2016 ACRI-ST S3MPC 2014-2016 Update on S3 SYN-VGT algorithm status PROBA-V QWG 4 24/11/2016 Agenda Continuity with PROBA-V data - Evolution of S3 SYN / Creation of an alternative Proba-V like processing chain

More information

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 Presented By: Istvan Laszlo NOAA/NESDIS/STAR 1 ASR Team Radiation Budget AT chair: Istvan Laszlo ASR

More information

MTG-FCI: ATBD for Clear Sky Reflectance Map Product

MTG-FCI: ATBD for Clear Sky Reflectance Map Product MTG-FCI: ATBD for Clear Sky Reflectance Map Product Doc.No. Issue : : v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 January 2013 http://www.eumetsat.int

More information

UV Remote Sensing of Volcanic Ash

UV Remote Sensing of Volcanic Ash UV Remote Sensing of Volcanic Ash Kai Yang University of Maryland College Park WMO Inter-comparison of Satellite-based Volcanic Ash Retrieval Algorithms Workshop June 26 July 2, 2015, Madison, Wisconsin

More information

Implementation of Version 6 AQUA and TERRA SST processing. K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014

Implementation of Version 6 AQUA and TERRA SST processing. K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014 Implementation of Version 6 AQUA and TERRA SST processing K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014 Outline of V6 MODIS SST changes: A total of 3 additional

More information

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions ITSC-21, Darmstadt, Germany, November 29th-December 5th, 2017 session 2a Radiative Transfer The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the

More information

Data Mining Support for Aerosol Retrieval and Analysis:

Data Mining Support for Aerosol Retrieval and Analysis: Data Mining Support for Aerosol Retrieval and Analysis: Our Approach and Preliminary Results Zoran Obradovic 1 joint work with Amy Braverman 2, Bo Han 1, Zhanqing Li 3, Yong Li 1, Kang Peng 1, Yilian Qin

More information

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data

Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data Journal of Oceanography, Vol. 62, pp. 331 to 337, 2006 Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data ROBERT FROUIN 1 *, PIERRE-YVES DESCHAMPS 2, LYDWINE

More information

Shortwave Flux from Satellite-Measured Radiance: A Theoretical Study over Marine Boundary Layer Clouds

Shortwave Flux from Satellite-Measured Radiance: A Theoretical Study over Marine Boundary Layer Clouds 2144 JOURNAL OF APPLIED METEOROLOGY VOLUME 4 Shortwave Flux from Satellite-Measured Radiance: A Theoretical Study over Marine Boundary Layer Clouds L. H. CHAMBERS AND B. A. WIELICKI Atmospheric Sciences,

More information

CalVal needs for S2/S3 data normalisation

CalVal needs for S2/S3 data normalisation CalVal needs for S2/S3 data normalisation Mission Performance Centre B. Alhammoud, with support of R. Serra & V. Vellucci presentation by FR Martin-Lauzer FRM4SOC,21-23 February 2017, ESRIN Goal: EO synergy

More information

Direct radiative forcing of aerosol

Direct radiative forcing of aerosol Direct radiative forcing of aerosol 1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter) 3) Challenges for remote sensing retrieval:

More information

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project Kenneth J. Voss Physics Department,

More information

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight

2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing. Overview of HydroLight and EcoLight 2017 Summer Course Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Overview of HydroLight and EcoLight Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis D.

More information

RTTOV v11 TOP LEVEL DESIGN. James Hocking, David Rundle Met Office

RTTOV v11 TOP LEVEL DESIGN. James Hocking, David Rundle Met Office RTTOV v11 Top Level Design Doc ID: NWPSAF-MO-DS-022 RTTOV v11 TOP LEVEL DESIGN NWPSAF-MO-DS-022 James Hocking, David Rundle Met Office This documentation was developed within the context of the EUMETSAT

More information

Global and Regional Retrieval of Aerosol from MODIS

Global and Regional Retrieval of Aerosol from MODIS Global and Regional Retrieval of Aerosol from MODIS Why study aerosols? CLIMATE VISIBILITY Presented to UMBC/NESDIS June 4, 24 Robert Levy, Lorraine Remer, Yoram Kaufman, Allen Chu, Russ Dickerson modis-atmos.gsfc.nasa.gov

More information

CALIBRATION OF VEGETATION CAMERAS ON-BOARD SPOT4

CALIBRATION OF VEGETATION CAMERAS ON-BOARD SPOT4 CALIBRATION OF VEGETATION CAMERAS ON-BOARD SPOT4 Patrice Henry, Aimé Meygret CNES (Centre National d'etudes Spatiales) 18 avenue Edouard Belin - 31401 TOULOUSE CEDEX 4 - FRANCE Tel: 33 (0)5 61 27 47 12,

More information

Linking sun-induced fluorescence and photosynthesis in a forest ecosystem

Linking sun-induced fluorescence and photosynthesis in a forest ecosystem Linking sun-induced fluorescence and photosynthesis in a forest ecosystem COST ES1309 Tagliabue G, Panigada C, Dechant B, Celesti M, Cogliati S, Colombo R, Julitta T, Meroni M, Schickling A, Schuettemeyer

More information

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters

Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters Remote Sens. 2012, 4, 1716-1740; doi:10.3390/rs4061716 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Atmospheric Correction and Vicarious Calibration of Oceansat-1

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Polar Multi-Sensor Aerosol Product: ATBD

Polar Multi-Sensor Aerosol Product: ATBD Polar Multi-Sensor Aerosol Product: ATBD Doc.No. : EUM/TSS/SPE/14/739904 Issue : v3b e-signed Date : 30 November 2015 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax:

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing NOWPAP / PICES / WESTPAC Joint Training Course on Remote Sensing Data Analysis Introduction and recent progress in ocean color remote sensing part I: Uncertainties in ocean colour remote sensing Roland

More information

Polarimetric remote sensing of atmospheric aerosols: POLDER and beyond

Polarimetric remote sensing of atmospheric aerosols: POLDER and beyond Polarimetric remote sensing of atmospheric aerosols: POLDER and beyond Otto Hasekamp 1, Arjen Stap 1,2, Antonio di Noia 1, Jeroen Rietjens, Martijn Smit, Frans Snik 4, Pavel Litvinov 3, Arjan van Beelen

More information

Shallow-water Remote Sensing: Lecture 1: Overview

Shallow-water Remote Sensing: Lecture 1: Overview Shallow-water Remote Sensing: Lecture 1: Overview Curtis Mobley Vice President for Science and Senior Scientist Sequoia Scientific, Inc. Bellevue, WA 98005 curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

Bird Solar Model Source Creator

Bird Solar Model Source Creator Bird Solar Model Source Creator INTRODUCTION This knowledge base article describes a script that generates a FRED source that models the properties of solar light incident on a tilted or solar-tracking

More information

Develop proxy VIIRS Ocean Color remotesensing reflectance from MODIS

Develop proxy VIIRS Ocean Color remotesensing reflectance from MODIS Develop proxy VIIRS Ocean Color remotesensing reflectance from ODIS 1) Define a VIIRS Proxy Data Stream 2) Define the required in situ data stream for Cal/Val 3) Tuning of algorithms and LUTS (Vicarious

More information

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project Kenneth J. Voss Physics Department,

More information

lilsslhoing MARINE laboratories

lilsslhoing MARINE laboratories :.;.:.:.:-:.:-:.:.:-:.:.:.:-:.:.:.:.: ::::::::::::::::::::::::::::::::::::::::::.:.:-:.:.:.:.: lilsslhoing MARINE laboratories ::::::::::;:::;:;:;:;:;:::;:::::::::::::::::;:;::::::::::::::::::::::::.,

More information

Name Company Function Signature Date

Name Company Function Signature Date Page : i of 1 Title: MERMAID data format Doc. no: QWG-MER-MERMAID-DF-02 Issue: 2 Revision: 3 Date: 22/03/2012 Name Company Function Signature Date Prepared by: C. Mazeran ACRI-ST W.P. Manager 22/03/2012

More information

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data

Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Continued Development of the Look-up-table (LUT) Methodology For Interpretation of Remotely Sensed Ocean Color Data Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA

More information

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION

RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION RADIANCE IN THE OCEAN: EFFECTS OF WAVE SLOPE AND RAMAN SCATTERING NEAR THE SURFACE AND AT DEPTHS THROUGH THE ASYMPTOTIC REGION A Thesis by JULIE MARIE SLANKER Submitted to the Office of Graduate Studies

More information

Airborne Spectral Measurements of Ocean Directional Reflectance

Airborne Spectral Measurements of Ocean Directional Reflectance 1072 JOURNAL OF THE ATMOSPHERIC SCIENCES SPECIAL SECTION VOLUME 62 Airborne Spectral Measurements of Ocean Directional Reflectance CHARLES K. GATEBE Goddard Earth Sciences and Technology Center, University

More information

EcoLight-S 1.0 Users Guide and Technical Documentation

EcoLight-S 1.0 Users Guide and Technical Documentation EcoLight-S 1.0 Users Guide and Technical Documentation Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 109 Bellevue, WA 98005 curtis.mobley@sequoiasci.com 425-641-0944 x 109 First Printing,

More information

Digital Earth Routine on Tegra K1

Digital Earth Routine on Tegra K1 Digital Earth Routine on Tegra K1 Aerosol Optical Depth Retrieval Performance Comparison and Energy Efficiency Energy matters! Ecological A topic that affects us all Economical Reasons Practical Curiosity

More information

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart MERIS US Workshop Vicarious Calibration Methods and Results Steven Delwart Presentation Overview Recent results 1. CNES methods Deserts, Sun Glint, Rayleigh Scattering 2. Inter-sensor Uyuni 3. MOBY-AAOT

More information

Nonlinear Mixing Model of Mixed Pixels in Remote Sensing Satellite Images Taking Into Account Landscape

Nonlinear Mixing Model of Mixed Pixels in Remote Sensing Satellite Images Taking Into Account Landscape Vol. 4, No., 23 Nonlinear Mixing Model of Mixed Pixels in Remote Sensing Satellite Images Taking Into Account Landscape Verification of the proposed nonlinear pixed pixel model through simulation studies

More information