Dispersion Polarization

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Dispersion Polarization"

Transcription

1 Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1

2 Dispersion New Topic Phys 2435: Chap. 33, Pg 2

3 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u m each color in the spectrum has a different wavelength and frequency (recall c = λ f ) Phys 2435: Chap. 33, Pg 3

4 Dispersion We know the speed of light changes in a medium: v = c / n When light travels from one medium to another: wavelength changes too! (recall that v = f λ ) frequency does not change n c λ λ = = 0 = 0 v f f λ λ n refractive index depends on λ (different n for different colors) n decreases as λ increases λ Phys 2435: Chap. 33, Pg 4

5 n decreases as λ increases Dispersion for red light (λ( = 700 nm) n smaller (less bending) for blue light (λ( = 400 nm) n bigger (more bending) spreading (dispersion( dispersion) ) of colors due to refraction! n =! 0! Phys 2435: Chap. 33, Pg 5

6 How does a rainbow form? light is refracted by spherical water droplets red light is bent at a lesser angle (top( of rainbow) violet light is bent at a greater angle (bottom( of rainbow) Phys 2435: Chap. 33, Pg 6

7 A Diamond is Forever Total internal reflection High n=2.4. So critical angle is about 25 degrees Many internal reflections before exiting. Dispersion Colors are separated after many travels, before emerging individually and brilliantly. Phys 2435: Chap. 33, Pg 7

8 Polarization New Topic Phys 2435: Chap. 33, Pg 8

9 Polarization The E field in an EM wave is perpendicular to the direction of travel. But there are many possible orientations for the E field! polarized light unpolarized light 1 electron E field oscillates in one direction millions of electrons E field oscillates in all directions 3-D view: 3-D view: In polarized light, all of the electric fields in the wave oscillate in the same direction Phys 2435: Chap. 33, Pg 9

10 Polarization by Absorption Three ways to polarize light 1) scattering 2) reflection 3) absorption E field of wave Wave absorbed E field of wave Wave passes through Polarization by absorption: Vertical components of wave are absorbed by antenna Horizontal components pass through unpolarized long thin molecules (light) wires (radio waves) polaroid polarized Phys 2435: Chap. 33, Pg 10

11 Polarizer Phys 2435: Chap. 33, Pg 11

12 How much light gets through? Intensity of the outgoing polarized light: I = I 0 cos 2 φ Phys 2435: Chap. 33, Pg 12

13 Example: two polarizers in combination If the incident light has intensity I 0, what are the intensities transmittied by the 1 st and 2 nd polarizers if the angle between the axes of the two filters is 30 degrees? The intensity after passing the 1 st filter is I 0 /2. After passing the 2nd filter it becomes I 0 /2 x cos = 3I 0 /8. Phys 2435: Chap. 33, Pg 13

14 Polarization by Reflection θ p is called polarizing angle. Phys 2435: Chap. 33, Pg 14

15 Polarization by Reflection Polarizing angle (Brewster s Angle): reflected light is totally linear-polarized perpendicular to the incident plane when the incident angle is given by tan! p = n n b a The refracted light is partially polarized parallel to the incident plane By Snell s law, n sin! = n sin!, we can get a p b b! p +! b 0 = 90 The reflected light is perpendicular to the refracted light if incident at Brewster s angle. Phys 2435: Chap. 33, Pg 15

16 Example: Polarization from air to water from water to air nb tan! p = = n a nb tan! p = = n a Phys 2435: Chap. 33, Pg 16

17 Circular Polarization Superposition of two linearly-polarized waves at right angles with each other. right circularly-polarized: clockwise left circularly-polarized: counter-clockwise Phys 2435: Chap. 33, Pg 17

18 Why is the sky blue,, clouds white,, and sunset red? Scattering of light: Light can be absorbed by molecules and reemittied in a variety of directions. The intensity of the scattered light is proportional to frequency to the 4 th power (or inversely proportional to fourth power of the wavelength). This is called Rayleigh scattering). The intensity ratio for the two ends of the visible light is (blue/red) 4 = (700nm/400nm) 4 = 9.4 that s why the sky is blue Cloud has high concentration of water molecules. Light of all wavelengths is essentially scattered out of the cloud. that s why the cloud is white. Near sunset, sunlight has to travel long distances to reach you. Most of the blue light is scattered away. White minus blue is yellowish or reddish. that s why the sunset is red. Phys 2435: Chap. 33, Pg 18

19 ConcepTest 33.5(post) Polarization If unpolarized light is incident from the left, at which of the points will there be some light? a) 1 b) 2 c) 3 d) none of them e) all of them Phys 2435: Chap. 33, Pg 19

20 ConcepTest 33.6(post) Polarization Suppose the axis of the 2 nd polarizer is oriented 45 0 relative to the 1 st polarizer, and the intensity of the incident light is I 0. How much light emerges from the 3 rd polarizer? a) 0 b) I 0 /1.4 c) I 0 /2 d) I 0 /4 e) I 0 /8 Phys 2435: Chap. 33, Pg 20

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18 Physics 1161: Lecture 18 Internal Reflection Rainbows, Fiber Optics, Sun Dogs, Sun Glasses sections 26-8 & 25-5 Internal Reflection in Prisms Total Internal Reflection Recall Snell s Law: n 1 sin( 1 )=

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n sin θ Total Internal Reflection Consider light moving from glass (n 1 =1.5) to air (n =1.0) n 1 incident ray θ 1 θ r reflected ray GLASS sinθ sinθ 1 > 1 = n n 1 θ > θ 1 n θ refracted

More information

Electromagnetic waves

Electromagnetic waves Electromagnetic waves Now we re back to thinking of light as specifically being an electromagnetic wave u u u oscillating electric and magnetic fields perpendicular to each other propagating through space

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

More information

Lecture 26, March 16, Chapter 35, Polarization

Lecture 26, March 16, Chapter 35, Polarization Physics 5B Lecture 26, March 16, 2012 Chapter 35, Polarization Simple Spectrometer d sin m Resolving power, to separate two lines closely spaced in wavelength by : R mn Resolving Power Two lines not resolved.

More information

Polarization. Bởi: OpenStaxCollege

Polarization. Bởi: OpenStaxCollege Polarization Bởi: OpenStaxCollege Polaroid sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass (see [link]). Polaroids have this ability

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Office Hours. Scattering and Polarization

Office Hours. Scattering and Polarization Office Hours Office hours are posted on the website. Molly: Tuesdays 2-4pm Dr. Keister: Wednesdays 10am-12 Prof. Goldman: Wednesdays 2-3:30pm All office hours are in the help room downstairs If none of

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Physics 4C Chapter 33: Electromagnetic Waves

Physics 4C Chapter 33: Electromagnetic Waves Physics 4C Chapter 33: Electromagnetic Waves Our greatest glory is not in never failing, but in rising up every time we fail. Ralph Waldo Emerson If you continue to do what you've always done, you'll continue

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 246 Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Basic Optics : Microlithography Optics Part 4: Polarization

Basic Optics : Microlithography Optics Part 4: Polarization Electromagnetic Radiation Polarization: Linear, Circular, Elliptical Ordinary and extraordinary rays Polarization by reflection: Brewster angle Polarization by Dichroism Double refraction (Birefringence)

More information

Total Internal Reflection

Total Internal Reflection Total nternal Reflection Consider light moving from glass (n.5) to air (n.) i r n sin n sin n n incident ra r refracted ra reflected ra GLASS AR sin n sin n >.e., light is bent awa from the normal. as

More information

Interference, Diffraction & Polarization

Interference, Diffraction & Polarization Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

More information

Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

FINDING THE INDEX OF REFRACTION - WebAssign

FINDING THE INDEX OF REFRACTION - WebAssign Name: Book: Period: Due Date: Lab Partners: FINDING THE INDEX OF REFRACTION - WebAssign Purpose: The theme in this lab is the interaction between light and matter. Matter and light seem very different

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

Understanding the Propagation of Light

Understanding the Propagation of Light [ Assignment View ] [ Eðlisfræði 2, vor 2007 33. The Nature and Propagation of Light Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

normal angle of incidence increases special angle no light is reflected

normal angle of incidence increases special angle no light is reflected Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

More information

Mathematics of Rainbows

Mathematics of Rainbows Mathematics of Rainbows MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics 2010 What is a Rainbow? A rainbow is created by water, sunlight, and the principles

More information

Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 2002 Session I Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

Polarization of Light

Polarization of Light Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets. POLARIZATION OF LIGHT REFERENCES Halliday, D. and Resnick, A., Physics, 4 th edition, New York: John Wiley & Sons, Inc, 1992, Volume II, Chapter 48-1, 48-2, 48-3. (2weights) (1weight-exercises 1 and 3

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve Chapter 35 I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually

More information

Small particles scatter light

Small particles scatter light Lec. 25, Tuesday, April 13 Chapter 13: Scattering and Polarization Homework is due in room G2B90 in boxes We are here Scattering: Smoke, haze, fog, clouds, air, water, Depends on wavelength, size of particle

More information

Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

Visible light, and all EM waves travel thru a vacuum with speed c. But light can also travel thru many different materials.

Visible light, and all EM waves travel thru a vacuum with speed c. But light can also travel thru many different materials. Ch. 26 The Refraction of Light Visible light, and all EM waves travel thru a vacuum with speed c. But light can also travel thru many different materials. The atoms in these materials absorb, reemit, and

More information

Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization

Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization Recall that I stated that we had to model light as a transverse wave so that we could use the model to explain polarization. The electric

More information

Lecture 16 (Total Internal Reflection and Dispersion) Physics Spring 2018 Douglas Fields

Lecture 16 (Total Internal Reflection and Dispersion) Physics Spring 2018 Douglas Fields Lecture 16 (Total Internal Reflection and Dispersion) Physics 262-01 Spring 2018 Douglas Fields Reading Quiz In order to have total internal reflection, the index of refraction of the material with the

More information

Ron Ferril SBCC Physics 101 Chapter Jul27A Page 1 of 15. Chapter 10 Reflection, Refraction, Diffraction and Interference

Ron Ferril SBCC Physics 101 Chapter Jul27A Page 1 of 15. Chapter 10 Reflection, Refraction, Diffraction and Interference Ron Ferril SBCC Physics 101 Chapter 10 2017Jul27A Page 1 of 15 Chapter 10 Reflection, Refraction, Diffraction and Interference Overview When waves are incident at a boundary between media (such as water

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 24 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

The Propagation of Light:

The Propagation of Light: Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich LECTURE 13 REFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 26.5 Index of refraction Snell s law Total internal reflection Total polarization Index of refraction 3 The speed of light in

More information

Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision. MATERIAL TO READ Web: 1. Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

Light, Lenses, Mirrors

Light, Lenses, Mirrors Light, Lenses, Mirrors Optics Light is Dual in nature- has both particle and wave properties. Light = range of frequencies of electromagnetic waves that stimulates the eye s retina Facts About Light It

More information

TEAMS National Competition High School Version Photometry 25 Questions

TEAMS National Competition High School Version Photometry 25 Questions TEAMS National Competition High School Version Photometry 25 Questions Page 1 of 14 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away, the

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016 16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

More information

Blue Skies Blue Eyes Blue Butterflies

Blue Skies Blue Eyes Blue Butterflies Blue Skies Blue Eyes Blue Butterflies Friday, April 19 Homework #9 due in class Lecture: Blue Skies, Blue Eyes & Blue Butterflies: Interaction of electromagnetic waves with matter. Week of April 22 Lab:

More information

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

EM Spectrum, Reflection & Refraction Test

EM Spectrum, Reflection & Refraction Test EM Spectrum, Reflection & Refraction Test Name: 1. For each of the diagrams below, an object is shown in position before a concave mirror. The shiny side is on the left, facing the object. For each case,

More information

13. Brewster angle measurement

13. Brewster angle measurement 13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p- and s- polarizations 3. Determination

More information

Light and Sound. Wave Behavior and Interactions

Light and Sound. Wave Behavior and Interactions Light and Sound Wave Behavior and Interactions How do light/sound waves interact with matter? WORD Definition Example Picture REFLECTED REFRACTED is the change in direction of a wave when it changes speed

More information

TEAMS National Competition Middle School Version Photometry 25 Questions

TEAMS National Competition Middle School Version Photometry 25 Questions TEAMS National Competition Middle School Version Photometry 25 Questions Page 1 of 13 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away,

More information

Phys 104: College Physics EXAM 3

Phys 104: College Physics EXAM 3 Phys 14: College Physics Key Name I. VERY SHORT ANSWER: EXAM 3 FRIDAY, APRIL 16, 21 1) 3 A cat plays with a butterfly at dawn and looks directly up at light from the sun rising in the east that has been

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Polarization. Lecture outline

Polarization. Lecture outline Polarization Lecture outline Why is polarization important? Classification of polarization Four ways to polarize EM waves Polarization in active remote sensing systems 1 Definitions Polarization is the

More information

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa Light II Physics 2415 Lecture 32 Michael Fowler, UVa Today s Topics Huygens principle and refraction Snell s law and applications Dispersion Total internal reflection Huygens Principle Newton s contemporary

More information

! "To accept Huygens's principle requires abandoning the idea that a ray has much intrinsic physical significance..." (pg. 5.)

! To accept Huygens's principle requires abandoning the idea that a ray has much intrinsic physical significance... (pg. 5.) 02. Malus and Polarization. 1. The Optical Ray. Pre-17th Century: The ray as the physical foundation of light.! Euclid: "visual rays" proceed from the eye to object of sight. 1690. Huygens's Traite de

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

LIGHT SCATTERING THEORY

LIGHT SCATTERING THEORY LIGHT SCATTERING THEORY Laser Diffraction (Static Light Scattering) When a Light beam Strikes a Particle Some of the light is: Diffracted Reflected Refracted Absorbed and Reradiated Reflected Refracted

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Light and all its colours

Light and all its colours Light and all its colours Hold a CD to the light You can see all the colours of the rainbow The CD is a non-luminous body It is reflecting white light from the sun Where do the colours come from? Truth

More information

Physics 11 - Waves Extra Practice Questions

Physics 11 - Waves Extra Practice Questions Physics - Waves xtra Practice Questions. Wave motion in a medium transfers ) energy, only ) mass, only. both mass and energy. neither mass nor energy. single vibratory disturbance that moves from point

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

REFLECTION & REFRACTION

REFLECTION & REFRACTION REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

More information

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK ONE MARK QUESTIONS 1. What is lateral shift? 2. What should be the angle of incidence to have maximum lateral shift? 3. For what angle, lateral shift is minimum? 4. What is Normal shift? 5. What is total

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information