3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos

Size: px
Start display at page:

Download "3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos"

Transcription

1 Machine Learning for Computer Vision 1 3 October, 2013 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Department of Applied Mathematics Ecole Centrale Paris Galen Group INRIA-Saclay

2 Administrative details 2 Make sure you have all received my from last week

3 Lecture outline 3 Recap & problems of linear regression Logistic Regression Introduction to Multiple Instance Learning

4 4 Learning problem Recover input-output mapping Output: y Input: x Method: f Parameters: w Aspects of the learning problem Identify methods that fit the problem setting Determine parameters that properly classify the training set Measure and control the complexity of these functions

5 Linear Classifiers Find linear expression (hyperplane) to separate positive and negative examples 5 Feature coordinate j x x i i positive : negative : x x i i w + b w + b 0 < 0 Each data point has a class label: +1 ( ) y t = -1 ( ) Feature coordinate i

6 Learning problem formulation 6 Given: Training set of feature-label pairs Wanted: simple that works well for simple: penalizing function complexity, to guarantee generalization works well: quantified by loss criterion

7 Linear regression 7 Linear Loss function: quantify appropriateness of for Introduce vector notation

8 Inappropriateness of quadratic loss We chose the quadratic cost function for convenience Single, global minimum & closed form expression 8 But does it indicate classification performance? Computed Decision Boundary Linear Fit Desired decision boundary

9 Inappropriateness of quadratic loss Consider transformation: 9 Quadratic loss is not robust to outliers and penalizes outputs that are `too good

10 Lecture outline 10 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Multiple Instance Learning

11 Probabilistic interpretation of least squares 11 Outputs: continuous random variables linear function of inputs + zero mean Gaussian r.v. Optimal w: maximizes likelihood of observed outputs But the labels are discrete!

12 A probabilistic criterion for training a classifier 12 Training set: y: discrete observations: model as samples from Bernoulli distribution Find w that maximizes the likelihood of labels in the training set

13 Sigmoidal function & logistic regression 13 sigmoidal Training criterion from previous slide: How do we optimize it with respect to w? What does it mean?

14 Lecture outline 14 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Multiple Instance Learning

15 Maximization by gradient ascent 15 Gradient ascent:

16 Maximization with Newton-Raphson 16 Newton method for finding roots of 1D function : Newton method for finding maxima of 1D function : condition Newton-Raphson method for finding maxima of N-D function :

17 Newton-Raphson for Logistic Regression 17 Jacobian: Hessian: In statistics: Iteratively Reweighted Least Squares (IRLS)

18 Lecture outline 18 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Support Vector Machines

19 A compact expression for the loss 19 Using, :

20 Log loss: 20

21 Log loss vs. quadratic loss 21

22 Logistic vs Linear Regression 22 Logistic regression is more robust Linear Regression Logistic Regression

23 Lecture outline 23 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Multiple Instance Learning

24 Boundary detection problem Object/Surface Boundaries 24

25 25 Signal-level challenges Poor contrast Shadows Texture

26 Machine Learning for Computer Vision Lecture 2 Fundamental challenges: can humans do it? 26

27 Learning-based approaches 27 Boundary or non-boundary? Use human-annotated segmentations Use any visual cue as input to the decision function. Use decision trees/logisitic regression/boosting/ and learn to combine the individual inputs. S. Konishi, A.Yuille, J. Coughlan, S.C. Zhu, Statistical Edge Detection: Learning and Evaluating Edge Cues, IEEE PAMI, 2003 D. Martin, C. Fowlkes, J. Malik. "Learning to Detect Natural Image Boundaries Using Local Brightness, Color and Texture Cues", IEEE PAMI, 2004

28 Evaluation protocol 28 Threshold detector s output at certain level Match outputs to human ground-truth Count true/false positives (t/f)positives, misses (m) From precision, p and recall, r Quantify performance in terms of F-measure

29 29 Contours can be defined by any of a number of cues (P. Cavanagh) Slide credit: J. Malik, M. Maire

30 Cue-localization Gray level photographs 30 Objects from motion Objects from luminance Objects from disparity Line drawings Objects from texture Slide credit: J. Malik, M. Maire Grill-Spector et al., Neuron 1998

31 31 Local boundary cues Separate features per candidate orientation In specific: r (x,y) θ 1976 CIE L*a*b* colorspace Brightness Gradient BG(x,y,r,θ) Difference of L* distributions Color Gradient CG(x,y,r,θ) Difference of a*b* distributions Texture Gradient TG(x,y,r,θ) Difference of distributions of V1-like filter responses Slide credit: J. Malik, M. Maire

32 Boundary cues (horizontal) 32 Brightness Color (a, b channels) Texture

33 Boundary π/4 33 Brightness Color (a, b channels) Texture

34 Brightness π/2 34 Brightness Color (a, b channels) Texture

35 Brightness 3π/4 35 Brightness Color (a, b channels) Texture

36 Cue combinations with logistic regression 36 Slide credit: J. Malik, M. Maire

37 Exploiting global constraints: image Segmentation as Graph Partitioning Build a weighted graph G=(V,E) from image V: image pixels 37 E: connections between pairs of nearby pixels Partition graph so that similarity within group is large and similarity between groups is small -- Normalized Cuts [Shi & Malik 97] Slide credit: J. Malik, M. Maire

38 38 Wij small when intervening contour strong, strong when weak.. Slide credit: J. Malik, M. Maire

39 Normalized Cuts as a Spring-Mass system 39 Each pixel is a point mass; each connection is a spring: ( D W ) y = λdy Fundamental modes are generalized eigenvectors of (D - W) x = λdx Slide credit: J. Malik, M. Maire

40 Contour information from eigenvectors 40 Slide credit: J. Malik, M. Maire

41 Classifier 41 Logistic regression

42 Progress during the last 40 years 42 Humans Berkeley gpb, 08 Berkeley PB, 04 Canny+ Hysteresis ( 85) Prewitt, good feature= 5 years of work

43 Lecture outline 43 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Multiple Instance Learning

44 Machine Learning for Computer Vision Lecture 2 Learning symmetry detection S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV

45 Multi-scale and multi-orientation features 45 S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV 2012

46 Learning boundary detection 46 Problem I: inconsistent orientation information Problem II: inconsistent location information

47 Sneaking into the fun room 47 mom s keychain grandma s keychain dad s keychain We know that dad cannot enter the fun room, either Which key should we try? Slide Credit: B. Babenko/T. Dietterich

48 Multiple Instance Learning 48 Typical Learning Multiple Instance Learning Positive bag: at least one instance should be positive Negative bag: no instance should be positive Slide Credit: K. Grauman

49 Noisy-or classifier combination N classifier responses, {p 1,...,p N } p i : probability of positive label (classifier i) 1 p i : probability of negative (classifier i) Negative bag: all instance classifiers are negative NY (1 p i ) p =1 i=1 Probability of bag being positive: NY (1 p i ) i=1 49

50 Algorithm pipeline 50 Input image P(x,y) Features Brightness Texture Color Spectra l P(x,y) Training Multiple Instance Learning (MIL) non-maximum suppression softmax θ,s (P(x,y,θ,s)) 14x1 weight vector S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV 2012

51 51 Feature extraction Color: CIE Lab color space. Texture: texton map. Hard binning (32 bins for 3 color channels, 64 textons). Rectangle filters extract features at multiple scales and orientations. Differences of histograms ( gradients ) of color and texture content à symmetry indication. χ 2 distance à dissimilarity of feature content between adjacent rectangles. Integral images for fast extraction. S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV 2012

52 MIL Training 52 Input image θ = 22.5 θ = 45 Varying angle θ = 90 θ = 135 Varying scale θ = MIL training s = 4 s = 8 w w w = w s = 12 s = 24 s = 16 Probability map S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV 2012

53 53 Machine Learning for Computer Vision Lecture 2 Results Lindeberg Levinshtein This work State-of-the-art performance Large boost from color, texture and spectral cues. Long contours (region proposals) S. Tsogkas & I.K., Learning-based symmetry detection in natural images, ECCV 2012 Ground-truth

54 54 Machine Learning for Computer Vision Lecture 2 Some more results Lindeberg Levinshtein This work Ground-truth

55 Lecture recap 55 Logistic Regression Training criterion Optimization Application to boundary detection Introduction to MIL

56 Logistic regression training cost 56 Log loss Quadratic loss

57 Lecture recap 57 Logistic Regression Training criterion Optimization Application to boundary detection Introduction to MIL

58 Maximization with Newton-Raphson 58 Newton-Raphson method for finding maxima of N-D function: Condition for maximum: Jacobian: Hessian:

59 Lecture recap 59 Logistic Regression Training criterion Optimization Application to boundary detection Introduction to MIL

60 Progress during the last 40 years 60 Humans Berkeley gpb, 08 Berkeley PB, 04 Canny+ Hysteresis ( 85) Prewitt, good feature= 5 years of work

61 Lecture outline 61 Recap & problems of linear regression Logistic Regression Training criterion formulation Optimization Interpretation Application to boundary detection Introduction to Multiple Instance Learning

62 Appendix 62 Newton Raphson = Iteratively Reweighted Least Squares Masking problem in multi-class linear regression & softmax

63 Newton Raphson = Iteratively Reweighted Least Squares 63 Newton Raphson: Hessian: Rewrite Update: Transform: Weighted Least Squares Fit:

64 Multiple classes & linear regression 64 K classes: one-of-k coding 4 classes, i-th sample is in 3 rd class: Matrix notation: Loss function: Least squares fit:

65 Multiple classes & linear regression 65 One linear discriminant per class: Problem: ambiguous regions Solution: assign to discriminant with largest score

66 Masking Problem in linear regression Class 1 Class 2 Class 3 66 Nothing ever gets assigned to class 2! 2D version:

67 Multiple classes & logistic regression 67 Soft maximum of competing classes: Discriminants (inputs) Softmax (outputs) Label probability: Similar steps for parameter estimation (Bishop s book)

68 Logistic vs Linear Regression, n>2 classes 68 Linear regression Logistic regression Logistic regression does not exhibit the masking problem

Part III: Affinity Functions for Image Segmentation

Part III: Affinity Functions for Image Segmentation Part III: Affinity Functions for Image Segmentation Charless Fowlkes joint work with David Martin and Jitendra Malik at University of California at Berkeley 1 Q: What measurements should we use for constructing

More information

Boundaries and Sketches

Boundaries and Sketches Boundaries and Sketches Szeliski 4.2 Computer Vision James Hays Many slides from Michael Maire, Jitendra Malek Today s lecture Segmentation vs Boundary Detection Why boundaries / Grouping? Recap: Canny

More information

Global Probability of Boundary

Global Probability of Boundary Global Probability of Boundary Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues Martin, Fowlkes, Malik Using Contours to Detect and Localize Junctions in Natural

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Learning the Ecological Statistics of Perceptual Organization

Learning the Ecological Statistics of Perceptual Organization Learning the Ecological Statistics of Perceptual Organization Charless Fowlkes work with David Martin, Xiaofeng Ren and Jitendra Malik at University of California at Berkeley 1 How do ideas from perceptual

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University Edge and Texture CS 554 Computer Vision Pinar Duygulu Bilkent University Filters for features Previously, thinking of filtering as a way to remove or reduce noise Now, consider how filters will allow us

More information

Contour Detection and Hierarchical Image Segmentation Some Experiments

Contour Detection and Hierarchical Image Segmentation Some Experiments Contour Detection and Hierarchical Image Segmentation Some Experiments CS395T Visual Recognition Presented by Elad Liebman Overview Understanding the method better: The importance of thresholding the ouput

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Edges and Binary Images

Edges and Binary Images CS 699: Intro to Computer Vision Edges and Binary Images Prof. Adriana Kovashka University of Pittsburgh September 5, 205 Plan for today Edge detection Binary image analysis Homework Due on 9/22, :59pm

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Ulrik Söderström 16 Feb Image Processing. Segmentation

Ulrik Söderström 16 Feb Image Processing. Segmentation Ulrik Söderström ulrik.soderstrom@tfe.umu.se 16 Feb 2011 Image Processing Segmentation What is Image Segmentation? To be able to extract information from an image it is common to subdivide it into background

More information

Patterns and Computer Vision

Patterns and Computer Vision Patterns and Computer Vision Michael Anderson, Bryan Catanzaro, Jike Chong, Katya Gonina, Kurt Keutzer, Tim Mattson, Mark Murphy, David Sheffield, Bor-Yiing Su, Narayanan Sundaram and the rest of the PALLAS

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

Edges and Binary Image Analysis April 12 th, 2018

Edges and Binary Image Analysis April 12 th, 2018 4/2/208 Edges and Binary Image Analysis April 2 th, 208 Yong Jae Lee UC Davis Previously Filters allow local image neighborhood to influence our description and features Smoothing to reduce noise Derivatives

More information

Previously. Edge detection. Today. Thresholding. Gradients -> edges 2/1/2011. Edges and Binary Image Analysis

Previously. Edge detection. Today. Thresholding. Gradients -> edges 2/1/2011. Edges and Binary Image Analysis 2//20 Previously Edges and Binary Image Analysis Mon, Jan 3 Prof. Kristen Grauman UT-Austin Filters allow local image neighborhood to influence our description and features Smoothing to reduce noise Derivatives

More information

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City Edge Detection Computer Vision Shiv Ram Dubey, IIIT Sri City Previous two classes: Image Filtering Spatial domain Smoothing, sharpening, measuring texture * = FFT FFT Inverse FFT = Frequency domain Denoising,

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos Machine Learning for Computer Vision 1 18 October, 2013 MVA ENS Cachan Lecture 6: Introduction to graphical models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

DIGITAL IMAGE PROCESSING

DIGITAL IMAGE PROCESSING The image part with relationship ID rid2 was not found in the file. DIGITAL IMAGE PROCESSING Lecture 6 Wavelets (cont), Lines and edges Tammy Riklin Raviv Electrical and Computer Engineering Ben-Gurion

More information

Learning-Based Symmetry Detection in Natural Images

Learning-Based Symmetry Detection in Natural Images Learning-Based Symmetry Detection in Natural Images Stavros Tsogkas, Iasonas Kokkinos To cite this version: Stavros Tsogkas, Iasonas Kokkinos. Learning-Based Symmetry Detection in Natural Images. ECCV

More information

Image gradients and edges

Image gradients and edges Image gradients and edges Thurs Sept 3 Prof. Kristen Grauman UT-Austin Last time Various models for image noise Linear filters and convolution useful for Image smoothing, remov ing noise Box filter Gaussian

More information

Edge detection. Winter in Kraków photographed by Marcin Ryczek

Edge detection. Winter in Kraków photographed by Marcin Ryczek Edge detection Winter in Kraków photographed by Marcin Ryczek Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image

More information

ShadowDraw Real-Time User Guidance for Freehand Drawing. Harshal Priyadarshi

ShadowDraw Real-Time User Guidance for Freehand Drawing. Harshal Priyadarshi ShadowDraw Real-Time User Guidance for Freehand Drawing Harshal Priyadarshi Demo Components of Shadow-Draw Inverted File Structure for indexing Database of images Corresponding Edge maps Query method Dynamically

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Recap from Monday. Visualizing Networks Caffe overview Slides are now online

Recap from Monday. Visualizing Networks Caffe overview Slides are now online Recap from Monday Visualizing Networks Caffe overview Slides are now online Today Edges and Regions, GPB Fast Edge Detection Using Structured Forests Zhihao Li Holistically-Nested Edge Detection Yuxin

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

Edge Detection CSC 767

Edge Detection CSC 767 Edge Detection CSC 767 Edge detection Goal: Identify sudden changes (discontinuities) in an image Most semantic and shape information from the image can be encoded in the edges More compact than pixels

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

What is an edge? Paint. Depth discontinuity. Material change. Texture boundary

What is an edge? Paint. Depth discontinuity. Material change. Texture boundary EDGES AND TEXTURES The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Review of Filtering. Filtering in frequency domain

Review of Filtering. Filtering in frequency domain Review of Filtering Filtering in frequency domain Can be faster than filtering in spatial domain (for large filters) Can help understand effect of filter Algorithm: 1. Convert image and filter to fft (fft2

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

CMPSCI 670: Computer Vision! Grouping

CMPSCI 670: Computer Vision! Grouping CMPSCI 670: Computer Vision! Grouping University of Massachusetts, Amherst October 14, 2014 Instructor: Subhransu Maji Slides credit: Kristen Grauman and others Final project guidelines posted Milestones

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Edge Detection. CSC320: Introduction to Visual Computing Michael Guerzhoy. René Magritte, Decalcomania. Many slides from Derek Hoiem, Robert Collins

Edge Detection. CSC320: Introduction to Visual Computing Michael Guerzhoy. René Magritte, Decalcomania. Many slides from Derek Hoiem, Robert Collins Edge Detection René Magritte, Decalcomania Many slides from Derek Hoiem, Robert Collins CSC320: Introduction to Visual Computing Michael Guerzhoy Discontinuities in Intensity Source: Robert Collins Origin

More information

Edge Pixel Classification Using Automatic Programming

Edge Pixel Classification Using Automatic Programming Edge Pixel Classification Using Automatic Programming Kristin Larsen, Lars Vidar Magnusson and Roland Olsson Østfold University College Abstract We have considered edge detection as a classification problem,

More information

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Filters for color images Edge detection for color images Canny edge detection FILTERS FOR COLOR IMAGES

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Segmentation (continued)

Segmentation (continued) Segmentation (continued) Lecture 05 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics

More information

https://en.wikipedia.org/wiki/the_dress Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Edge and corner detection

Edge and corner detection Edge and corner detection Prof. Stricker Doz. G. Bleser Computer Vision: Object and People Tracking Goals Where is the information in an image? How is an object characterized? How can I find measurements

More information

Modern Object Detection. Most slides from Ali Farhadi

Modern Object Detection. Most slides from Ali Farhadi Modern Object Detection Most slides from Ali Farhadi Comparison of Classifiers assuming x in {0 1} Learning Objective Training Inference Naïve Bayes maximize j i logp + logp ( x y ; θ ) ( y ; θ ) i ij

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Edges and Binary Image Analysis. Thurs Jan 26 Kristen Grauman UT Austin. Today. Edge detection and matching

Edges and Binary Image Analysis. Thurs Jan 26 Kristen Grauman UT Austin. Today. Edge detection and matching /25/207 Edges and Binary Image Analysis Thurs Jan 26 Kristen Grauman UT Austin Today Edge detection and matching process the image gradient to find curves/contours comparing contours Binary image analysis

More information

30 September 2013 MVA ENS Cachan

30 September 2013 MVA ENS Cachan Machine Learning for Computer Vision 1 30 September 2013 MVA ENS Cachan Lecture 1: Introduction to Classification Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Computational Vision / Galen Group

More information

Edge detection. Winter in Kraków photographed by Marcin Ryczek

Edge detection. Winter in Kraków photographed by Marcin Ryczek Edge detection Winter in Kraków photographed by Marcin Ryczek Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, edges carry most of the semantic and shape information

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection

Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection Shahryar Ehsaee and Mansour Jamzad (&) Department of Computer Engineering, Sharif University of Technology,

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Image Analysis. Edge Detection

Image Analysis. Edge Detection Image Analysis Edge Detection Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Kristen Grauman, University of Texas at Austin (http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html).

More information

AK Computer Vision Feature Point Detectors and Descriptors

AK Computer Vision Feature Point Detectors and Descriptors AK Computer Vision Feature Point Detectors and Descriptors 1 Feature Point Detectors and Descriptors: Motivation 2 Step 1: Detect local features should be invariant to scale and rotation, or perspective

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection COS 429: COMPUTER VISON Linear Filters and Edge Detection convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection Reading:

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 14 Edge detection What will we learn? What is edge detection and why is it so important to computer vision? What are the main edge detection techniques

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information

CS 4495 Computer Vision. Linear Filtering 2: Templates, Edges. Aaron Bobick. School of Interactive Computing. Templates/Edges

CS 4495 Computer Vision. Linear Filtering 2: Templates, Edges. Aaron Bobick. School of Interactive Computing. Templates/Edges CS 4495 Computer Vision Linear Filtering 2: Templates, Edges Aaron Bobick School of Interactive Computing Last time: Convolution Convolution: Flip the filter in both dimensions (right to left, bottom to

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

Object Detection Design challenges

Object Detection Design challenges Object Detection Design challenges How to efficiently search for likely objects Even simple models require searching hundreds of thousands of positions and scales Feature design and scoring How should

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Computer Vision I - Basics of Image Processing Part 2

Computer Vision I - Basics of Image Processing Part 2 Computer Vision I - Basics of Image Processing Part 2 Carsten Rother 07/11/2014 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Line, edge, blob and corner detection

Line, edge, blob and corner detection Line, edge, blob and corner detection Dmitri Melnikov MTAT.03.260 Pattern Recognition and Image Analysis April 5, 2011 1 / 33 Outline 1 Introduction 2 Line detection 3 Edge detection 4 Blob detection 5

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

Content-based Image and Video Retrieval. Image Segmentation

Content-based Image and Video Retrieval. Image Segmentation Content-based Image and Video Retrieval Vorlesung, SS 2011 Image Segmentation 2.5.2011 / 9.5.2011 Image Segmentation One of the key problem in computer vision Identification of homogenous region in the

More information

Outline

Outline Internship at the project team PULSAR A. Schnaars 1 1 University of Magdeburg Supervisor: Guillaume Charpiat PhD Pulsar - INRIA Sophia-Antipolis INRIA Sophia-Antipolis, 15th march 2010 Outline 1 2 3 4

More information

Image Analysis. Edge Detection

Image Analysis. Edge Detection Image Analysis Edge Detection Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Kristen Grauman, University of Texas at Austin (http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html).

More information

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation Targil : Image Segmentation Image segmentation Many slides from Steve Seitz Segment region of the image which: elongs to a single object. Looks uniform (gray levels, color ) Have the same attributes (texture

More information

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16 Review Edges and Binary Images Tuesday, Sept 6 Thought question: how could we compute a temporal gradient from video data? What filter is likely to have produced this image output? original filtered output

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE Wenju He, Marc Jäger, and Olaf Hellwich Berlin University of Technology FR3-1, Franklinstr. 28, 10587 Berlin, Germany {wenjuhe, jaeger,

More information

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur Pyramids Gaussian pre-filtering Solution: filter the image, then subsample blur F 0 subsample blur subsample * F 0 H F 1 F 1 * H F 2 { Gaussian pyramid blur F 0 subsample blur subsample * F 0 H F 1 F 1

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information