Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements

Size: px
Start display at page:

Download "Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements"

Transcription

1 Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements Andreas Tillmann ( joint work with D. Lorenz and M. Pfetsch ) Technische Universität Braunschweig SIAM Conference on Applied Linear Algebra 2012 A. Tillmann 1 / 22

2 Outline 1 Motivation 2 Infeasible-Point Subgradient Algorithm ISAL1 3 Comparison of l 1 -Solvers Testset Construction and Computational Results Improvements with Heuristic Optimality Check 4 Possible Future Research A. Tillmann 2 / 22

3 Outline Motivation 1 Motivation 2 Infeasible-Point Subgradient Algorithm ISAL1 3 Comparison of l 1 -Solvers Testset Construction and Computational Results Improvements with Heuristic Optimality Check 4 Possible Future Research A. Tillmann 3 / 22

4 Motivation Sparse Recovery via l 1 -Minimization Seek sparsest solution to underdetermined linear system: min x 0 s. t. Ax = b (A R m n, m < n) Finding minimum-support solution is N P-hard. Convex relaxation: l 1 -minimization / Basis Pursuit: min x 1 s. t. Ax = b (L1) Several conditions (RIP, Nullspace Property, etc) ensure l 0 -l 1 -equivalence A. Tillmann 4 / 22

5 Motivation Solving the Basis Pursuit Problem (L1) can be recast as a linear program Broad variety of specialized algorithms for (L1) A classic algorithm from nonsmooth optimization: (projected) subgradient method competitive? Which algorithm is the best? A. Tillmann 5 / 22

6 Outline Infeasible-Point Subgradient Algorithm 1 Motivation 2 Infeasible-Point Subgradient Algorithm ISAL1 3 Comparison of l 1 -Solvers Testset Construction and Computational Results Improvements with Heuristic Optimality Check 4 Possible Future Research A. Tillmann 6 / 22

7 Infeasible-Point Subgradient Algorithm Projected Subgradient Methods Problem: min f (x) s.t. x F (f, F convex) standard projected subgradient iteration x k+1 = P F ( x k α k h k ), α k > 0, h k f (x k ) applicability: only reasonable if projection is easy A. Tillmann 7 / 22

8 Infeasible-Point Subgradient Algorithm Projected Subgradient Methods Problem: min f (x) s.t. x F (f, F convex) standard projected subgradient iteration x k+1 = P F ( x k α k h k ), α k > 0, h k f (x k ) applicability: only reasonable if projection is easy idea: replace exact projection by approximation infeasible subgradient iteration x k+1 = P ε k F (x k α k h k ), P ε k F P F 2 ε k A. Tillmann 7 / 22

9 Infeasible-Point Subgradient Algorithm ISAL1 ISA = Infeasible-Point Subgradient Algorithm... works for arbitrary convex objectives and constraint sets... incorporates adaptive approximate projections P ε F such that P ε F (y) P F(y) 2 ε for every ε 0... converges to optimality (under reasonable assumptions) whenever projection accuracies (ε k ) suciently small, for stepsizes α k > 0 with k=0 α k =, k=0 α2 k < for dynamic stepsizes α k = λ k (f (x k ) ϕ ) / h k 2 2 with ϕ ϕ... converges to ϕ with dynamic stepsizes using ϕ ϕ A. Tillmann 8 / 22

10 Infeasible-Point Subgradient Algorithm ISAL1 = Spezialization of ISA to l 1 -Minimization ISAL1 f (x) = x 1, F = { x Ax = b }, sign(x) x 1 exact projected subgradient step for (L1): ( ) x k+1 = P F x k α k h k ) = (x k α k h k ) A T (AA T ) (A(x 1 k α k h k ) b A. Tillmann 9 / 22

11 Infeasible-Point Subgradient Algorithm ISAL1 = Spezialization of ISA to l 1 -Minimization ISAL1 f (x) = x 1, F = { x Ax = b }, sign(x) x 1 exact projected subgradient step for (L1): y k z k x k α k h k Solution of AA T z = Ay k b x k+1 y k A T z k = P F (y k ) AA T is s.p.d. may employ CG to solve equation system A. Tillmann 9 / 22

12 Infeasible-Point Subgradient Algorithm ISAL1 = Spezialization of ISA to l 1 -Minimization ISAL1 f (x) = x 1, F = { x Ax = b }, sign(x) x 1 inexact projected subgradient step for (L1): y k z k x k+1 x k α k h k Solution of AA T z Ay k b y k A T z k = P ε k F (y k ) AA T is s.p.d. may employ CG to solve equation system Approximation: Stop after a few CG iterations (CG residual norm σ min (A) ε k P ε k F ts ISA framework) A. Tillmann 9 / 22

13 Outline Comparison of l 1 -Solvers 1 Motivation 2 Infeasible-Point Subgradient Algorithm ISAL1 3 Comparison of l 1 -Solvers Testset Construction and Computational Results Improvements with Heuristic Optimality Check 4 Possible Future Research A. Tillmann 10 / 22

14 Our Testset Comparison of l 1 -Solvers Testset Construction and Computational Results 100 matrices A (74 dense, 26 sparse) dense: 512 {1024, 1536, 2048, 4096} 1024 {2048, 3072, 4096, 8192} sparse: 2048 {4096, 6144, 8192, 12288} 8192 {16384, 24576, 32768, 49152} random (e.g., partial Hadamard, random signs,...) concatenations of dictionaries (e.g., [Haar, ID, RST],...) columns normalized 2 or 3 vectors x per matrix such that each resulting (L1) instance (with b := Ax ) has unique optimum x A. Tillmann 11 / 22

15 Comparison of l 1 -Solvers Constructing Unique Solutions Testset Construction and Computational Results 274 instances with known, unique solution vectors x : For each matrix A, choose support S which obeys 1 pick S at random, and ERC(A, S) := max A S a j 1 < 1. j / S 2 try increasing some S by repeatedly adding the resp. arg max 3 For dense A's, use L1TestPack to construct another unique solution support (via optimality condition for (L1)) Entries of x S random with high dynamic range A. Tillmann 12 / 22

16 Comparison Setup Comparison of l 1 -Solvers Testset Construction and Computational Results Only exact solvers for (L1): min x 1 s. t. Ax = b Tested algorithms: ISAL1, SPGL1, YALL1, l 1 -Magic, SolveBP (SparseLab), l 1 -Homotopy, CPLEX (Dual Simplex) Use default settings (black box usage) Solution x optimal, if x x 2 Solution x acceptable, if x x A. Tillmann 13 / 22

17 Comparison of l 1 -Solvers Testset Construction and Computational Results Running Time vs. Distance from Unique Optimum ISAL1 (w/o HOC) SPGL1 YALL1 CPLEX l1 MAGIC SparseLab / PDCO Homotopy x x Running Times [sec] A. Tillmann 14 / 22

18 Comparison of l 1 -Solvers Testset Construction and Computational Results Results: Average Performances CPLEX (Dual Simplex): most reliable solver SPGL1: apparently very fast with usually acceptable solutions ISAL1: mostly very accurate, but rather slow SolveBP: often produces acceptable solutions, but slow l 1 -Magic: fast for sparse A, but results often inacceptable YALL1: very fast, but results largely inacceptable l 1 -Homotopy: usually pretty accurate (not always acceptable), but on the slow side Can we achieve better performances without changing default (tolerance) settings? A. Tillmann 15 / 22

19 Comparison of l 1 -Solvers Improvements with Heuristic Optimality Check New Optimality Check for l 1 -Minimization Optimality criterion for (L1): x arg min x 1 x 1 Im(A T ) x: Ax=b Exact evalution too expensive A. Tillmann 16 / 22

20 Comparison of l 1 -Solvers Improvements with Heuristic Optimality Check New Optimality Check for l 1 -Minimization Optimality criterion for (L1): x arg min x 1 x 1 Im(A T ) x: Ax=b Exact evalution too expensive Heuristic Optimality Check (HOC): Estimate support S of given x and (approximately) solve A T S w = sign(x S). If w is dual-feasible ( A T w 1), compute x from A S x S = b. If x is primal-feasible, it is optimal if b T w = x 1. Allows safe jumping to optimum (from infeasible points) A. Tillmann 16 / 22

21 Comparison of l 1 -Solvers Improvements with Heuristic Optimality Check Impact of Heuristic Optimality Check (Example) HOC in ISAL1 HOC in SPGL1 HOC in l 1 -Magic Iteration k Iteration k Iteration k (red curves: distance to known optimum, blue curves: feasibility violation) A. Tillmann 17 / 22

22 Comparison of l 1 -Solvers Improvements with HOC (numbers) Improvements with Heuristic Optimality Check ( instances) ISAL1 SPGL1 YALL1 l 1 -Mag. l 1 -Hom. solved faster w/ HOC 184/212 /0 /0 /0 161/181 solved only w/ HOC improved (ERC-based) 99.5% 88.0% 6.5% 78.0% 91.0% improved (other part) 36.5% 20.3% 0.0% 18.9% 74.3% A. Tillmann 18 / 22

23 Comparison of l 1 -Solvers Improvements with HOC (numbers) Improvements with Heuristic Optimality Check ( instances) ISAL1 SPGL1 YALL1 l 1 -Mag. l 1 -Hom. solved faster w/ HOC 184/212 /0 /0 /0 161/181 solved only w/ HOC improved (ERC-based) 99.5% 88.0% 6.5% 78.0% 91.0% improved (other part) 36.5% 20.3% 0.0% 18.9% 74.3% Explanation for higher HOC success rate on ERC-based testset: ERC = w = (A T S ) sign(x S ) satises A T w x 1. A. Tillmann 18 / 22

24 Comparison of l 1 -Solvers Improvements with HOC (pictures) Improvements with Heuristic Optimality Check without HOC: ISAL1 SPGL1 YALL1 l 1 -Magic l 1 -Hom. x x 2 x x 2 x x 2 x x 2 x x Running Times [sec] Running Times [sec] Running Times [sec] Running Times [sec] Running Times [sec] with HOC: ISAL1 SPGL1 YALL1 l 1 -Magic l 1 -Hom. x x 2 x x 2 x x 2 x x 2 x x Running Times [sec] Running Times [sec] Running Times [sec] Running Times [sec] Running Times [sec] A. Tillmann 19 / 22

25 Comparison of l 1 -Solvers Rehabilitation of l 1 -Homotopy Improvements with Heuristic Optimality Check The Homotopy method provably solves (L1) via a sequence of problems min 1 2 Ax b 2 + λ x 1 for parameters λ 0 decreasing to zero. Also: Provably fast for su. sparse solutions. not fast, inaccurate?! x x Running Times [sec] A. Tillmann 20 / 22

26 Comparison of l 1 -Solvers Rehabilitation of l 1 -Homotopy Improvements with Heuristic Optimality Check The Homotopy method provably solves (L1) via a sequence of problems min 1 2 Ax b 2 + λ x 1 for parameters λ 0 decreasing to zero. Also: Provably fast for su. sparse solutions. nal λ = 0 nal λ = 10 9 x x 2 x x Running Times [sec] Numerical issues? Running Times [sec] Winner! A. Tillmann 20 / 22

27 Possible Future Research Possible Future Research ISAL1 with variable target values? HOC helpful in Approximate Homotopy Path algorithm? Extensions to Denoising problems? PF ε for, e.g., F = { x Ax b 2 δ }? HOC schemes? Testsets, solver comparisons (also for implicit matrices),...? Really hard instances?... e.g., construction of Mairal & Yu for which the (exact) Homotopy path has O(3 n ) kinks? A. Tillmann 21 / 22

28 SPEAR Project ISA theory: Lorenz, Pfetsch & T.: An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections, 2011 ISAL1 theory, HOC & numerical results: Lorenz, Pfetsch & T.: Solving Basis Pursuit: Subgradient Algorithm, Heuristic Optimality Check, and Solver Comparison, 2011/2012 Papers, Matlab Codes (ISAL1, HOC, L1TestPack), Testset, Slides, Posters etc. available at: A. Tillmann 22 / 22

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

Crash-Starting the Simplex Method

Crash-Starting the Simplex Method Crash-Starting the Simplex Method Ivet Galabova Julian Hall School of Mathematics, University of Edinburgh Optimization Methods and Software December 2017 Ivet Galabova, Julian Hall Crash-Starting Simplex

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Dantzig selector homotopy with dynamic measurements

Dantzig selector homotopy with dynamic measurements Dantzig selector homotopy with dynamic measurements M. Salman Asif a and Justin Romberg a a School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA, 30332 ABSTRACT The

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Inter and Intra-Modal Deformable Registration:

Inter and Intra-Modal Deformable Registration: Inter and Intra-Modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming Ben Glocker 1,2, Nikos Komodakis 1,3, Nikos Paragios 1, Georgios Tziritas 3, Nassir Navab

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Civil Engineering Systems Analysis Lecture XIV Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Today s Learning Objectives Dual 2 Linear Programming Dual Problem 3

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material

A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material Mateusz Koziński, Raghudeep Gadde, Sergey Zagoruyko, Guillaume Obozinski and Renaud Marlet Université Paris-Est, LIGM (UMR CNRS

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

Iteratively Re-weighted Least Squares for Sums of Convex Functions

Iteratively Re-weighted Least Squares for Sums of Convex Functions Iteratively Re-weighted Least Squares for Sums of Convex Functions James Burke University of Washington Jiashan Wang LinkedIn Frank Curtis Lehigh University Hao Wang Shanghai Tech University Daiwei He

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems

Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems Journal of Electrical Engineering 6 (2018) 124-128 doi: 10.17265/2328-2223/2018.02.009 D DAVID PUBLISHING Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems Sina Mortazavi and

More information

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments A Patch Prior for Dense 3D Reconstruction in Man-Made Environments Christian Häne 1, Christopher Zach 2, Bernhard Zeisl 1, Marc Pollefeys 1 1 ETH Zürich 2 MSR Cambridge October 14, 2012 A Patch Prior for

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

Privately Solving Linear Programs

Privately Solving Linear Programs Privately Solving Linear Programs Justin Hsu 1 Aaron Roth 1 Tim Roughgarden 2 Jonathan Ullman 3 1 University of Pennsylvania 2 Stanford University 3 Harvard University July 8th, 2014 A motivating example

More information

EARLY INTERIOR-POINT METHODS

EARLY INTERIOR-POINT METHODS C H A P T E R 3 EARLY INTERIOR-POINT METHODS An interior-point algorithm is one that improves a feasible interior solution point of the linear program by steps through the interior, rather than one that

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

Matrix-free IPM with GPU acceleration

Matrix-free IPM with GPU acceleration Matrix-free IPM with GPU acceleration Julian Hall, Edmund Smith and Jacek Gondzio School of Mathematics University of Edinburgh jajhall@ed.ac.uk 29th June 2011 Linear programming theory Primal-dual pair

More information

Face Recognition via Sparse Representation

Face Recognition via Sparse Representation Face Recognition via Sparse Representation John Wright, Allen Y. Yang, Arvind, S. Shankar Sastry and Yi Ma IEEE Trans. PAMI, March 2008 Research About Face Face Detection Face Alignment Face Recognition

More information

AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS

AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS Seyed Abolfazl Shahzadehfazeli 1, Zainab Haji Abootorabi,3 1 Parallel Processing Laboratory, Yazd University,

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

Optimal Simplification of Building Ground Plans

Optimal Simplification of Building Ground Plans XXI ISPRS Congress 7 July 2008 Beijing, China Optimal Simplification of Building Ground Plans Jan-Henrik Haunert Institute of Cartography and Geoinformatics Leibniz Universität Hannover Germany Alexander

More information

How to use Farkas lemma to say something important about linear infeasible problems MOSEK Technical report: TR

How to use Farkas lemma to say something important about linear infeasible problems MOSEK Technical report: TR How to use Farkas lemma to say something important about linear infeasible problems MOSEK Technical report: TR-2011-1. Erling D. Andersen 12-September-2011 Abstract When formulating a linear optimization

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery Mathematical Programming Computation manuscript No. (will be inserted by the editor) Templates for Convex Cone Problems with Applications to Sparse Signal Recovery Stephen R. Becer Emmanuel J. Candès Michael

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

DISTRIBUTED ALGORITHMS FOR BASIS PURSUIT. Institute for Systems and Robotics / IST, Lisboa, Portugal

DISTRIBUTED ALGORITHMS FOR BASIS PURSUIT. Institute for Systems and Robotics / IST, Lisboa, Portugal DISTRIBUTED ALGORITHMS FOR BASIS PURSUIT João F C Mota, João M F Xavier, Pedro M Q Aguiar, Markus Püschel Institute for Systems and Robotics / IST, Lisboa, Portugal {jmota,jxavier,aguiar}@isristutlpt Department

More information

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1 Outline Cone programming Homogeneous

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Parallel and Distributed Graph Cuts by Dual Decomposition

Parallel and Distributed Graph Cuts by Dual Decomposition Parallel and Distributed Graph Cuts by Dual Decomposition Presented by Varun Gulshan 06 July, 2010 What is Dual Decomposition? What is Dual Decomposition? It is a technique for optimization: usually used

More information

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009]

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] Yongjia Song University of Wisconsin-Madison April 22, 2010 Yongjia Song

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

Report of Linear Solver Implementation on GPU

Report of Linear Solver Implementation on GPU Report of Linear Solver Implementation on GPU XIANG LI Abstract As the development of technology and the linear equation solver is used in many aspects such as smart grid, aviation and chemical engineering,

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Numerical schemes for Hamilton-Jacobi equations, control problems and games

Numerical schemes for Hamilton-Jacobi equations, control problems and games Numerical schemes for Hamilton-Jacobi equations, control problems and games M. Falcone H. Zidani SADCO Spring School Applied and Numerical Optimal Control April 23-27, 2012, Paris Lecture 2/3 M. Falcone

More information

Hyperspectral Data Classification via Sparse Representation in Homotopy

Hyperspectral Data Classification via Sparse Representation in Homotopy Hyperspectral Data Classification via Sparse Representation in Homotopy Qazi Sami ul Haq,Lixin Shi,Linmi Tao,Shiqiang Yang Key Laboratory of Pervasive Computing, Ministry of Education Department of Computer

More information

Signal Reconstruction from Sparse Representations: An Introdu. Sensing

Signal Reconstruction from Sparse Representations: An Introdu. Sensing Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing December 18, 2009 Digital Data Acquisition Suppose we want to acquire some real world signal digitally. Applications

More information

Obtaining a Feasible Geometric Programming Primal Solution, Given a Near-Optimal Dual Solution

Obtaining a Feasible Geometric Programming Primal Solution, Given a Near-Optimal Dual Solution Obtaining a Feasible Geometric Programming Primal Solution, Given a ear-optimal Dual Solution DEIS L. BRICKER and JAE CHUL CHOI Dept. of Industrial Engineering The University of Iowa June 1994 A dual algorithm

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

DALM-SVD: ACCELERATED SPARSE CODING THROUGH SINGULAR VALUE DECOMPOSITION OF THE DICTIONARY

DALM-SVD: ACCELERATED SPARSE CODING THROUGH SINGULAR VALUE DECOMPOSITION OF THE DICTIONARY DALM-SVD: ACCELERATED SPARSE CODING THROUGH SINGULAR VALUE DECOMPOSITION OF THE DICTIONARY Hugo Gonçalves 1, Miguel Correia Xin Li 1 Aswin Sankaranarayanan 1 Vitor Tavares Carnegie Mellon University 1

More information

Variable Selection 6.783, Biomedical Decision Support

Variable Selection 6.783, Biomedical Decision Support 6.783, Biomedical Decision Support (lrosasco@mit.edu) Department of Brain and Cognitive Science- MIT November 2, 2009 About this class Why selecting variables Approaches to variable selection Sparsity-based

More information

Part 5: Structured Support Vector Machines

Part 5: Structured Support Vector Machines Part 5: Structured Support Vector Machines Sebastian Nowozin and Christoph H. Lampert Providence, 21st June 2012 1 / 34 Problem (Loss-Minimizing Parameter Learning) Let d(x, y) be the (unknown) true data

More information

Templates for convex cone problems with applications to sparse signal recovery

Templates for convex cone problems with applications to sparse signal recovery Math. Prog. Comp. (2011) 3:165 218 DOI 10.1007/s12532-011-0029-5 FULL LENGTH PAPER Templates for convex cone problems with applications to sparse signal recovery Stephen R. Becker Emmanuel J. Candès Michael

More information

Fast-Lipschitz Optimization

Fast-Lipschitz Optimization Fast-Lipschitz Optimization DREAM Seminar Series University of California at Berkeley September 11, 2012 Carlo Fischione ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Symbolic Subdifferentiation in Python

Symbolic Subdifferentiation in Python Symbolic Subdifferentiation in Python Maurizio Caló and Jaehyun Park EE 364B Project Final Report Stanford University, Spring 2010-11 June 2, 2011 1 Introduction 1.1 Subgradient-PY We implemented a Python

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles INTERNATIONAL JOURNAL OF MATHEMATICS MODELS AND METHODS IN APPLIED SCIENCES Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles M. Fernanda P.

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

On the regularizing power of multigrid-type algorithms

On the regularizing power of multigrid-type algorithms On the regularizing power of multigrid-type algorithms Marco Donatelli Dipartimento di Fisica e Matematica Università dell Insubria www.mat.unimi.it/user/donatel Outline 1 Restoration of blurred and noisy

More information

Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably

Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably Lorenzo Orecchia Department of Computer Science 6/30/15 Challenges in Optimization for Data Science 1

More information

Data-driven modeling: A low-rank approximation problem

Data-driven modeling: A low-rank approximation problem 1 / 34 Data-driven modeling: A low-rank approximation problem Ivan Markovsky Vrije Universiteit Brussel 2 / 34 Outline Setup: data-driven modeling Problems: system identification, machine learning,...

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT Ida Wahidah 1, Andriyan Bayu Suksmono 1 1 School of Electrical Engineering and Informatics, Institut Teknologi Bandung Jl. Ganesa

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

A parallel direct/iterative solver based on a Schur complement approach

A parallel direct/iterative solver based on a Schur complement approach A parallel direct/iterative solver based on a Schur complement approach Gene around the world at CERFACS Jérémie Gaidamour LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix project) February 29th, 2008

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Using projections to solve problems thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Introduction Using projections Benders decomposition Simple plant location

More information

Cyber Security Analysis of State Estimators in Electric Power Systems

Cyber Security Analysis of State Estimators in Electric Power Systems Cyber Security Analysis of State Estimators in Electric Power Systems H. Sandberg, G. Dán, A. Teixeira, K. C. Sou, O. Vukovic, K. H. Johansson ACCESS Linnaeus Center KTH Royal Institute of Technology,

More information