WHEN IS MORE NOT BETTER? Karen T. Sutherland Department of Computer Science University of Wisconsin La Crosse La Crosse, WI 56401

Size: px
Start display at page:

Download "WHEN IS MORE NOT BETTER? Karen T. Sutherland Department of Computer Science University of Wisconsin La Crosse La Crosse, WI 56401"

Transcription

1 WHEN IS MORE NOT BETTER? Karen T. Sutherland Department of Computer Science University of Wisconsin La Crosse La Crosse, WI ABSTRACT It is often assumed that when sensing in autonomous robot navigation, the more measurements taken, the better. In many cases, this is indeed true. However, we have found that in an outdoor, unstructured environment where the number of possible measurements one can take is limited and error is not normally distributed, additional measurements may cause more harm than good. These rogue measurements are not interpreted as outliers due to the fact that there is no observed central tendency in the measurements as a whole. This paper describes ongoing work in determining how a qualitative rating can be used with sparse data to weight measurements and how these weighted measurements can best be combined with map data to produce a good estimate of location. Experiments have been run using U. S. Geographical Survey Digital Elevation Map (DEM) data from mountainous terrain in eastern Utah. INTRODUCTION Finding one s own location in the environment is a critical skill for a robot navigator, especially in an outdoor unstructured environment. 10 Localization errors outdoors tend to have more severe consequences than those indoors. In an indoor environment, proximity sensors can warn of impending disaster. Outdoors, it is possible, with a small error in localization measure, to send oneself off a cliff. Problems which occurred with nonconvergence of measurements taken to self locate in such an environment caused us to look more closely at the assumptions under which we were expecting that convergence. The result was a realization that merely taking more measurements is not always a wise move. It should first be made clear what is meant by an unstructured environment. Any indoor envi-

2 ronment, regardless of clutter, is, by our definition, structured. An outdoor environment containing buildings, roads, light beacons and other such items 3 is, by our definition, structured. An outdoor, unstructured environment has no man made objects to use for landmarks. It is also the type of environment in which the Global Positioning System (GPS) and instruments such as a compass or barometric altimeter may fail to give valid location readings. 9 Landmarks are naturally occurring physical terrain features such as mountain peaks or ridgelines. Due to the large distance between viewpoint and feature, proximity sensors are useless. Measurements are taken from camera images. The foundation for the assumption that more measurements are better lies in the Law of Large Numbers. 4 If we let X k be a sequence of mutually independent random variables with a common distribution and if the expectation = E(X k ) exists, then for every > 0 as n! 1 X 1 + ::: + X n P robability? n >! 0; In other words, the probability that the average will differ from the expectation by less than an arbitrarily prescribed tends to one. The Law of Large Numbers is more general than the often quoted Central Limit Theorem because it holds even when the random variables X k have no finite variance. Maximum likelihood estimators, such as the Kalman filter, 7 are often used in robot navigation. However, it should be noted that all of these estimators assume that numerous measurements are taken. Indeed, the Kalman filter was developed for applications in signal processing, in which many measurements are taken. Other problems with using the Kalman filter in this type of environment are that it assumes both that a good starting estimate is available and that errors in the data are Gaussian. Furthermore, it is most often the Extended Kalman filter (EKF) which is used. 1,6,8 Whereas, under the given assumptions, the Kalman filter is guaranteed to converge, the EKF has no such guarantee of convergence. 2 It is possible, of course, for a maximum likelihood estimator to work well when a sequence of measurements does not take on values at random, as random variables should, or when there is no common distribution. In fact, it follows from the Central Limit Theorem that even when random variables each have an arbitrary distribution, a great many of them display a distribution which closely resembles the normal. 5 However, the issue with which this paper is concerned is the fact that this all depends on a limit which is approached for very large n. The number of measurements taken is critical. UNIQUE ERRORS Errors in localization in this type of environment are unique due to the type of landmarks available, the magnitude of the distances involved and the accuracy of available maps.

3 Figure 1: When the number of pixels in the image is constant, the larger the actual area covered by the image, the greater the error due to discretization. One pixel represents 4 meters on the left and 0.2 inches on the right. Errors in discretization of the image become worse as distance to landmarks increases. Figure 1 shows two typical images used in navigation tasks, one outdoors and the other indoors. The scale of the mountain view is such that one pixel represents about 4 meters, while one pixel along the right door jam in the indoor scene represents approximately 0.2 inches. Although an outdoor navigator can, in general, allow more room for maneuvering than if navigating indoors, it is usually not at this level of magnitude. Figure 2: A rendering of the DEM data showing the smooth contour which results from the 30 meter square averaging. Much more significant is the error in the map. Whereas maps of structured environments can, in general, be made quite exact, the USGS DEM data is made up of measurements averaged over a grid of cells of 30 meters square. Most of the USGS DEM s were produced by running paper contour maps through a drum scanner, extracting the contour lines and interpolating to estimate elevations. This averaging produces a type of inverse discretization which is, for the outdoor example shown in Figure 1, approximately ten times that which is caused by discretization in the image. The smoothing which results from this operation can be seen in the

4 rendering in Figure 2. Features which may be very sharp in the actual view are smoothed out in the map data and the resultant rendering. Since these are the very features which would be taken from the view to use as landmarks, the smoothing significantly affects accuracy. Errors in elevation deception, as shown in the diagram in Figure 3, where a subpeak or subridge in the image is mistaken for a peak or ridgeline on the map, are not common indoors or in a structured outdoor environment. An observer located between B and C will see peak or ridge 1 as the highest point while an observer located between A and B will see peak or ridge 2 as the highest point. Not until the observer moves beyond point A will the true summit be observed. Errors such as these add large inaccuracies to localization measurements. Figure 3: Misidentifying a subridge or subpeak as the true landmark is a common error in navigation in unstructured environments. The true summit will be seen only by an observer located to the left of point A. Most importantly, the number of landmarks from which to take readings is extremely limited in this environment. The contour map in Figure 4 shows one area approximately 21 kilometers by 14 kilometers. The navigator s path is shown by the heavy black line. The black dots are located at the only visible, distinguishable mountain peaks which could be used for landmarks. Only four to five of them were visible at any one time. A navigator in such an environment cannot simply add more beacons from which to take readings. Figure 4: The number of distinguishable landmarks is small at any one time.

5 INTERACTIVE MEASUREMENTS We have developed a strategy for measuring in environments with few natural landmarks which analyzes the map data in the area of each landmark in addition to the measurements which are taken. These interactive measurements are meshed together to produce a more robust result. The example presented here uses mountain peaks as point landmarks. As in the method described by Sutherland and Thompson, 9 self localization is determined by measuring the angle between pairs of three point landmarks which have been identified on the map. The strategy focuses on errors in elevation deception, as described in the previous section, since these were the errors which could most easily be addressed. Although misidentifying a subpeak for a nearby given peak is a distinct possibility, we assume that there is no misidentification of one landmark peak for another. We know which three peaks we are using and we know which is which. The navigator is moving toward a goal, measuring as it moves. The process is as follows: Step 1: Sweep peaks and record elevations. The first step in this process is to search the map data around each landmark peak for possible nearby subpeaks. These searches are in the form of a sweep around the peak while measuring the elevations at each 30 meter interval. Although the map data has been averaged, any average elevation close to the elevation of the peak is a candidate for a mismatch. The sweep is done only half way around each peak on the side on which the navigator is located. The radius of the sweep is arbitrarily set. It follows that the shallower the inclination up to the peak, the higher the probability of a mismatch. Any distinguishable point with elevation close to that of the peak will later be tagged for analysis. Step 2: Estimate navigator location. The angles between landmark pairs as well as the angles of elevation from the navigator to each of the three landmarks are then measured. This results in an initial estimate of location. Step 3: Check elevations. An arbitrary error threshold 1 is set for the angle of elevation to each peak. Each elevation E i at location i recorded for each of the three peaks in Step 1 is tested as follows: If arctan( E p?e i D(p;i) < + 1 tag E i, where E p is the elevation of the landmark peak and D(p; i) is the distance from the landmark peak to the point at which elevation E i was measured. We now have a pool of the tagged elevations for each peak which are candidates for subpeak misidentification. Step 4: Cull candidates. The candidates found in Step 3 are culled using the initial estimate of location. An arbitrary error threshold 2 is set for the angle measured from navigator heading to the landmark peak with vertex at the estimated navigator location. The angle i from navigator heading to each candidate i is then measured.

6 If i <? 2 or i > + 2, candidate i is culled from the pool. The pool of tagged elevations for each peak now consists of locations which could be misidentified as the landmark peak and which lie within the line of view from the navigator to the peak. A probability of occlusion, based on the elevation of the subpeak, is associated with each candidate in the pool. The navigator now moves. The direction and distance of this move is calculated as a linear programming problem with the following goals: 1. The move is toward the goal. 2. The move removes candidates with high probability of occlusion in each landmark pool from the line of view. 3. The move is of minimal distance. At this point, the process repeats. However, the sweep needn t be complete. Indeed, it is often unnecessary to sweep at all on a subsequent move. Likewise, the elevation checks are not completely repeated, but only augmented whenever additional sweeping is required. Candidates which were culled in an earlier pass may move into a line of view and candidates which were previously in a line of view may be culled. Consequently, the process involves for most moves only reprocessing the candidates for each peak and reassigning probabilities. # Subpeaks Peak 1 Peak 2 Peak 3 Initial pool Culled pool Table 1: Candidates for misidentification for one set of landmark triples. Initial experiments have been done in simulation using USGS DEM data from mountainous terrain in eastern Utah. Runs using this strategy have been compared to runs through the same terrain but with new measurements taken at evenly distributed points on the path. Table 1 shows the initial and culled pools of candidates for one such run. This small number of candidates for a mismatch was typical in most runs. Significant improvement has been noted when the strategy is used. This has, in most cases, been due to not moving past good measuring locations while not staying at locations where the probability of elevation deception is high. In the few cases when no improvement in localization occurred, the runs which used the strategy did no worse than those which did not. Our current work focuses on testing the strategy in an actual outdoor environment in the bluff area of southwestern Wisconsin.

7 Advantages of this strategy: Rather than measurements being taken at specific time intervals or after specific distances traveled, they are only taken when the navigator has moved to a position where the measurement has a chance of adding to the accuracy of the localization. Numerous measurements incorporating the very same elevation deception errors are not being averaged into the calculations of location. The necessary elevations and angles can be calculated quickly. After the first pass, incremental calculations are minimal. The moving and recalculating also address the discretization error in the image. Moving the minimal distance to remove the candidates for occlusion from the line of view prevents the navigator from missing a good measurement situation. The navigator is always moving toward the goal. Drawback of the strategy: The radius of the area scanned around each landmark peak must be preset, as must both 1 and 2. If set too small, occluding subpeaks will not be picked up. If set too large, determining probabilities of occlusion and removing from the pool of candidates with high probabilities of occlusion on a move will be difficult if not impossible to do. Work is ongoing on how best to determine these values. CONCLUSION We have shown that, when used in simulation, a strategy which combines measurement analysis of the view with measurement analysis of the map data as opposed to simply taking random measurements can significantly improve localization in outdoor, unstructured environments with few landmarks. This method has served to compensate for the inability to make numerous useful measurements by taking advantage of the few good measurements which can be made. At the present time, this strategy is being tested in an actual outdoor environment, using both peak and ridgeline landmarks.

8 REFERENCES [1] Nicholas Ayache and Oliver D. Faugeras. Maintaining representations of the environment of a mobile robot. IEEE Transactions on Robotics and Automation, 5(6): , December [2] Daniel L. Boley, Karen T. Sutherland, and Erik S. Steinmetz. Robot localization from landmarks using recursive total least squares. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 4, pages IEEE, April [3] David Dai and Daryl Lawton. Range-free qualitative navigation. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 1, pages IEEE, May [4] William Feller. An Introduction to Probability Theory and its Applications. John Wiley and Sons, [5] Arthur Gelb. Applied Optimal Estimation. The MIT Press, [6] P. Hébert, S. Betgé-Brezetz, and R. Chatila. Reasoning with Uncertainty in Robotics, chapter Probabilistic Map Learning: Necessity and Difficulties. Springer, [7] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, pages 35 45, [8] Akio Kosaka and Avinash C. Kak. Fast vision-guided mobile robot navigation using modelbased reasoning and prediction of uncertainties. CVGIP: Image Understanding, 56(3): , November [9] Karen T. Sutherland and William B. Thompson. Localizing in unstructured environments: Dealing with the errors. IEEE Transactions on Robotics and Automation, pages , December [10] Karen T. Sutherland and William B. Thompson. Pursuing projections: Keeping a robot on path. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 4, pages IEEE, May 1994.

Exploiting Composite Features in Robot Navigation

Exploiting Composite Features in Robot Navigation EXPLOITING COMPOSITE FEATURES IN ROBOT NAVIGATION 69 Exploiting Composite Features in Robot Navigation Jennifer Davison, Kelly Hasler Faculty Sponsor: Karen T. Sutherland, Department of Computer Science

More information

Pursuing Projections: Keeping a Robot on Path*

Pursuing Projections: Keeping a Robot on Path* Pursuing Projections: Keeping a Robot on Path* Karen T. Sutherland Computer Science Department University of Minnesota Minneapolis, MN 55455 William B. Thompson Department of Computer Science University

More information

Sensor Modalities. Sensor modality: Different modalities:

Sensor Modalities. Sensor modality: Different modalities: Sensor Modalities Sensor modality: Sensors which measure same form of energy and process it in similar ways Modality refers to the raw input used by the sensors Different modalities: Sound Pressure Temperature

More information

Building Reliable 2D Maps from 3D Features

Building Reliable 2D Maps from 3D Features Building Reliable 2D Maps from 3D Features Dipl. Technoinform. Jens Wettach, Prof. Dr. rer. nat. Karsten Berns TU Kaiserslautern; Robotics Research Lab 1, Geb. 48; Gottlieb-Daimler- Str.1; 67663 Kaiserslautern;

More information

Compressed Point Cloud Visualizations

Compressed Point Cloud Visualizations Compressed Point Cloud Visualizations Christopher Miller October 2, 2007 Outline Description of The Problem Description of The Wedgelet Algorithm Statistical Preprocessing Intrinsic Point Cloud Simplification

More information

Scan-point Planning and 3-D Map Building for a 3-D Laser Range Scanner in an Outdoor Environment

Scan-point Planning and 3-D Map Building for a 3-D Laser Range Scanner in an Outdoor Environment Scan-point Planning and 3-D Map Building for a 3-D Laser Range Scanner in an Outdoor Environment Keiji NAGATANI 1, Takayuki Matsuzawa 1, and Kazuya Yoshida 1 Tohoku University Summary. During search missions

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Evaluation

More information

Geometrical Feature Extraction Using 2D Range Scanner

Geometrical Feature Extraction Using 2D Range Scanner Geometrical Feature Extraction Using 2D Range Scanner Sen Zhang Lihua Xie Martin Adams Fan Tang BLK S2, School of Electrical and Electronic Engineering Nanyang Technological University, Singapore 639798

More information

Correcting User Guided Image Segmentation

Correcting User Guided Image Segmentation Correcting User Guided Image Segmentation Garrett Bernstein (gsb29) Karen Ho (ksh33) Advanced Machine Learning: CS 6780 Abstract We tackle the problem of segmenting an image into planes given user input.

More information

USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS. Oliver Wulf, Bernardo Wagner

USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS. Oliver Wulf, Bernardo Wagner USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS Oliver Wulf, Bernardo Wagner Institute for Systems Engineering (RTS/ISE), University of Hannover, Germany Mohamed Khalaf-Allah

More information

A Vision System for Automatic State Determination of Grid Based Board Games

A Vision System for Automatic State Determination of Grid Based Board Games A Vision System for Automatic State Determination of Grid Based Board Games Michael Bryson Computer Science and Engineering, University of South Carolina, 29208 Abstract. Numerous programs have been written

More information

POME A mobile camera system for accurate indoor pose

POME A mobile camera system for accurate indoor pose POME A mobile camera system for accurate indoor pose Paul Montgomery & Andreas Winter November 2 2016 2010. All rights reserved. 1 ICT Intelligent Construction Tools A 50-50 joint venture between Trimble

More information

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Literature Survey Christopher Weed October 2000 Abstract Laser altimetry (LIDAR) data must be processed to generate a digital elevation

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Under supervision of: Prof. Dr. -Ing. Klaus-Dieter Kuhnert Dipl.-Inform.

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

Some Thoughts on Visibility

Some Thoughts on Visibility Some Thoughts on Visibility Frédo Durand MIT Lab for Computer Science Visibility is hot! 4 papers at Siggraph 4 papers at the EG rendering workshop A wonderful dedicated workshop in Corsica! A big industrial

More information

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render 1 There are two major classes of algorithms for extracting most kinds of lines from 3D meshes. First, there are image-space algorithms that render something (such as a depth map or cosine-shaded model),

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Irradiance Gradients. Media & Occlusions

Irradiance Gradients. Media & Occlusions Irradiance Gradients in the Presence of Media & Occlusions Wojciech Jarosz in collaboration with Matthias Zwicker and Henrik Wann Jensen University of California, San Diego June 23, 2008 Wojciech Jarosz

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

Propagating these values through the probability density function yields a bound on the likelihood score that can be achieved by any position in the c

Propagating these values through the probability density function yields a bound on the likelihood score that can be achieved by any position in the c Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000. Maximum-Likelihood Template Matching Clark F. Olson Jet Propulsion Laboratory, California Institute of Technology 4800

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Probabilistic Motion and Sensor Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Sensors for Mobile

More information

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005 Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform Project Proposal Cognitive Robotics, Spring 2005 Kaijen Hsiao Henry de Plinval Jason Miller Introduction In the context

More information

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines Perceptual Grouping and Segmentation

More information

DEALING WITH SENSOR ERRORS IN SCAN MATCHING FOR SIMULTANEOUS LOCALIZATION AND MAPPING

DEALING WITH SENSOR ERRORS IN SCAN MATCHING FOR SIMULTANEOUS LOCALIZATION AND MAPPING Inženýrská MECHANIKA, roč. 15, 2008, č. 5, s. 337 344 337 DEALING WITH SENSOR ERRORS IN SCAN MATCHING FOR SIMULTANEOUS LOCALIZATION AND MAPPING Jiří Krejsa, Stanislav Věchet* The paper presents Potential-Based

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 8: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

CHAPTER 5 3D STL PART FROM SURFER GRID DEM DATA

CHAPTER 5 3D STL PART FROM SURFER GRID DEM DATA CHAPTER 5 3D STL PART FROM SURFER GRID DEM DATA The Surfer Grid is another widely used DEM file format and found to be suitable for the direct conversion to faceted formats. The chapter begins with an

More information

Domain Adaptation For Mobile Robot Navigation

Domain Adaptation For Mobile Robot Navigation Domain Adaptation For Mobile Robot Navigation David M. Bradley, J. Andrew Bagnell Robotics Institute Carnegie Mellon University Pittsburgh, 15217 dbradley, dbagnell@rec.ri.cmu.edu 1 Introduction An important

More information

Vision-Motion Planning with Uncertainty

Vision-Motion Planning with Uncertainty Vision-Motion Planning with Uncertainty Jun MIURA Yoshiaki SHIRAI Dept. of Mech. Eng. for Computer-Controlled Machinery, Osaka University, Suita, Osaka 565, Japan jun@ccm.osaka-u.ac.jp Abstract This paper

More information

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016 edestrian Detection Using Correlated Lidar and Image Data EECS442 Final roject Fall 2016 Samuel Rohrer University of Michigan rohrer@umich.edu Ian Lin University of Michigan tiannis@umich.edu Abstract

More information

Robot Localization based on Geo-referenced Images and G raphic Methods

Robot Localization based on Geo-referenced Images and G raphic Methods Robot Localization based on Geo-referenced Images and G raphic Methods Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, sidahmed.berrabah@rma.ac.be Janusz Bedkowski, Łukasz Lubasiński,

More information

Automatic 3-D 3 D Model Acquisition from Range Images. Michael K. Reed and Peter K. Allen Computer Science Department Columbia University

Automatic 3-D 3 D Model Acquisition from Range Images. Michael K. Reed and Peter K. Allen Computer Science Department Columbia University Automatic 3-D 3 D Model Acquisition from Range Images Michael K. Reed and Peter K. Allen Computer Science Department Columbia University Introduction Objective: given an arbitrary object or scene, construct

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Universiteit Leiden Computer Science

Universiteit Leiden Computer Science Universiteit Leiden Computer Science Optimizing octree updates for visibility determination on dynamic scenes Name: Hans Wortel Student-no: 0607940 Date: 28/07/2011 1st supervisor: Dr. Michael Lew 2nd

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs W. Nicholas Greene Robust Robotics Group, MIT CSAIL LPM Workshop IROS 2017 September 28, 2017 with Nicholas Roy 1

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Tracking of Human Body using Multiple Predictors

Tracking of Human Body using Multiple Predictors Tracking of Human Body using Multiple Predictors Rui M Jesus 1, Arnaldo J Abrantes 1, and Jorge S Marques 2 1 Instituto Superior de Engenharia de Lisboa, Postfach 351-218317001, Rua Conselheiro Emído Navarro,

More information

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on a line by looking only at each

More information

Computer Vision 6 Segmentation by Fitting

Computer Vision 6 Segmentation by Fitting Computer Vision 6 Segmentation by Fitting MAP-I Doctoral Programme Miguel Tavares Coimbra Outline The Hough Transform Fitting Lines Fitting Curves Fitting as a Probabilistic Inference Problem Acknowledgements:

More information

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks Sensors for Mobile Robots CSE-57 Robotics Probabilistic Sensor Models Beam-based Scan-based Landmarks Contact sensors: Bumpers Internal sensors Accelerometers (spring-mounted masses) Gyroscopes (spinning

More information

Long-term motion estimation from images

Long-term motion estimation from images Long-term motion estimation from images Dennis Strelow 1 and Sanjiv Singh 2 1 Google, Mountain View, CA, strelow@google.com 2 Carnegie Mellon University, Pittsburgh, PA, ssingh@cmu.edu Summary. Cameras

More information

Today MAPS AND MAPPING. Features. process of creating maps. More likely features are things that can be extracted from images:

Today MAPS AND MAPPING. Features. process of creating maps. More likely features are things that can be extracted from images: MAPS AND MAPPING Features In the first class we said that navigation begins with what the robot can see. There are several forms this might take, but it will depend on: What sensors the robot has What

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2018 Localization II Localization I 16.04.2018 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Visibility. Tom Funkhouser COS 526, Fall Slides mostly by Frédo Durand

Visibility. Tom Funkhouser COS 526, Fall Slides mostly by Frédo Durand Visibility Tom Funkhouser COS 526, Fall 2016 Slides mostly by Frédo Durand Visibility Compute which part of scene can be seen Visibility Compute which part of scene can be seen (i.e., line segment from

More information

Task analysis based on observing hands and objects by vision

Task analysis based on observing hands and objects by vision Task analysis based on observing hands and objects by vision Yoshihiro SATO Keni Bernardin Hiroshi KIMURA Katsushi IKEUCHI Univ. of Electro-Communications Univ. of Karlsruhe Univ. of Tokyo Abstract In

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side.

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. Roadmaps Vertex Visibility Graph Full visibility graph Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. (but keeping endpoints roads) what else might we

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

1998 IEEE International Conference on Intelligent Vehicles 213

1998 IEEE International Conference on Intelligent Vehicles 213 Navigation by Integrating Iconic and GPS Information Shigang Li and Akira Hayashi Faculty of Information Sciences Hiroshima City University Asaminami-ku, Hiroshima, 731-31, Japan li@im.hiroshima-cu.ac.jp

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 7: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

[Youn *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor

[Youn *, 5(11): November 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES AUTOMATIC EXTRACTING DEM FROM DSM WITH CONSECUTIVE MORPHOLOGICAL FILTERING Junhee Youn *1 & Tae-Hoon Kim 2 *1,2 Korea Institute of Civil Engineering

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies

Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies Feature Transfer and Matching in Disparate Stereo Views through the use of Plane Homographies M. Lourakis, S. Tzurbakis, A. Argyros, S. Orphanoudakis Computer Vision and Robotics Lab (CVRL) Institute of

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data. Christopher Weed

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data. Christopher Weed Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Christopher Weed Final Report EE 381K Multidimensional Digital Signal Processing December 11, 2000 Abstract A Laser Altimetry (LIDAR)

More information

Elastic Bands: Connecting Path Planning and Control

Elastic Bands: Connecting Path Planning and Control Elastic Bands: Connecting Path Planning and Control Sean Quinlan and Oussama Khatib Robotics Laboratory Computer Science Department Stanford University Abstract Elastic bands are proposed as the basis

More information

A Symmetry Operator and Its Application to the RoboCup

A Symmetry Operator and Its Application to the RoboCup A Symmetry Operator and Its Application to the RoboCup Kai Huebner Bremen Institute of Safe Systems, TZI, FB3 Universität Bremen, Postfach 330440, 28334 Bremen, Germany khuebner@tzi.de Abstract. At present,

More information

Sensory Augmentation for Increased Awareness of Driving Environment

Sensory Augmentation for Increased Awareness of Driving Environment Sensory Augmentation for Increased Awareness of Driving Environment Pranay Agrawal John M. Dolan Dec. 12, 2014 Technologies for Safe and Efficient Transportation (T-SET) UTC The Robotics Institute Carnegie

More information

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999)

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) TA Section 7 Problem Set 3 SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) Sam Corbett-Davies TA Section 7 02-13-2014 Distinctive Image Features from Scale-Invariant

More information

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles Eingebettete Systeme Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles 25/6/2018, Vikas Agrawal, Marcel

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

Introduction to Mobile Robotics Techniques for 3D Mapping

Introduction to Mobile Robotics Techniques for 3D Mapping Introduction to Mobile Robotics Techniques for 3D Mapping Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Why 3D Representations Robots live in the 3D world. 2D maps have been applied successfully for

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

A Probabilistic Approach to the Hough Transform

A Probabilistic Approach to the Hough Transform A Probabilistic Approach to the Hough Transform R S Stephens Computing Devices Eastbourne Ltd, Kings Drive, Eastbourne, East Sussex, BN21 2UE It is shown that there is a strong relationship between the

More information

Coarse-to-Fine Search Technique to Detect Circles in Images

Coarse-to-Fine Search Technique to Detect Circles in Images Int J Adv Manuf Technol (1999) 15:96 102 1999 Springer-Verlag London Limited Coarse-to-Fine Search Technique to Detect Circles in Images M. Atiquzzaman Department of Electrical and Computer Engineering,

More information

Navigation and Metric Path Planning

Navigation and Metric Path Planning Navigation and Metric Path Planning October 4, 2011 Minerva tour guide robot (CMU): Gave tours in Smithsonian s National Museum of History Example of Minerva s occupancy map used for navigation Objectives

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,   ISSN ransactions on Information and Communications echnologies vol 6, 996 WI Press, www.witpress.com, ISSN 743-357 Obstacle detection using stereo without correspondence L. X. Zhou & W. K. Gu Institute of Information

More information

Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König

Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König Chair for Computing in Engineering, Department of Civil and Environmental Engineering, Ruhr-Universität

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains PhD student: Jeff DELAUNE ONERA Director: Guy LE BESNERAIS ONERA Advisors: Jean-Loup FARGES Clément BOURDARIAS

More information

MTRX4700: Experimental Robotics

MTRX4700: Experimental Robotics Stefan B. Williams April, 2013 MTR4700: Experimental Robotics Assignment 3 Note: This assignment contributes 10% towards your final mark. This assignment is due on Friday, May 10 th during Week 9 before

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Layered Scene Decomposition via the Occlusion-CRF Supplementary material

Layered Scene Decomposition via the Occlusion-CRF Supplementary material Layered Scene Decomposition via the Occlusion-CRF Supplementary material Chen Liu 1 Pushmeet Kohli 2 Yasutaka Furukawa 1 1 Washington University in St. Louis 2 Microsoft Research Redmond 1. Additional

More information

Multiview Reconstruction

Multiview Reconstruction Multiview Reconstruction Why More Than 2 Views? Baseline Too short low accuracy Too long matching becomes hard Why More Than 2 Views? Ambiguity with 2 views Camera 1 Camera 2 Camera 3 Trinocular Stereo

More information

HomeWork 2 Rasterization

HomeWork 2 Rasterization HomeWork 2 Rasterization Fall 2012 Submitted By - Nitin Agrahara Ravikumar 73714398 The First Part: Rasterization As required by the homework, the display function of the smooth program is hijacked and

More information

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little + Presented by Matt Loper CS296-3: Robot Learning and Autonomy Brown

More information

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal PROGRAMA DE CURSO Código Nombre EL7031 Robotics, Sensing and Autonomous Systems Nombre en Inglés Robotics, Sensing and Autonomous Systems es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra

More information

Notes on Robust Estimation David J. Fleet Allan Jepson March 30, 005 Robust Estimataion. The field of robust statistics [3, 4] is concerned with estimation problems in which the data contains gross errors,

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Free-Hand Stroke Approximation for Intelligent Sketching Systems

Free-Hand Stroke Approximation for Intelligent Sketching Systems MIT Student Oxygen Workshop, 2001. Free-Hand Stroke Approximation for Intelligent Sketching Systems Tevfik Metin Sezgin MIT Artificial Intelligence Laboratory mtsezgin@ai.mit.edu Abstract. Free-hand sketching

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Global localization from a single feature correspondence

Global localization from a single feature correspondence Global localization from a single feature correspondence Friedrich Fraundorfer and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology {fraunfri,bischof}@icg.tu-graz.ac.at

More information

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters.

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. 1 2 Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. Crowd rendering in large environments presents a number of challenges,

More information

SOME stereo image-matching methods require a user-selected

SOME stereo image-matching methods require a user-selected IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 2, APRIL 2006 207 Seed Point Selection Method for Triangle Constrained Image Matching Propagation Qing Zhu, Bo Wu, and Zhi-Xiang Xu Abstract In order

More information