Acceleration of the Iterative Physical Optics Using Graphic Processing Unit. Abstract

Size: px
Start display at page:

Download "Acceleration of the Iterative Physical Optics Using Graphic Processing Unit. Abstract"

Transcription

1 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 21 Nov.; 2(11), ISSN (Print) ISSN X (Online) Acceleration of the Iterative Physical Optics Using Graphic Processing Unit 이용희 진희철 김경태 Yong-Hee Lee Huicheol Chin Kyung-Tae Kim 요약 RCS(Radar Cross Section) (Iterative Physical Optics: ). (Geometric Optics: GO) SBR(Shooting and Bouncing Rays). PO(Physical Optics),. GPU(Graphic Processing Unit), A-CR(Adaptive Iterative Physical Optics-Change Rate). Abstract This paper shows the acceleration of iterative physical optics() for radar cross section(rcs) by using two techniques effectively. For the analysis of the multiple reflection in the cavity, uses the near field method, unlike shooting and bouncing rays method which uses the geometric optics(go). However, it is still far slower than physical optics(po) and it is needed to accelerate the speed of for practical purpose. In order to address this problem, graphic processing unit(gpu) can be applied to reduce calculation time and adaptive iterative physical optics-change rate(a-cr) method is also applicable effectively to optimize iteration for acceleration of calculation. Key words:, CUDA, A-CR, RCS. 서론 RCS(Radar Cross Section). RCS RCS. PO(Physical Optics),.,,, PO. (Maxwell's equation) MM(Moment Method) FDTD(Finite Different Time Domain). (Department of Electrical Engineering, Pohang University of Science and Technology) Manuscript received August, 21 ; Revised November 11, 21 ; Accepted November 1, 21. (ID No ) Corresponding Author: Kyung-Tae Kim ( kkt@postech.ac.kr) 112 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.

2 , λ,. SBR(Shooting and Bouncing Ray), PO [1]. (geometric optics),. SBR,. MM FDTD,, [2] [4]. PO, HRRP(High Resolution Range Profile) ISAR(Inverse Synthetic Aperture Radar), RCS. RCS GPU(Graphic Processing Unit) GPU A- CR(Adaptive Iterative Physical Optics-Change Rate),.. 본론 2-1 반복적물리광학법 () RCS 1 (open) ( ) (equivalent principle).. s E, H s i E, H i open ˆk Sa J ( r ') M ( r ') ˆn S c E, H ˆn J ( ) n r PEC 그림 1. Fig. 1. progress model of the cavity geometry. close (2) (1),. (2) (free space Green's function) SBR. (), n, n 1 (). (1) (). 2-2 GPU 를활용한가속화 11

3 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 2, no. 11, Nov. 21. GPU CPU(Central Processing Unit),,., N. GPU GPU (gain). CPU GPU.,,,,.,,,,. 2- []. GPU kernel, GPU kernel. 2 A-CR, 4 A-CR. kernel GPU kernel, 2 kernel.,, Incident Field A-CR New Aperture Currents GPU kernel EM Aperture Currents Wall Currents RCS Incident Field A-CR New Aperture Currents EM Aperture Currents Wall Currents RCS 그림 2. GPU - / Fig. 2. Diagram of using GPU - before/after. 표 1. Main kernel Table 1. Main kernel algorithm. Main_Kernel Algorithm <Pre Kernel> <Main Kernel> <Post Kernel> Input: I, current data for patches; G, geometry data for patches; N, the number of patches; Ouput: none, an (intermediate) I data stored in I; thread blockidx.x * blockdim.x + threadidx.x; //Start global memory read early from current of patches. initial_current I[thread]; for patch_number to N do induced_current I[patch_number]; if patch_number thread then induced_current induced_current + near_field_green_function(induced_current, G); end if end for I[thread] initial_current + induced_current; return ; GPU [2]. 1 2 main kernel pseudo code. 2 kernel, kernel main kernel. kernel source observer. GPU nvidia 27 CUDA. 114

4 2- A-CR을이용한반복횟수의자동계산.,,. CPU (ray tracing), [2],[],[7]..., [2]. (difference of current) (relative error),. ( )., (),, /. CPU, GPU [],[]. A-CR CPU, [7]. n (4), () n 1. () 1 % (),. 2,., 1., / 1 initial_current I[thread]; []. A-CR ( ), %., [] [8]. A-CR GPU. (4) () 11

5 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 2, no. 11, Nov 시뮬레이션조건. 시뮬레이션결과 CPU Intel(R) Core(TM) i7-2k GHz, RAM DDR 4 1. GB, GPU GeForce GTX 77. GPU, GPU A-CR. θ. 1. A-CR,, 그림. Fig.. target model., 1 [8]. -2, A-CR. -2 기법에따른시뮬레이션결과비교 2 RMSE(Root Mean Square Error). RMSE.,. RMSE 2.77 db, RMSE 1 %. A-CR RMSE. db,, 4. RMSE, MOM A-CR. db. GPU, 2 4. GPU, 2, 8, GPU 표 2. RMSE( : db) Table 2. Computing RMSE of the various techniques applied to (unit: db). Short cylindrical Short rectangular Long cylindrical Long rectangular θ-pol. -pol. θ-pol. -pol. θ-pol. -pol. θ-pol. -pol GPU GPU + A-CR

6 GPU + GPU + A-CR A-CR iteration (a) (θ-pol.) (a) Open-ended short cylindrical cavity(θ-pol.) GPU + GPU + A-CR A-CR iteration (b) ( -pol.) (b) Open-ended short cylindrical cavity( -pol.) GPU + GPU + A-CR A-CR iteration (c) (θ-pol.) (c) Short rectangular cavity(θ-pol.) GPU + GPU + A-CR A-CR iteration (d) ( -pol.) (d) Short rectangular cavity( -pol.) GPU + GPU + A-CR A-CR iteration (e) (θ-pol.) (e) Open-ended long cylindrical cavity(θ-pol.) GPU + GPU + A-CR A-CR iteration (f) ( -pol.) (f) Open-ended long cylindrical cavity( -pol.) GPU + GPU + A-CR A-CR iteration (g) (θ-pol.) (g) Open-ended long rectangular cavity(θ-pol.) GPU + GPU + A-CR A-CR iteration 그림 4. Fig. 4. Result graph of the various techniques applied to (h) ( -pol.) (h) Open-ended long rectangular cavity( -pol.) 1 12., GPU A-CR, GPU, 4., A-CR. short rectan- 117

7 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 2, no. 11, Nov. 21. 표. ( : ) Table. Computing performance of the various techniques applied to (unit : second) Short cylindrical Short rectangular Long cylindrical Long rectangular θ-pol. -pol. θ-pol. -pol. θ-pol. -pol. θ-pol. -pol , ,48.1 4,.81 4,.82 + GPU GPU + A-CR 표 4. ( : kbyte) Table 4. The usage of global memory(unit: kbyte). Difference of current A-CR Short cylindrical Short rectangular Long cylindrical Long rectangular gular-pol.,, 4 (d) A-CR. 4 A-CR, %.. 결론 GPU A-CR. CPU, A-CR 2 8., GPU A-CR. References [1] Hao Ling, Ri-Chee Chou, and Shung-Wu Lee, "Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity", IEEE Transactions on Antennas and Propagation, vol. 7. no. 2, Feb. 18. [2] Fernando Obelleiro-Basteiro, Jose Luis Rodriguez, and Robert J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities", IEEE Transactions on Antennas and Propagation, vol. 4. no. 4, apr. 1. [],,, " -MoM ",, 2(8), pp. 71-7, 2 8. [4],,, "(Iterative PO) Ka Von Karman Radome ",, 22(12), pp , [] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Elsevier, 21. [] Robert J. Burkholder, Tomas Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities", IEEE Transactions on Antennas and Propagation, vol.. no. 2, 7-7, 2. [7] S. H. Choi, D. W. Soe, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object", Jounal of Electromagnetic Waves and Applications, vol. 21. no. 12, , 27. [8] H. Chin, J. -H. Yeom, H. -T. Kim, and K. -T. Kim, "Im- 118

8 provement of iterative physical optics using previous information to guide initial guess", Jounal of Electromagnetic Waves and Applications, vol. 124, 47-48, : ( ) 2 : [ 주관심분야 ], RCS 14 2 : ( ) 1 2 : ( ) 1 2 : ( ) : 211 : 212 : /IR [ 주관심분야 ],,,, RCS 28 2 : ( ) : ( ) : ( ) 21 1 : [ 주관심분야 ], 11

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 BEAM TRACING FOR FAST RCS PREDICTION OF ELECTRICALLY LARGE TARGETS H.-G. Park, H.-T. Kim, and K.-T. Kim * Department of Electrical Engineering,

More information

Progress In Electromagnetics Research, PIER 43, , 2003

Progress In Electromagnetics Research, PIER 43, , 2003 Progress In Electromagnetics Research, PIER 43, 123 142, 2003 2D CAVITY MODELING USING METHOD OF MOMENTS AND ITERATIVE SOLVERS C.-F. Wang and Y.-B. Gan Temasek Laboratories National University of Singapore

More information

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities Abhinav Bharat, M L Meena, S. Sunil Kumar, Neha Sangwa, Shyam Rankawat Defence Laboratory, DRDO Jodhpur, India-342011 Abstract

More information

A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction

A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction Progress In Electromagnetics Research M, Vol. 40, 27 35, 2014 A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction Robert Brem * and Thomas F. Eibert Abstract An iterative

More information

ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA HUAN-TING MENG THESIS

ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA HUAN-TING MENG THESIS ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA BY HUAN-TING MENG THESIS Submitted in partial fulfillment of the requirements

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe) Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG www.remcom.com +44 870 351 7640 +44 870 351 7641 (fax) Aspects of RF Simulation and Analysis Software Methods

More information

Numerical Simulation of RCS for A Spherical Convergent Flap Nozzle with A Non-rectangular Divergent Duct

Numerical Simulation of RCS for A Spherical Convergent Flap Nozzle with A Non-rectangular Divergent Duct Numerical Simulation of RCS for A Spherical Convergent Flap Nozzle with A Non-rectangular Divergent Duct CUI Jinhui a, SHANG Shoutang a, YANG Qingzhen b, CHEN Lihai b a AVIC Shenyang Engine Design and

More information

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU 1 1 Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086 Abstract.

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

PARALLEL SHOOTING AND BOUNCING RAY METHOD ON GPU CLUSTERS FOR ANALYSIS OF ELECTRO- MAGNETIC SCATTERING

PARALLEL SHOOTING AND BOUNCING RAY METHOD ON GPU CLUSTERS FOR ANALYSIS OF ELECTRO- MAGNETIC SCATTERING Progress In Electromagnetics Research, Vol. 137, 87 99, 2013 PARALLEL SHOOTING AND BOUNCING RAY METHOD ON GPU CLUSTERS FOR ANALYSIS OF ELECTRO- MAGNETIC SCATTERING Pengcheng Gao, Yubo Tao *, and Hai Lin

More information

BLOCK MATRIX PRECONDITIONER METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE) FORMULATION BASED ON LOOP-STAR BASIS FUNC- TIONS

BLOCK MATRIX PRECONDITIONER METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE) FORMULATION BASED ON LOOP-STAR BASIS FUNC- TIONS Progress In Electromagnetics Research, Vol. 134, 543 558, 2013 BLOCK MATRIX PRECONDITIONER METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE) FORMULATION BASED ON LOOP-STAR BASIS FUNC- TIONS Jae-Hyun

More information

A fast three-dimensional deterministic ray tracing coverage simulator for a 24 GHz anti-collision radar

A fast three-dimensional deterministic ray tracing coverage simulator for a 24 GHz anti-collision radar Adv. Radio Sci., 11, 55 6, 213 www.adv-radio-sci.net/11/55/213/ doi:1.5194/ars-11-55-213 Author(s) 213. CC Attribution 3. License. Advances in Radio Science A fast three-dimensional deterministic ray tracing

More information

Local Multilevel Fast Multipole Algorithm for 3D Electromagnetic Scattering

Local Multilevel Fast Multipole Algorithm for 3D Electromagnetic Scattering Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 745 Local Multilevel Fast Multipole Algorithm for 3D Electromagnetic Scattering Jun Hu, Zaiping Nie, Lin Lei, and Jun

More information

ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE

ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE Progress In Electromagnetics Research, Vol. 117, 435 448, 2011 ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE W. Yang, Z. Q. Zhao

More information

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Progress In Electromagnetics Research M, Vol. 68, 173 180, 2018 Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Jinyu Zhu, Yufa Sun *,

More information

GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction Yubo Tao, Hai Lin, and Hujun Bao

GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction Yubo Tao, Hai Lin, and Hujun Bao 494 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010 GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction Yubo Tao, Hai Lin, and Hujun Bao Abstract The shooting

More information

Slide credit: Slides adapted from David Kirk/NVIDIA and Wen-mei W. Hwu, DRAM Bandwidth

Slide credit: Slides adapted from David Kirk/NVIDIA and Wen-mei W. Hwu, DRAM Bandwidth Slide credit: Slides adapted from David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 DRAM Bandwidth MEMORY ACCESS PERFORMANCE Objective To learn that memory bandwidth is a first-order performance factor in

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

Comparison of TLM and FDTD Methods in RCS Estimation

Comparison of TLM and FDTD Methods in RCS Estimation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 3 (2011), pp. 283-287 International Research Publication House http://www.irphouse.com Comparison of TLM and FDTD Methods

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

CUDA Experiences: Over-Optimization and Future HPC

CUDA Experiences: Over-Optimization and Future HPC CUDA Experiences: Over-Optimization and Future HPC Carl Pearson 1, Simon Garcia De Gonzalo 2 Ph.D. candidates, Electrical and Computer Engineering 1 / Computer Science 2, University of Illinois Urbana-Champaign

More information

Simulation Advances. Antenna Applications

Simulation Advances. Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition

More information

ABSORBER FOAM CHARACTERIZATION FOR PREDICTING OVERALL ANECHOIC CHAMBER PERFORMANCE

ABSORBER FOAM CHARACTERIZATION FOR PREDICTING OVERALL ANECHOIC CHAMBER PERFORMANCE ABSORBER FOAM CHARACTERIZATION FOR PREDICTING OVERALL ANECHOIC CHAMBER PERFORMANCE Christopher R. Brito Lockheed Martin 1111 Lockheed Martin Way, Sunnyvale, CA 94089 Aloysius Aragon Lubiano Raytheon, 2000

More information

ALTHOUGH approximate, the combination of geometrical

ALTHOUGH approximate, the combination of geometrical 5278 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 11, NOVEMBER 2012 GPU-Based Combination of GO and PO for Electromagnetic Scattering of Satellite Peng-Bo Wei, Min Zhang, Wei Niu, and Wang-Qiang

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

THIS paper presents early results of new tracing algorithm

THIS paper presents early results of new tracing algorithm INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 3, PP. 273 279 Manuscript received February 7, 2015; revised September, 2015. DOI: 10.1515/eletel-2015-0036 Novel Tracing Algorithm

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

Implementation of Omni-directional Image Viewer Program for Effective Monitoring

Implementation of Omni-directional Image Viewer Program for Effective Monitoring 2 : (So-Yeon Jeon et al.: Implementation of Omni-directional Image Viewer Program for Effective Monitoring) (Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.939

More information

Simulation Advances for RF, Microwave and Antenna Applications

Simulation Advances for RF, Microwave and Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving:

More information

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary HFSS 12.0 Ansys 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model UHF blade antenna on Joint Strike Fighter Inherent improvements in

More information

Vector Quantization. A Many-Core Approach

Vector Quantization. A Many-Core Approach Vector Quantization A Many-Core Approach Rita Silva, Telmo Marques, Jorge Désirat, Patrício Domingues Informatics Engineering Department School of Technology and Management, Polytechnic Institute of Leiria

More information

The LWA1 User Computing Facility Ver. 1

The LWA1 User Computing Facility Ver. 1 The LWA1 User Computing Facility Ver. 1 J. Dowell November 25, 2012 Contents 1 Introduction 2 2 Available Hardware and Software 2 3 Networking 2 4 Storage 3 5 User Management and Access 3 6 Document History

More information

Computational Fluid Dynamics (CFD) using Graphics Processing Units

Computational Fluid Dynamics (CFD) using Graphics Processing Units Computational Fluid Dynamics (CFD) using Graphics Processing Units Aaron F. Shinn Mechanical Science and Engineering Dept., UIUC Accelerators for Science and Engineering Applications: GPUs and Multicores

More information

A Hybrid Approach to Parallel Connected Component Labeling Using CUDA

A Hybrid Approach to Parallel Connected Component Labeling Using CUDA International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013 A Hybrid Approach to Parallel Connected Component Labeling Using CUDA Youngsung Soh, Hadi Ashraf, Yongsuk Hae, and Intaek

More information

USING GPUS TO ACCELERATE INSTALLED ANTENNA PERFORMANCE SIMULATIONS

USING GPUS TO ACCELERATE INSTALLED ANTENNA PERFORMANCE SIMULATIONS USING GPUS TO ACCELERATE INSTALLED ANTENNA PERFORMANCE SIMULATIONS Tod Courtney 1, John E. Stone 2, Bob Kipp 1 1 Delcross Technologies, Champaign, IL 61821 2 University of Illinois at Urbana-Champaign,

More information

newfasant PO Multiple effects analysis

newfasant PO Multiple effects analysis newfasant PO Multiple effects analysis Benchmark: PO Multiple effects analysis Software Version: 6.2.7 Date: 21 Nov 16:10 Index 1. BENCHMARK DESCRIPTION AND OBJECTIVES 1.1. GEOMETRY CREATION 2. SET-UP

More information

Performance Insights on Executing Non-Graphics Applications on CUDA on the NVIDIA GeForce 8800 GTX

Performance Insights on Executing Non-Graphics Applications on CUDA on the NVIDIA GeForce 8800 GTX Performance Insights on Executing Non-Graphics Applications on CUDA on the NVIDIA GeForce 8800 GTX Wen-mei Hwu with David Kirk, Shane Ryoo, Christopher Rodrigues, John Stratton, Kuangwei Huang Overview

More information

GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction

GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction Meng Wu and Jeffrey A. Fessler EECS Department University of Michigan Fully 3D Image

More information

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 10. Reduction Trees

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 10. Reduction Trees CS/EE 217 GPU Architecture and Parallel Programming Lecture 10 Reduction Trees David Kirk/NVIDIA and Wen-mei W. Hwu University of Illinois, 2007-2012 1 Objective To master Reduction Trees, arguably the

More information

A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE

A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE Elmo E. Garrido, Jr. and David C. Jenn Naval Postgraduate School Monterey, CA 93943 SUMMARY POFACETS is an implementation of the physical optics approximation

More information

Design of an FPGA-Based FDTD Accelerator Using OpenCL

Design of an FPGA-Based FDTD Accelerator Using OpenCL Design of an FPGA-Based FDTD Accelerator Using OpenCL Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama Graduate School of Information Sciences, Tohoku University

More information

Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces

Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces Progress In Electromagnetics Research M, Vol. 43, 63 70, 2015 Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces Jun Yan 1,JunHu *, 1, Hua Peng Zhao 2, and Zai Ping Nie 1 Abstract

More information

This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC.

This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. Please send any comment to dkirk@nvidia.com

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

Introduction to GPU programming. Introduction to GPU programming p. 1/17

Introduction to GPU programming. Introduction to GPU programming p. 1/17 Introduction to GPU programming Introduction to GPU programming p. 1/17 Introduction to GPU programming p. 2/17 Overview GPUs & computing Principles of CUDA programming One good reference: David B. Kirk

More information

ELECTROMAGNETIC diffraction by perfectly conducting

ELECTROMAGNETIC diffraction by perfectly conducting IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1697 Oblique Scattering by a Pair of Conducting Half Planes: TM Case Jong-Won Yu and Noh-Hoon Myung Abstract An exact series

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing. Jungsoo Lee, Sun Mi Park, Dae-Shik Kim

Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing. Jungsoo Lee, Sun Mi Park, Dae-Shik Kim Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing Jungsoo Lee, Sun Mi Park, Dae-Shik Kim Introduction In particular, probabilistic tractography requires relatively long computation

More information

Ray tracing based fast refraction method for an object seen through a cylindrical glass

Ray tracing based fast refraction method for an object seen through a cylindrical glass 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Ray tracing based fast refraction method for an object seen through a cylindrical

More information

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, *

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, * Progress In Electromagnetics Research Letters, Vol. 81, 133 139, 2019 Fast Calculation of Monostatic Radar Cross Section of Conducting Targets Using Hierarchical Characteristic Basis Function Method and

More information

Lecture 1: Introduction and Computational Thinking

Lecture 1: Introduction and Computational Thinking PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 1: Introduction and Computational Thinking 1 Course Objective To master the most commonly used algorithm techniques and computational

More information

CS 668 Parallel Computing Spring 2011

CS 668 Parallel Computing Spring 2011 CS 668 Parallel Computing Spring 2011 Prof. Fred Annexstein @proffreda fred.annexstein@uc.edu Office Hours: 11-1 MW or by appointment Tel: 513-556-1807 Meeting: TuTh 2:00-3:25 in RecCenter 3240 Lecture

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Module 3: CUDA Execution Model -I. Objective

Module 3: CUDA Execution Model -I. Objective ECE 8823A GPU Architectures odule 3: CUDA Execution odel -I 1 Objective A more detailed look at kernel execution Data to thread assignment To understand the organization and scheduling of threads Resource

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Merge

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Merge CSE 599 I Accelerated Computing - Programming GPUS Parallel Patterns: Merge Data Parallelism / Data-Dependent Execution Data-Independent Data-Dependent Data Parallel Stencil Histogram SpMV Not Data Parallel

More information

BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU

BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU 2013 8th International Conference on Communications and Networking in China (CHINACOM) BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU Xiang Chen 1,2, Ji Zhu, Ziyu Wen,

More information

Research Article A New Shooting Bouncing Ray Method for Composite Scattering from a Target above the Electrically Large Scope Sea Surface

Research Article A New Shooting Bouncing Ray Method for Composite Scattering from a Target above the Electrically Large Scope Sea Surface Hindawi Mathematical Problems in Engineering Volume 17, Article ID 61745, 7 pages https://doi.org/1.1155/17/61745 Research Article A New Shooting Bouncing Ray Method for Composite Scattering from a Target

More information

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC.

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Sudantha Perera Advanced Radar Research Center School of Electrical and Computer Engineering The University of Oklahoma,

More information

Simulation of one-layer shallow water systems on multicore and CUDA architectures

Simulation of one-layer shallow water systems on multicore and CUDA architectures Noname manuscript No. (will be inserted by the editor) Simulation of one-layer shallow water systems on multicore and CUDA architectures Marc de la Asunción José M. Mantas Manuel J. Castro Received: date

More information

ISAR IMAGING OF MULTIPLE TARGETS BASED ON PARTICLE SWARM OPTIMIZATION AND HOUGH TRANSFORM

ISAR IMAGING OF MULTIPLE TARGETS BASED ON PARTICLE SWARM OPTIMIZATION AND HOUGH TRANSFORM J. of Electromagn. Waves and Appl., Vol. 23, 1825 1834, 2009 ISAR IMAGING OF MULTIPLE TARGETS BASED ON PARTICLE SWARM OPTIMIZATION AND HOUGH TRANSFORM G.G.Choi,S.H.Park,andH.T.Kim Department of Electronic

More information

GPU-accelerated Verification of the Collatz Conjecture

GPU-accelerated Verification of the Collatz Conjecture GPU-accelerated Verification of the Collatz Conjecture Takumi Honda, Yasuaki Ito, and Koji Nakano Department of Information Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi Hiroshima 739-8527,

More information

Analysis of the effect of target scattering on the operational effectiveness of seeker

Analysis of the effect of target scattering on the operational effectiveness of seeker 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) Analysis of the effect of target scattering on the operational effectiveness of seeker Jun-chao Yuan1, a,

More information

RT 3D FDTD Simulation of LF and MF Room Acoustics

RT 3D FDTD Simulation of LF and MF Room Acoustics RT 3D FDTD Simulation of LF and MF Room Acoustics ANDREA EMANUELE GRECO Id. 749612 andreaemanuele.greco@mail.polimi.it ADVANCED COMPUTER ARCHITECTURES (A.A. 2010/11) Prof.Ing. Cristina Silvano Dr.Ing.

More information

2/17/10. Administrative. L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies. Administrative, cont.

2/17/10. Administrative. L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies. Administrative, cont. Administrative L7: Memory Hierarchy Optimization IV, Bandwidth Optimization and Case Studies Next assignment on the website Description at end of class Due Wednesday, Feb. 17, 5PM Use handin program on

More information

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance CSE 599 I Accelerated Computing - Programming GPUS Memory performance GPU Teaching Kit Accelerated Computing Module 6.1 Memory Access Performance DRAM Bandwidth Objective To learn that memory bandwidth

More information

Virtual & Mixed Reality > Near-Eye Displays. Light Propagation through Waveguide with In- & Outcoupling Surface Gratings

Virtual & Mixed Reality > Near-Eye Displays. Light Propagation through Waveguide with In- & Outcoupling Surface Gratings Virtual & Mixed Reality > Near-Eye Displays Light Propagation through Waveguide with In- & Outcoupling Surface Gratings Task/System Illustration glass plate with in- & outcoupling surface gratings point

More information

INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS

INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS INVESTIGATIONS ON THE ANALYSIS AND DESIGN OF APERIODIC FREQUENCY SELECTIVE SURFACES FOR SPACE APPLICATIONS M. Zhou 1, S. B. Sørensen 1, N. Vesterdal 1, R. Dickie 2, R. Cahill 2, and G. Toso 3 1 TICRA,

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V: Principles in Computer Architecture Parallelism and Locality Fall 2008 Lecture 10 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should we

More information

Reconstruction Improvements on Compressive Sensing

Reconstruction Improvements on Compressive Sensing SCITECH Volume 6, Issue 2 RESEARCH ORGANISATION November 21, 2017 Journal of Information Sciences and Computing Technologies www.scitecresearch.com/journals Reconstruction Improvements on Compressive Sensing

More information

COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN S INTEGRATION ALGORITHM

COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN S INTEGRATION ALGORITHM Progress In Electromagnetics Research M, Vol. 6, 59 74, 2009 COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN S INTEGRATION ALGORITHM A. C. Durgun and M. Kuzuoǧlu Electrical and Electronics Engineering

More information

An Improved Ray-Tracing Propagation Model for Predicting Path Loss on Single Floors

An Improved Ray-Tracing Propagation Model for Predicting Path Loss on Single Floors An Improved Ray-Tracing Propagation Model for Predicting Path Loss on Single Floors Zhong Ji 1, Bin-Hong Li 2, Hao-Xing Wang 2, Hsing-Yi Chen 3 and Yaw-Gen Zhau 4 1 Zhong Ji, 97034BA Shanghai Jiao Tong

More information

Supporting Data Parallelism in Matcloud: Final Report

Supporting Data Parallelism in Matcloud: Final Report Supporting Data Parallelism in Matcloud: Final Report Yongpeng Zhang, Xing Wu 1 Overview Matcloud is an on-line service to run Matlab-like script on client s web browser. Internally it is accelerated by

More information

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012 Electromagnetics R14 Update Greg Pitner 1 HFSS Version 14 2 HFSS Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics

More information

A Fast Speckle Reduction Algorithm based on GPU for Synthetic Aperture Sonar

A Fast Speckle Reduction Algorithm based on GPU for Synthetic Aperture Sonar Vol.137 (SUComS 016), pp.8-17 http://dx.doi.org/1457/astl.016.137.0 A Fast Speckle Reduction Algorithm based on GPU for Synthetic Aperture Sonar Xu Kui 1, Zhong Heping 1, Huang Pan 1 1 Naval Institute

More information

Graphics Processing Unit Implementation of Multilevel Plane-Wave Time-Domain Algorithm

Graphics Processing Unit Implementation of Multilevel Plane-Wave Time-Domain Algorithm IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014 1671 Graphics Processing Unit Implementation of Multilevel Plane-Wave Time-Domain Algorithm Yang Liu, Student Member, IEEE, Abdulkadir C. Yücel,

More information

OpenACC. Part 2. Ned Nedialkov. McMaster University Canada. CS/SE 4F03 March 2016

OpenACC. Part 2. Ned Nedialkov. McMaster University Canada. CS/SE 4F03 March 2016 OpenACC. Part 2 Ned Nedialkov McMaster University Canada CS/SE 4F03 March 2016 Outline parallel construct Gang loop Worker loop Vector loop kernels construct kernels vs. parallel Data directives c 2013

More information

THE concept of using a lossy material to absorb an

THE concept of using a lossy material to absorb an 40 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 1, JANUARY 1997 A Comparison of Anisotropic PML to Berenger s PML and Its Application to the Finite-Element Method for EM Scattering Jo-Yu

More information

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects RADIO SCIENCE, VOL. 38, NO. 2, 1028, doi:10.1029/2002rs002610, 2003 Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects Cai-Cheng Lu

More information

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Computational Acceleration of Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Mutaqin Akbar mutaqin.akbar@gmail.com Pranowo pran@mail.uajy.ac.id Suyoto suyoto@mail.uajy.ac.id Abstract

More information

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc.

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. 1 ANSYS, Inc. September 21, Advanced Solvers: Finite Arrays with DDM 2 ANSYS, Inc. September 21, Finite Arrays

More information

Journal of Universal Computer Science, vol. 14, no. 14 (2008), submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J.

Journal of Universal Computer Science, vol. 14, no. 14 (2008), submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J. Journal of Universal Computer Science, vol. 14, no. 14 (2008), 2416-2427 submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J.UCS Tabu Search on GPU Adam Janiak (Institute of Computer Engineering

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Design and Validation of Compact Antenna Test Ranges using Computational EM

Design and Validation of Compact Antenna Test Ranges using Computational EM Design and Validation of Compact Antenna Test Ranges using Computational EM O. Borries, P. Meincke, E. Jørgensen, H.-H. Viskum, F. Jensen TICRA Copenhagen, Denmark ob@ticra.com C. H. Schmidt Airbus Defence

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search CSE 599 I Accelerated Computing - Programming GPUS Parallel Patterns: Graph Search Objective Study graph search as a prototypical graph-based algorithm Learn techniques to mitigate the memory-bandwidth-centric

More information

Data Parallel Execution Model

Data Parallel Execution Model CS/EE 217 GPU Architecture and Parallel Programming Lecture 3: Kernel-Based Data Parallel Execution Model David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013 Objective To understand the organization and scheduling

More information

Multi-Processors and GPU

Multi-Processors and GPU Multi-Processors and GPU Philipp Koehn 7 December 2016 Predicted CPU Clock Speed 1 Clock speed 1971: 740 khz, 2016: 28.7 GHz Source: Horowitz "The Singularity is Near" (2005) Actual CPU Clock Speed 2 Clock

More information

DETECTION and identification of hard targets camouflaged

DETECTION and identification of hard targets camouflaged 2698 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 10, OCTOBER 2006 Electromagnetic Scattering From Foliage Camouflaged Complex Targets Mojtaba Dehmollaian, Student Member, IEEE, and

More information

Quantitative study of computing time of direct/iterative solver for MoM by GPU computing

Quantitative study of computing time of direct/iterative solver for MoM by GPU computing Quantitative study of computing time of direct/iterative solver for MoM by GPU computing Keisuke Konno 1a), Hajime Katsuda 2, Kei Yokokawa 1, Qiang Chen 1, Kunio Sawaya 3, and Qiaowei Yuan 4 1 Department

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND WITHOUT BORDER CONDITIONS

COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND WITHOUT BORDER CONDITIONS COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND WITHOUT BORDER CONDITIONS Petre Lameski Igor Mishkovski Sonja Filiposka Dimitar Trajanov Leonid Djinevski Ss. Cyril and Methodius University in

More information

2/2/11. Administrative. L6: Memory Hierarchy Optimization IV, Bandwidth Optimization. Project Proposal (due 3/9) Faculty Project Suggestions

2/2/11. Administrative. L6: Memory Hierarchy Optimization IV, Bandwidth Optimization. Project Proposal (due 3/9) Faculty Project Suggestions Administrative L6: Memory Hierarchy Optimization IV, Bandwidth Optimization Next assignment available Goals of assignment: simple memory hierarchy management block-thread decomposition tradeoff Due Tuesday,

More information

SCATTERING AND IMAGE SIMULATION FOR RECON- STRUCTION OF 3D PEC OBJECTS CONCEALED IN A CLOSED DIELECTRIC BOX

SCATTERING AND IMAGE SIMULATION FOR RECON- STRUCTION OF 3D PEC OBJECTS CONCEALED IN A CLOSED DIELECTRIC BOX Progress In Electromagnetics Research M, Vol. 9, 41 52, 2009 SCATTERING AND IMAGE SIMULATION FOR RECON- STRUCTION OF 3D PEC OBJECTS CONCEALED IN A CLOSED DIELECTRIC BOX J. Dai and Y.-Q. Jin Key Laboratory

More information

On Wire-Grid Representation of Solid Metallic Surfaces

On Wire-Grid Representation of Solid Metallic Surfaces 1 On Wire-Grid Representation of Solid Metallic Surfaces Abraham Rubinstein, Student Member, IEEE, Farhad Rachidi, Senior Member, IEEE, and Marcos Rubinstein Abstract This short paper deals with the wire-grid

More information

Efficient Meshing Scheme for Bodies of Revolution Application to Physical Optics Prediction of Electromagnetic Scattering

Efficient Meshing Scheme for Bodies of Revolution Application to Physical Optics Prediction of Electromagnetic Scattering Progress In Electromagnetics Research M, Vol. 48, 163 172, 216 Efficient Meshing Scheme for Bodies of Revolution Application to Physical Optics Prediction of Electromagnetic Scattering Zohreh Asadi and

More information

Performance of Channel Prediction Using 3D Ray-tracing Scheme Compared to Conventional 2D Scheme

Performance of Channel Prediction Using 3D Ray-tracing Scheme Compared to Conventional 2D Scheme Performance of Channel Prediction Using 3D Ray-tracing Scheme Compared to Conventional D Scheme Nam-Ryul Jeon, Chang-Hoon Lee, Noh-Gyoung Kang, and Seong-Cheol Kim Institute of New Media and Communications,

More information

포인트클라우드파일의측점재배치를통한파일참조옥트리의성능향상

포인트클라우드파일의측점재배치를통한파일참조옥트리의성능향상 Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 5, 437-442, 2015 http://dx.doi.org/10.7848/ksgpc.2015.33.5.437 ISSN 1598-4850(Print) ISSN 2288-260X(Online)

More information