Recovering Camera Sensitivities using Target-based Reflectances Captured under multiple LED-Illuminations

Size: px
Start display at page:

Download "Recovering Camera Sensitivities using Target-based Reflectances Captured under multiple LED-Illuminations"

Transcription

1 Recovering Camera Sensitivities using Target-based Reflectances Captured under multiple LED-Illuminations Philipp Urban, Michael Desch, Kathrin Happel and Dieter Spiehl

2 Motivation: Spectral Estimation Channel m Illumination Scene Camera Camera Response? Channel 1 Can we calculate spectral reflectances from the camera image? Spectral Image

3 Motivation: Spectral Estimation If yes, we could render/reproduce the image for any illuminant

4 Motivation: Spectral Estimation If yes, we could estimate pigments used by an artist Y. Zhao 2008

5 Spectral Estimation Approaches c 1 c m Signal Processing Training-based Methods Model-based Methods Spatio-Spectral Methods Multipoint spectral Measurement Methods Camera Sensitivities Required

6 Model-based Methods Use information to calculate spectral reflectance factor from camera responses Additional Information e.g. Distribution of noise,reflectances

7 Camera Model (Linear, Continuous) Illuminant X X d l r [s 1 s m ] T Reflectance Camera Sensitivities + c 1 = = c c m Camera Response (additive noise) Geometry factor* Spectral stimulus Required but usually unknown *Lambertian surface assumption

8 Camera Model (Linear, Discrete) Sensitivity Range Relative power\reflectance r = [ ] T Spectral representation by N-dimensional vector Geometry Factor Reflectance vector Diagonal matrix with illuminant as diagonal i-th sensitivity vector Noise i-th channel response

9 Monochromator-based Training Stimuli Monochromator Halon (r 1) Sensitivity Sampling the Sensitivities with monochromatic light + Very high effective dimension* (~N) Wavelength Very good sensitivity estimation without any additional assumptions *Hardeberg (2002)

10 Target-based Training Stimuli Low effective dimension of stimuli for typical targets (broadband) Measure m target reflectances Capture target for one illuminant Additional assumptions required (smoothness, non-negativity, ) Large influence of assumptions on estimated sensitivities

11 LED+Target-based Training Stimuli m x k x n equations High effective for recovering dimension of stimuli s1,,sn for typical targets (narrowband) Measure m target reflectances Capture target for LED illuminant 1 Capture target for LED illuminant k Additional assumptions required (smoothness, non-negativity, ) Small influence of assumptions on estimated sensitivities

12 Problem: Measurement Geometry 45 /0 Geometry factor differs Different measurement geometries: among patches and illuminants Distance between camera and patches Angle between camera and patches Difference Non-linear between equation spectrophotometer system and camera (sensitivities + geometry factors)

13 Solution: Use Chromaticities Divide each equation by the sum of channels (geometry factor can be reduced) Rearrange equations + consider noise where is a (k m n) (n N) dimensional matrix that depends on Noise, assumed to be uncorrelated zero-mean Gaussian with covariance matrix

14 What Assumptions are Reasonable? Sensitivities are non-negative 1 invalid 2 Sensitivities are likely to be smooth: Model wavelength-correlation using a Toeplitz-matrix Unlikely, but possible

15 What Assumptions are Reasonable? Covariance matrix for can be modeled as block-diagonal 3 (i.e. channel sensitivities are uncorrelated) Likelihood model: Prior distribution: where 2 3 Posterior distribution: where

16 Reconstruct Relative Sensitivities Solve Constrained Maximum-A-Posteriori (MAP) Problem: Minimize: subject to: The result are sensitivities that maximize the posterior distribution subject to constraints Last constraint is a normalization required to avoid zero sensitivities

17 Experimental Setup 1 Camera: Sinar 54H-based RGB camera (IR cutoff removed) Custom made two-stage filter wheel with yellow + blue filter Six channel camera (12 bit, 22MP) 2 Target: Color Checker measured using X-Rite s EyeOne

18 Experimental Setup 3 LED viewing Booth: JUST Normlicht LED Color Viewing Light (six different types of LED) 4 Spectroradiometer to measure LED spectral power distribution (SPD) Konica-Minolta CS UV/IR cutoff filter added to limit the sensitivity range of the camera to nm [EyeOne measurements do not cover the real sensitivity range]

19 Results Effective dimension: 15 Color Checker only: 9 Experimental Setup *CC = Color Checker patches Training Stimuli (24 CC* x 6 LED = 144)

20 Results Reconstructed Sensitivities Predicted vs. real channel responses for the training stimuli [Errors: mean ~ 0.3%, 95 th < 0.8%, max < 1.35%]* *Error percentage is relative to the max. channel response

21 Results (Test Stimuli) Capture the ESSER TE221 Target under 6 LED illuminant [1698 different test stimuli] Predict channel responses using the reconstructed sensitivities Prediction error histogram* Small mean errors < 0.5%* Small 95 th errors < 1.3%* But large max errors ~7.5%* Possible reason for large max error: Invalid Lambertian surface assumption Effective dimension of stimuli is still to small *Error percentage is relative to the max. channel response

22 Conclusion Camera sensitivities are required for many reflectance estimation methods If unknown they need to be measured/estimated Sensitivity reconstruction methods use assumptions (non-negativity, smoothness) and training stimuli: Different LED + Target Higher effective dimension of stimuli Smaller influence of assumptions Sensitivity reconstruction using Constrained Maximum-A-Posteriori (MAP) Test: 6-channel camera, 6-LED, Color Checker Results (Esser test target): small mean and 95 th -, large max prediction errors

23 Thanks for your attention Thanks to Maria Fedutina, Tanja Kaulitz, Henri Kröling, Karsten Rettig, Manfred Jakobi for constructing, manufacturing and assembling the filter wheel and to the Deutsche Forschungsgemeinschaft for the sponsorship of the project Philipp Urban, Michael Desch, Kathrin Happel and Dieter Spiehl

Estimating the wavelength composition of scene illumination from image data is an

Estimating the wavelength composition of scene illumination from image data is an Chapter 3 The Principle and Improvement for AWB in DSC 3.1 Introduction Estimating the wavelength composition of scene illumination from image data is an important topics in color engineering. Solutions

More information

Estimating basis functions for spectral sensitivity of digital cameras

Estimating basis functions for spectral sensitivity of digital cameras (MIRU2009) 2009 7 Estimating basis functions for spectral sensitivity of digital cameras Abstract Hongxun ZHAO, Rei KAWAKAMI, Robby T.TAN, and Katsushi IKEUCHI Institute of Industrial Science, The University

More information

Spectral Adaptation. Chromatic Adaptation

Spectral Adaptation. Chromatic Adaptation Spectral Adaptation Mark D. Fairchild RIT Munsell Color Science Laboratory IS&T/SID 14th Color Imaging Conference Scottsdale 2006 Chromatic Adaptation Spectra-to-XYZ-to-LMS Chromatic adaptation models

More information

Abridged Spectral Fluorescence Imaging An innovative Graduate Student Research Report

Abridged Spectral Fluorescence Imaging An innovative Graduate Student Research Report Abridged Spectral Fluorescence Imaging An innovative Graduate Student Research Report Principle Innovator Mahnaz Mohammadi, Graduate student Chester F. Carlson Center for Imaging Science Rochester Institute

More information

Methods of Spectral Reflectance Reconstruction for. A Sinarback 54 Digital Camera

Methods of Spectral Reflectance Reconstruction for. A Sinarback 54 Digital Camera Methods of Spectral Reflectance Reconstruction for A Sinarback 54 Digital Camera Yonghui Zhao Lawrence A. Taplin Mahdi Nezamabadi Roy S. Berns Munsell Color Science Laboratory Chester F. Carlson Center

More information

Local Linear Models for Improved von Kries Adaptation

Local Linear Models for Improved von Kries Adaptation Appeared in Proc. of 10th Colour Imaging Conf., Scottsdale AZ, 2002 1 Local Linear Models for Improved von Kries Adaptation G. D. Finlayson, A. Alsam, and S. D. Hordley School of Information Systems University

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot 2003 Steve Marschner Color science as linear algebra Last time: historical the actual experiments that lead to understanding color strictly based on visual observations Color Science CONTD. concrete but

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska 1 Krzysztof Krawiec IDSS 2 The importance of visual motion Adds entirely new (temporal) dimension to visual

More information

Using Trichromatic and Multi-channel Imaging

Using Trichromatic and Multi-channel Imaging Reconstructing Spectral and Colorimetric Data Using Trichromatic and Multi-channel Imaging Daniel Nyström Dept. of Science and Technology (ITN), Linköping University SE-674, Norrköping, Sweden danny@itn.liu.se

More information

Lecture 24: More on Reflectance CAP 5415

Lecture 24: More on Reflectance CAP 5415 Lecture 24: More on Reflectance CAP 5415 Recovering Shape We ve talked about photometric stereo, where we assumed that a surface was diffuse Could calculate surface normals and albedo What if the surface

More information

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15. Reading Watt, Chapter 15. Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, pp. 69-97, 1995. 2. Color 1 2 The radiant energy spectrum We can think of light as waves,

More information

PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION

PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION KARSTEN SCHLÜNS Fachgebiet Computer Vision, Institut für Technische Informatik Technische Universität Berlin, Franklinstr. 28/29,

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Spectral Estimation and Reconstruction.

Spectral Estimation and Reconstruction. Characterization of Digital Camera Based on Spectral Estimation and Reconstruction. Mei-Chun Lo +, Ruey-Kuen Perng, and Xin-Yan Shen + + Department of Information Management, Shih Hsin University, Taipei,

More information

Optimum Array Processing

Optimum Array Processing Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory Harry L. Van Trees WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xix 1 Introduction 1 1.1 Array Processing

More information

Epipolar Geometry in Stereo, Motion and Object Recognition

Epipolar Geometry in Stereo, Motion and Object Recognition Epipolar Geometry in Stereo, Motion and Object Recognition A Unified Approach by GangXu Department of Computer Science, Ritsumeikan University, Kusatsu, Japan and Zhengyou Zhang INRIA Sophia-Antipolis,

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 49 CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 3.1 PREAMBLE Software has been developed following the CIE 1931 standard of Chromaticity Coordinates to convert the RGB data into its

More information

Bayes Classifiers and Generative Methods

Bayes Classifiers and Generative Methods Bayes Classifiers and Generative Methods CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Stages of Supervised Learning To

More information

Introduction to color science

Introduction to color science Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms Digital Image Processing: Bernd

More information

Color Constancy from Hyper-Spectral Data

Color Constancy from Hyper-Spectral Data Color Constancy from Hyper-Spectral Data Th. Gevers, H. M. G. Stokman, J. van de Weijer Faculty of Science, University of Amsterdam, The Netherlands fgevers, stokman, joostwg@wins.uva.nl Abstract This

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

An LED based spectrophotometric instrument

An LED based spectrophotometric instrument An LED based spectrophotometric instrument Michael J. Vrhel Color Savvy Systems Limited, 35 South Main Street, Springboro, OH ABSTRACT The performance of an LED-based, dual-beam, spectrophotometer is discussed.

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Detecting and Identifying Moving Objects in Real-Time

Detecting and Identifying Moving Objects in Real-Time Chapter 9 Detecting and Identifying Moving Objects in Real-Time For surveillance applications or for human-computer interaction, the automated real-time tracking of moving objects in images from a stationary

More information

Copyright 2005 Center for Imaging Science Rochester Institute of Technology Rochester, NY

Copyright 2005 Center for Imaging Science Rochester Institute of Technology Rochester, NY Development of Algorithm for Fusion of Hyperspectral and Multispectral Imagery with the Objective of Improving Spatial Resolution While Retaining Spectral Data Thesis Christopher J. Bayer Dr. Carl Salvaggio

More information

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Image Segmentation: Thresholding Fall 205 Dr. Michael J. Reale FUNDAMENTALS Introduction Before we talked about edge-based segmentation Now, we will discuss a form of regionbased

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Estimation of Reflection Properties of Silk Textile with Multi-band Camera

Estimation of Reflection Properties of Silk Textile with Multi-band Camera Estimation of Reflection Properties of Silk Textile with Multi-band Camera Kosuke MOCHIZUKI*, Norihiro TANAKA**, Hideaki MORIKAWA* *Graduate School of Shinshu University, 12st116a@shinshu-u.ac.jp ** Faculty

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Color Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Why does a visual system need color? http://www.hobbylinc.com/gr/pll/pll5019.jpg Why does a visual system need color? (an

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Statistical image models

Statistical image models Chapter 4 Statistical image models 4. Introduction 4.. Visual worlds Figure 4. shows images that belong to different visual worlds. The first world (fig. 4..a) is the world of white noise. It is the world

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON. Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij

COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON. Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij Intelligent Systems Lab Amsterdam, University of Amsterdam ABSTRACT Performance

More information

Linear Approximation of Sensitivity Curve Calibration

Linear Approximation of Sensitivity Curve Calibration Linear Approximation of Sensitivity Curve Calibration Dietrich Paulus 1 Joachim Hornegger 2 László Csink 3 Universität Koblenz-Landau Computational Visualistics Universitätsstr. 1 567 Koblenz paulus@uni-koblenz.de

More information

dependent intensity function - the spectral distribution function (SPD) E( ). The surface reflectance is the proportion of incident light which is ref

dependent intensity function - the spectral distribution function (SPD) E( ). The surface reflectance is the proportion of incident light which is ref Object-Based Illumination Classification H. Z. Hel-Or B. A. Wandell Dept. of Computer Science Haifa University Haifa 395, Israel Dept. Of Psychology Stanford University Stanford, CA 9435, USA Abstract

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera Stereo

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Color by Correlation: A Simple, Unifying Framework for Color Constancy

Color by Correlation: A Simple, Unifying Framework for Color Constancy IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 11, NOVEMBER 2001 1209 Color by Correlation: A Simple, Unifying Framework for Color Constancy Graham D. Finlayson, Steven D.

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Turn on the Lights: Reflectance

Turn on the Lights: Reflectance Turn on the Lights: Reflectance Part 2: Shading Tuesday, October 15 2012 Lecture #14 Goal of Shading Model simple light sources Point light sources Extended light sources Ambient lighting Model lighting

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution

Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution Maya R. Gupta Eric Garcia Raman Arora Regression 2 Regression Regression Linear Regression: fast,

More information

Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs

Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs Chapter 4. The Classification of Species and Colors of Finished Wooden Parts Using RBFNs 4.1 Introduction In Chapter 1, an introduction was given to the species and color classification problem of kitchen

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #3 due this Friday, October 19

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template The Lecture Contains: Diffuse and Specular Reflection file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2028/28_1.htm[12/30/2015 4:22:29 PM] Diffuse and

More information

Classifying Body and Surface Reflections using Expectation-Maximization

Classifying Body and Surface Reflections using Expectation-Maximization IS&T's 23 PICS Conference Classifying Body and Surface Reflections using Expectation-Maximization Hans J. Andersen and Moritz Störring Computer Vision and Media Technology Laboratory Institute of Health

More information

Characterizing and Controlling the. Spectral Output of an HDR Display

Characterizing and Controlling the. Spectral Output of an HDR Display Characterizing and Controlling the Spectral Output of an HDR Display Ana Radonjić, Christopher G. Broussard, and David H. Brainard Department of Psychology, University of Pennsylvania, Philadelphia, PA

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

EFFICIENT REPRESENTATION OF LIGHTING PATTERNS FOR IMAGE-BASED RELIGHTING

EFFICIENT REPRESENTATION OF LIGHTING PATTERNS FOR IMAGE-BASED RELIGHTING EFFICIENT REPRESENTATION OF LIGHTING PATTERNS FOR IMAGE-BASED RELIGHTING Hyunjung Shim Tsuhan Chen {hjs,tsuhan}@andrew.cmu.edu Department of Electrical and Computer Engineering Carnegie Mellon University

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

Specular Reflection Separation using Dark Channel Prior

Specular Reflection Separation using Dark Channel Prior 2013 IEEE Conference on Computer Vision and Pattern Recognition Specular Reflection Separation using Dark Channel Prior Hyeongwoo Kim KAIST hyeongwoo.kim@kaist.ac.kr Hailin Jin Adobe Research hljin@adobe.com

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

Beyond Mere Pixels: How Can Computers Interpret and Compare Digital Images? Nicholas R. Howe Cornell University

Beyond Mere Pixels: How Can Computers Interpret and Compare Digital Images? Nicholas R. Howe Cornell University Beyond Mere Pixels: How Can Computers Interpret and Compare Digital Images? Nicholas R. Howe Cornell University Why Image Retrieval? World Wide Web: Millions of hosts Billions of images Growth of video

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

SPECTRAL MISMATCH CORRECTION FACTOR ESTIMATION FOR WHITE LED SPECTRA BASED ON THE PHOTOMETER'S f 1 VALUE.

SPECTRAL MISMATCH CORRECTION FACTOR ESTIMATION FOR WHITE LED SPECTRA BASED ON THE PHOTOMETER'S f 1 VALUE. SPECTRAL MISMATCH CORRECTION FACTOR ESTIMATION FOR WHITE LED SPECTRA BASED ON THE PHOTOMETER'S f VALUE Krüger, Udo and Blattner, Peter 2 TechnoTeam Bildverarbeitung GmbH, Ilmenau, Germany, 2 METAS, Bern,

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Automated Control of The Color Rendering Index for LED RGBW Modules in Industrial Lighting

Automated Control of The Color Rendering Index for LED RGBW Modules in Industrial Lighting Automated Control of The Color Rendering Index for LED RGBW Modules in Industrial Lighting Julia L. Suvorova usuvorova2106@gmail.com Sergey Yu. Arapov arapov66@yandex.ru Svetlana P. Arapova arapova66@yandex.ru

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Your Name: Your student id: Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Problem 1 [5+?]: Hypothesis Classes Problem 2 [8]: Losses and Risks Problem 3 [11]: Model Generation

More information

CS231A Section 6: Problem Set 3

CS231A Section 6: Problem Set 3 CS231A Section 6: Problem Set 3 Kevin Wong Review 6 -! 1 11/09/2012 Announcements PS3 Due 2:15pm Tuesday, Nov 13 Extra Office Hours: Friday 6 8pm Huang Common Area, Basement Level. Review 6 -! 2 Topics

More information

SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY

SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY Angela M. Kim and Richard C. Olsen Remote Sensing Center Naval Postgraduate School 1 University Circle Monterey, CA

More information

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 19 Mar 26 th, 2019 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER 2012 411 Consistent Stereo-Assisted Absolute Phase Unwrapping Methods for Structured Light Systems Ricardo R. Garcia, Student

More information

Reading. 4. Color. Outline. The radiant energy spectrum. Suggested: w Watt (2 nd ed.), Chapter 14. Further reading:

Reading. 4. Color. Outline. The radiant energy spectrum. Suggested: w Watt (2 nd ed.), Chapter 14. Further reading: Reading Suggested: Watt (2 nd ed.), Chapter 14. Further reading: 4. Color Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, 1995. Gerald S. Wasserman. Color Vision: An

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

Introduction to Radiosity

Introduction to Radiosity Introduction to Radiosity Produce photorealistic pictures using global illumination Mathematical basis from the theory of heat transfer Enables color bleeding Provides view independent representation Unfortunately,

More information

Light, Color, and Surface Reflectance. Shida Beigpour

Light, Color, and Surface Reflectance. Shida Beigpour Light, Color, and Surface Reflectance Shida Beigpour Overview Introduction Multi-illuminant Intrinsic Image Estimation Multi-illuminant Scene Datasets Multi-illuminant Color Constancy Conclusions 2 Introduction

More information

Super-Resolution from Image Sequences A Review

Super-Resolution from Image Sequences A Review Super-Resolution from Image Sequences A Review Sean Borman, Robert L. Stevenson Department of Electrical Engineering University of Notre Dame 1 Introduction Seminal work by Tsai and Huang 1984 More information

More information

Temporally-Consistent Phase Unwrapping for a Stereo-Assisted Structured Light System

Temporally-Consistent Phase Unwrapping for a Stereo-Assisted Structured Light System Temporally-Consistent Phase Unwrapping for a Stereo-Assisted Structured Light System Ricardo R. Garcia and Avideh Zakhor Department of Electrical Engineering and Computer Science University of California,

More information

Color Image Processing

Color Image Processing Color Image Processing Inel 5327 Prof. Vidya Manian Introduction Color fundamentals Color models Histogram processing Smoothing and sharpening Color image segmentation Edge detection Color fundamentals

More information

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Orlando HERNANDEZ and Richard KNOWLES Department Electrical and Computer Engineering, The College

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

Joint Feature Distributions for Image Correspondence. Joint Feature Distribution Matching. Motivation

Joint Feature Distributions for Image Correspondence. Joint Feature Distribution Matching. Motivation Joint Feature Distributions for Image Correspondence We need a correspondence model based on probability, not just geometry! Bill Triggs MOVI, CNRS-INRIA, Grenoble, France http://www.inrialpes.fr/movi/people/triggs

More information

Reconstructing visual experiences from brain activity evoked by natural movies

Reconstructing visual experiences from brain activity evoked by natural movies Reconstructing visual experiences from brain activity evoked by natural movies Shinji Nishimoto, An T. Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, and Jack L. Gallant, Current Biology, 2011 -Yi Gao,

More information

Subpixel accurate refinement of disparity maps using stereo correspondences

Subpixel accurate refinement of disparity maps using stereo correspondences Subpixel accurate refinement of disparity maps using stereo correspondences Matthias Demant Lehrstuhl für Mustererkennung, Universität Freiburg Outline 1 Introduction and Overview 2 Refining the Cost Volume

More information

Investigating von Kries-like Adaptation Using Local Linear Models

Investigating von Kries-like Adaptation Using Local Linear Models Investigating von Kries-like Adaptation Using Local Linear Models G. D. Finlayson, 1 S. D. Hordley, 1 * A. Alsam 2 1 School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

More information

Anti-aliasing. Images and Aliasing

Anti-aliasing. Images and Aliasing CS 130 Anti-aliasing Images and Aliasing Aliasing errors caused by rasterizing How to correct them, in general 2 1 Aliased Lines Stair stepping and jaggies 3 Remove the jaggies Anti-aliased Lines 4 2 Aliasing

More information

Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras

Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Outline The geometry of active stereo.

More information

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Johannes Hanika, Weta Digital 1 Motivation Weta Digital is a VFX house we care about matching plate a lot

More information

Spectral image reconstruction by a tunable LED illumination

Spectral image reconstruction by a tunable LED illumination Spectral image by a tunable LED illumination Meng-hieh Lin, hen-wei Tsai and hung-hao Tien Department of Photonics, National hiao Tung University, Hsinchu, Taiwan ABSTAT Spectral reflectance estimation

More information