PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION

Size: px
Start display at page:

Download "PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION"

Transcription

1 PHOTOMETRIC STEREO FOR NON-LAMBERTIAN SURFACES USING COLOR INFORMATION KARSTEN SCHLÜNS Fachgebiet Computer Vision, Institut für Technische Informatik Technische Universität Berlin, Franklinstr. 28/29, D-1587 Berlin and OLIVER WITTIG Fachgebiet Computer Graphics, Institut für Technische Informatik Technische Universität Berlin, Franklinstr. 28/29, D-1587 Berlin ABSTRACT One robust method to reconstruct shape is photometric stereo (PMS), which reconstructs surface orientation using the Lambertian reflection properties of the surface material. To increase the applicability to non-lambertian surfaces, we extend this method using a twostage process without introducing additional light sources or assuming a known micro facet distribution. In the first step, the glossy reflection is discarded, taking the dichromatic reflection model as a basis. The introduced spherical chromaticity space has been found as a good tool for deriving the matte vector. The method is applied to multi-colored objects. The simulations use spectral distributions of real data. In the second step, we apply a conventional PMS to the derived matte images. 1. Introduction The reconstruction of visible surface orientations is often useful to understand the threedimensional structure of a scene captured in one or more images with respect to the camera. Many methods exist to solve this task using different kinds of object and environment features. One of these features is the reflection characteristic of the surface material. A general formulation of the shape from shading problem was given by Horn 3. The solution using a general reflectance map needs to solve a system of differential equations. The advantage of this method is that from only one image the shape of an object with known reflectance can be recovered. The main drawback is that the mathematical tools used, constrain the object shape to be smooth. A method that is independent of the object geometry was developed by Woodham 14. The photometric stereo method (PMS) recovers shape by illuminating a scene with three distant point light sources and a constant camera position.

2 2. PMS Methods for Non-Lambertian Surfaces A PMS method for the reflectivity extreme of perfect specularity was developed by Ikeuchi 4. This PMS uses distributed light sources. The light comes from a Lambertian surface illuminated with linear lamps (fluorescent tubes). The reflectance maps are built with knowledge of the geometry of the lamps, the size of the Lambertian surface and the assumption of a perfect specular object. Coleman and Jain 1 extended Woodham's PMS by introducing a fourth light source. A theory of photometric stereo for analyzing a larger class of non-lambertian objects under point illumination was developed by Tagare and defigueiredo 13. They show the uniqueness and the completeness of PMS using their m-lobed reflectance maps. The authors give some results for a synthetic sphere using the reflectance maps of the Torrance-Sparrow model. In 12 they used eight light sources to recover the shape of real objects. 3. The Two-Stage Process Until now, all reviewed methods neglected the spectral component of the scene radiance to handle non-lambertian reflection. The idea to detect glossy regions using a spectral signal is motivated by the observation, that highlights are mostly influenced by the illumination color. Furthermore, there exist methods to detect/eliminate highlights in color images, for example 2, 5, 8. One way is to detect highlights and to perform PMS in the rest of the image. This is interesting only in images with small highlighted parts. Our approach is to combine the classical PMS with such a method without omitting the highlighted regions The Dichromatic Reflection Model To apply spectral reflection features to the shape recognition task, we have to choose an adequate reflection model: An additive composition of diffuse and glossy reflection describes many materials in a good way. The glossy reflection is caused by the interaction between the environment and the surface of the object. This class of reflection is called interface or surface reflection. Another part of the light penetrates the interface and enters the material. If the pigments in the interior are distributed randomly, no preference light direction can be perceived. This type of reflection is called body reflection. Both types of reflection depend on the spectral and the geometrical properties of the object. The spectral dependence is described by the wavelength λ. The geometrical dependence can be described by the surface normal N, the light direction S and the direction V to the viewpoint. L(λ, N, S, V) = L b (λ, N, S, V) + L s (λ, N, S, V)

3 This model holds for the description of inhomogeneous, dielectric, opaque surfaces. Assuming an independence of the spectral and geometrical properties the following simplifying separation may be used 11 : L α (λ, N, S, V) = c α (λ) m α (N, S, V), with m α (N, S, V) and α = b, s c α is the spectral power distribution of the reflected light, which is the product of the spectral power distribution of the light and the spectral reflectance of the surface. m α is a geometrical scaling factor. m b is modeled by the Lambertian cosine law. Several possible models for m s are known, for example: the Phong model, the Pentland model or the Torrance-Sparrow model, cp. 9. Assuming three sensors being sensitive in the spectral channels which are characterized by the color names red, green and blue, the sensor response in vector notation is: s x,r s x,g = s x,b c x,sr c x,sg c x,br m x,s (N, S, V) + c x,bg m x,b (N, S, V) resp., c x,sb c x,bb s x = c x,s m x,s (N, S, V) + c x,b m x,b (N, S, V). This equation defines the dichromatic plane (DCP) in a coordinate system spanned by the primary colors (sensor space), see Figure 1. B c x,s c x,b G R Fig. 1. A dichromatic plane defined in terms of c x,s and c x,b. Pixels belonging to pure body reflection lie on a straight line defined by c x,b (matte axis). The position on this line depends on the photometric properties of the scene location corresponding to the pixels. The structure of the cluster lying in the DCP is discussed in detail by Novak and Shafer 9.

4 3.2. Highlight Removal Using the Karhunen-Loève-Transform It is possible to generate decomposed (intrinsic) images containing the separated body and interface reflection components using the dichromatic reflection model 5. The aim of this work was to achieve a geometry independent segmentation. Our aim is to use the body reflection image in cooperation with a classical PMS, as applied to our PMS extension to non-static scenes 1. To yield the intrinsic images for a scene with only one surface material, the following procedure 5 is possible: DCP-normal estimation by means of the Karhunen-Loève transform (KLT), fitting a convex hull to the rotated (two-dimensional) data using a recursive line splitting method, rough classification of the pixels into specular and matte ones, for each class recalculation of the KLT, estimation of the vectors c s and c b by means of the eigenvector with the greatest eigenvalue Highlight Removal Using a Direct Approach Our implementation of this algorithm yields quite good results. The KLT is an elegant utility to produce uncorrelated features in unknown feature clusters. The following disadvantages concerning PMS have motivated us to find a more direct way to build a matte image: The above algorithm needs complex computations and is not suitable for multi material extensions. Because we know that the cluster is approximately a plane passing through the origin of the coordinate system, the KLT is not specific enough to produce high quality results. As a result, we have introduced a two-dimensional parameter space, which will be used to find the base vectors spanning the DCP The spherical chromaticity space It is sufficient that the space is independent of the intensity. Such color components are in general called chromaticities. We suggest using the slant/tilt angles of the spherical coordinates to represent the chromaticities. Therefore, we will call this the Spherical Chromaticity Space (sc-space). This representation reduces the dimension of the search space from three, in the case of a RGB histogram, to two dimensions, in the case of the sc-space, dropping the intensity component. The transformation from RGB to the sc-space is calculated, as follows: C = ( R G B ) T is a color vector in RGB-space. This vector is transformed to sc-space: t C = t(c) =( ϑ(c) ϕ(c) ) T, with

5 ϑ(c) = tan -1 R 2 +G 2 and ϕ(c) = tan -1 G R. B The vectors in the RGB-space c s and c b are represented in the sc-space as vectors t(c s ) and t(c b ), respectively Properties Consider any color vector C of the RGB-space. C is a member of the following set M: M = { v v = ν c s + µ c b, ν, µ }. If the vectors t(c s ) and t(c b ) are understood as being diagonal corners then they define a rectangle in sc-space. All vectors t(c) fall in this rectangle. Consider f(µ) = c s + µ c b. Then, the curve t(f(µ)) is a monotonic function. Consider g(ν) = c b + ν c s. Then, the curve t(g(ν)) is a monotonic function, too Finding the body reflection vector These properties tell us, that t(c b ) is one of the end points of the curve segment in scspace. Fitting a bounding box by minmax testing, limits the number of possible points to two. If c s is known, then c b can be found directly. In the case of unknown c s the number of vectors, which are mapped to the end points of the curve segment, are sufficient to distinguish between both base vectors. The reason of this is, that the number of colors are very rare in maximal highlight regions Finding the specular vector The structure of color clusters on the DCP highly depends on the shape of the highlight parts. In contrast to the matte part of the color signal the specular part cannot in general be modeled by a single rule. Among other things the shape of the specularity depends on: 1. the material of the object (above all on its roughness), 2. the geometry of the object, 3. the angle between S and V. Due to the variant shapes of the highlight structures it is not easy to model the specularity of the material. The consequence of this is, that there are many different methods known for modeling the glossy reflection. It is the material that complicates the calculation of the highlight vector: the rougher the surface the larger the area of the highlight on the DCP. For the purpose of image segmentation a rough estimation of the highlight vector may yield fair results. The method described in section 3.2 yields errors in the angle between an averaged interface reflection vector and an independent measure up to ten degrees or more 6. Compared with image segmentation methods, making use of photometric properties need better matte images. Since PMS methods use known lighting conditions, the assumption of a

6 known illumination vector is not very restrictive. The illumination color can be found in a robust manner when the sc-space representation of a white matte sphere is used Multi-colored objects Using the sc-space as an extension to multi-colored objects is easy: Figure 2(a) shows the color histogram of an object having two specular and one diffuse materials with different colors. The line segments connected with the origin represent the body reflection vector c b. Both highlight clusters have the same direction c s, since all object parts are illuminated from a single light source. For this object, Figure 3(a) shows the sc-space representation together with a relative frequency distribution. Each cluster represents one body color and the specular component. The maximal peaks lying at the end of the clusters indicate the direction of c b. The point where the curve segments would intersect, indicates the direction of c s. Note that the clusters are not necessary linear. If a cartesian representation is used, an estimation of c s can be found by means of line intersections Results For generating 3-colored spheres the neutral interface reflection model 7 in conjunction with the Blinn model, was utilized. The sphere has the same colors as the Macbeth ColorChecker samples Red, Orange and Green. The red and green surface patches are specular, each of different roughness, while the orange patch is matte. The sphere is illuminated with three collimated bright violet point light sources. The color histogram of sphere 1 is shown in Figure 2(a). A 3D-luminance plot of sphere 1 is illustrated in Figure 2(b). The result of highlight elimination for sphere 1 using the direct approach is shown in Figure 3(b). The matte images of sphere 1, 2 and 3 are used as input to PMS. The needle map is shown in Figure 4. It doesn't appear as a complete sphere, since there are object areas that cannot be illuminated with all light sources together. The highest angular difference of an orientation compared with the model is about Blue Re d Green Fig. 2. (a) color histogram sphere 1, (b) 3D-luminance plot of sphere 1. (a) (b)

7 4. Conclusions After reviewing existing methods to apply PMS to non-lambertian surfaces we have suggested a two-stage process to eliminate the highlight effects. The first stage was a refined highlight separation process yielding good results for synthetic objects. In the second stage an ordinary PMS method for Lambertian surfaces was used. An advantage of this approach is that there is no need of a new PMS implementation. Additionally, no new light sources that reduce the recoverable image area have to be introduced. There are no assumptions on the roughness of the material and the approach can be extended to recover multi-colored surfaces in an easy manner. Since the measured values for each color channel are available, an error minimization is possible without using more light sources. The results for the spheres and these possibilities of error reduction are encouraging enough to continue work in this direction (a) Fig. 3. (a) histogram of the spherical chromaticity space of sphere 1, (b) 3D-luminance plot of the body reflection component of sphere 1. (b) Fig. 4. needle map as a result of the two-stage PMS process.

8 5. References 1. E.N. Coleman, R. Jain: Obtaining 3-Dimensional Shape of Textured and Specular Surfaces Using Four-Source Photometry. CGIP 18, (1982). 2. R. Gershon, A. D. Jepson, J. K. Tsotsos: Highlight Identification Using Chromatic Information. Proc. 1st ICCV, London, England, (1987). 3. B.K.P. Horn: Understanding Image Intensities. Artificial Intelligence, 8(2), (1977). 4. K. Ikeuchi: Determining Surface Orientation of Specular Surfaces by Using the Photometric Stereo Method. IEEE Trans. on PAMI, 3(6), (1981). 5. G.J. Klinker: A Physical Approach to Color Image Understanding. Ph.D. Thesis, Technical Report CMU-CS , Carnegie Mellon University, Computer Science Department (1988). 6. G.J. Klinker, S.A. Shafer, T. Kanade: A Physical Approach to Color Image Understanding. IJCV, 4, 7-38 (199). 7. H.-C. Lee: Illuminant Color from Shading. SPIE Vol. 125 Perceiving, Measuring and Using Color, (199). 8. S.W. Lee, R. Bajcsy: Detection of Specularity Using Color and Multiple Views. Proc. ECCV '92, Santa Margherita Ligure, Italy, (1992). 9. C.L. Novak, S.A. Shafer: Anatomy of a Histogram. Technical Report CMU-CS-91-23, Carnegie Mellon University, Computer Science Department (1991). 1. K. Schlüns: Eine Erweiterung des Photometrischen Stereo zur Analyse nichtstatischer Szenen. Proc. 14. DAGM-Symposium Mustererkennung 1992, Dresden, Germany, (1992). 11. S.A. Shafer: Using Color to Separate Reflection Components. COLOR research applications, 1(4), (1985). 12. H. D. Tagare, R. J. P. defigueiredo: Simultaneous Estimation of Shape and Reflectance Maps from Photometric Stereo. ICCV '9, Osaka, Japan, (199). 13. H. D. Tagare, R. J. P. defigueiredo: A Theory of Photometric Stereo for a Class of Diffuse Non-Lambertian Surfaces. IEEE Trans. on PAMI 13(2), (1991). 14. R. J. Woodham: Photometric Stereo: A Reflectance Map Technique for Determining Surface Orientation from Image Intensity. SPIE Vol. 155 Image Understanding Systems & Industrial Applications, (1978).

Physics-based Vision: an Introduction

Physics-based Vision: an Introduction Physics-based Vision: an Introduction Robby Tan ANU/NICTA (Vision Science, Technology and Applications) PhD from The University of Tokyo, 2004 1 What is Physics-based? An approach that is principally concerned

More information

Estimation of Reflection Properties of Silk Textile with Multi-band Camera

Estimation of Reflection Properties of Silk Textile with Multi-band Camera Estimation of Reflection Properties of Silk Textile with Multi-band Camera Kosuke MOCHIZUKI*, Norihiro TANAKA**, Hideaki MORIKAWA* *Graduate School of Shinshu University, 12st116a@shinshu-u.ac.jp ** Faculty

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Specular Reflection Separation using Dark Channel Prior

Specular Reflection Separation using Dark Channel Prior 2013 IEEE Conference on Computer Vision and Pattern Recognition Specular Reflection Separation using Dark Channel Prior Hyeongwoo Kim KAIST hyeongwoo.kim@kaist.ac.kr Hailin Jin Adobe Research hljin@adobe.com

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Beyond Lambert: Reconstructing Specular Surfaces Using Color

Beyond Lambert: Reconstructing Specular Surfaces Using Color To appear in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR) 2005 Beyond Lambert: Reconstructing Specular Surfaces Using Color Satya P. Mallick Todd E. Zickler David J. Kriegman Peter N.

More information

Estimating Scene Properties from Color Histograms

Estimating Scene Properties from Color Histograms Estimating Scene Properties from Color Histograms Carol L. Novak Steven A. Shafer November 1992 CMU-CS-92-212 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 This research was

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

USING A COLOR REFLECTION MODEL TO SEPARATE HIGHLIGHTS FROM OBJECT COLOR. Gudrun J. Klinker, Steven A. Shafer, and Takeo Kanade

USING A COLOR REFLECTION MODEL TO SEPARATE HIGHLIGHTS FROM OBJECT COLOR. Gudrun J. Klinker, Steven A. Shafer, and Takeo Kanade USING A COLOR REFLECTION MODEL TO SEPARATE HIGHLIGHTS FROM OBJECT COLOR Gudrun J. Klinker, Steven A. Shafer, and Takeo Kanade Department of Computer Science, Carnegie-Mellon, Schenley Park, Pittsburgh,

More information

Lecture 24: More on Reflectance CAP 5415

Lecture 24: More on Reflectance CAP 5415 Lecture 24: More on Reflectance CAP 5415 Recovering Shape We ve talked about photometric stereo, where we assumed that a surface was diffuse Could calculate surface normals and albedo What if the surface

More information

Object Shape and Reflectance Modeling from Color Image Sequence

Object Shape and Reflectance Modeling from Color Image Sequence Object Shape and Reflectance Modeling from Color Image Sequence Yoichi Sato CMU-RI-TR-97-06 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Robotics

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

More information

Color constancy through inverse-intensity chromaticity space

Color constancy through inverse-intensity chromaticity space Tan et al. Vol. 21, No. 3/March 2004/J. Opt. Soc. Am. A 321 Color constancy through inverse-intensity chromaticity space Robby T. Tan Department of Computer Science, The University of Tokyo, 4-6-1 Komaba,

More information

Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

More information

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

More information

Skeleton Cube for Lighting Environment Estimation

Skeleton Cube for Lighting Environment Estimation (MIRU2004) 2004 7 606 8501 E-mail: {takesi-t,maki,tm}@vision.kuee.kyoto-u.ac.jp 1) 2) Skeleton Cube for Lighting Environment Estimation Takeshi TAKAI, Atsuto MAKI, and Takashi MATSUYAMA Graduate School

More information

Evaluation of Surface Reconstruction Methods

Evaluation of Surface Reconstruction Methods Evaluation of Surface Reconstruction Methods Reinhard Klette, Andreas Koschan, Karsten Schlüns and Volker Rodehorst Computer Vision Group, FR 3-11 Computer Science Department, Berlin Technical University,

More information

Ligh%ng and Reflectance

Ligh%ng and Reflectance Ligh%ng and Reflectance 2 3 4 Ligh%ng Ligh%ng can have a big effect on how an object looks. Modeling the effect of ligh%ng can be used for: Recogni%on par%cularly face recogni%on Shape reconstruc%on Mo%on

More information

w Foley, Section16.1 Reading

w Foley, Section16.1 Reading Shading w Foley, Section16.1 Reading Introduction So far, we ve talked exclusively about geometry. w What is the shape of an object? w How do I place it in a virtual 3D space? w How do I know which pixels

More information

Passive 3D Photography

Passive 3D Photography SIGGRAPH 99 Course on 3D Photography Passive 3D Photography Steve Seitz Carnegie Mellon University http:// ://www.cs.cmu.edu/~seitz Talk Outline. Visual Cues 2. Classical Vision Algorithms 3. State of

More information

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface. Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident

More information

Determination of 3-D Image Viewpoint Using Modified Nearest Feature Line Method in Its Eigenspace Domain

Determination of 3-D Image Viewpoint Using Modified Nearest Feature Line Method in Its Eigenspace Domain Determination of 3-D Image Viewpoint Using Modified Nearest Feature Line Method in Its Eigenspace Domain LINA +, BENYAMIN KUSUMOPUTRO ++ + Faculty of Information Technology Tarumanagara University Jl.

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Constructing a 3D Object Model from Multiple Visual Features

Constructing a 3D Object Model from Multiple Visual Features Constructing a 3D Object Model from Multiple Visual Features Jiang Yu Zheng Faculty of Computer Science and Systems Engineering Kyushu Institute of Technology Iizuka, Fukuoka 820, Japan Abstract This work

More information

Color Constancy from Hyper-Spectral Data

Color Constancy from Hyper-Spectral Data Color Constancy from Hyper-Spectral Data Th. Gevers, H. M. G. Stokman, J. van de Weijer Faculty of Science, University of Amsterdam, The Netherlands fgevers, stokman, joostwg@wins.uva.nl Abstract This

More information

Inverting the Reflectance Map with Binary Search

Inverting the Reflectance Map with Binary Search Inverting the Reflectance Map with Binary Search François Faure To cite this version: François Faure. Inverting the Reflectance Map with Binary Search. Lecture Notes in Computer Science, Springer, 1995,

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Light & Perception Announcements Quiz on Tuesday Project 3 code due Monday, April 17, by 11:59pm artifact due Wednesday, April 19, by 11:59pm Can we determine shape

More information

Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes

Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes Hin-Shun Chung Jiaya Jia Department of Computer Science and Engineering The Chinese University of Hong Kong {hschung,leojia}@cse.cuhk.edu.hk

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading () Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

CSE 681 Illumination and Phong Shading

CSE 681 Illumination and Phong Shading CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our

More information

An Algorithm to Determine the Chromaticity Under Non-uniform Illuminant

An Algorithm to Determine the Chromaticity Under Non-uniform Illuminant An Algorithm to Determine the Chromaticity Under Non-uniform Illuminant Sivalogeswaran Ratnasingam and Steve Collins Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, United Kingdom

More information

Shading. Brian Curless CSE 557 Autumn 2017

Shading. Brian Curless CSE 557 Autumn 2017 Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington T V ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading)

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading) Lecture 9 Graphics pipeline (rasterization and shading) Graphics pipeline - part 1 (recap) Perspective projection by matrix multiplication: x pixel y pixel z canonical 1 x = M vpm per M cam y z 1 This

More information

DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION. Department of Artificial Intelligence Kyushu Institute of Technology

DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION. Department of Artificial Intelligence Kyushu Institute of Technology DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION Kouki Takechi Takahiro Okabe Department of Artificial Intelligence Kyushu Institute of Technology ABSTRACT Separating diffuse

More information

Light source estimation using feature points from specular highlights and cast shadows

Light source estimation using feature points from specular highlights and cast shadows Vol. 11(13), pp. 168-177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 1992-1950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein Lecture 23: Photometric Stereo Announcements PA3 Artifact due tonight PA3 Demos Thursday Signups close at 4:30 today No lecture on Friday Last Time:

More information

Investigation of Directional Filter on Kube-Pentland s 3D Surface Reflectance Model using Photometric Stereo

Investigation of Directional Filter on Kube-Pentland s 3D Surface Reflectance Model using Photometric Stereo Investigation of Directional Filter on Kube-Pentland s 3D Surface Reflectance Model using Photometric Stereo Jiahua Wu Silsoe Research Institute Wrest Park, Silsoe Beds, MK45 4HS United Kingdom jerry.wu@bbsrc.ac.uk

More information

And if that 120MP Camera was cool

And if that 120MP Camera was cool Reflectance, Lights and on to photometric stereo CSE 252A Lecture 7 And if that 120MP Camera was cool Large Synoptic Survey Telescope 3.2Gigapixel camera 189 CCD s, each with 16 megapixels Pixels are 10µm

More information

A Physical Approach to Color Image Understanding

A Physical Approach to Color Image Understanding International Journal of Computer Vision. 4, 7-38 (1990) 0 1990 Kluwer Academic Publishers. Manufactured in The Netherlands. A Physical Approach to Color Image Understanding GUDRUN J. KLINKER Cambridge

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

General Principles of 3D Image Analysis

General Principles of 3D Image Analysis General Principles of 3D Image Analysis high-level interpretations objects scene elements Extraction of 3D information from an image (sequence) is important for - vision in general (= scene reconstruction)

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Illumination & Shading: Part 1

Illumination & Shading: Part 1 Illumination & Shading: Part 1 Light Sources Empirical Illumination Shading Local vs Global Illumination Lecture 10 Comp 236 Spring 2005 Computer Graphics Jargon: Illumination Models Illumination - the

More information

CS770/870 Spring 2017 Color and Shading

CS770/870 Spring 2017 Color and Shading Preview CS770/870 Spring 2017 Color and Shading Related material Cunningham: Ch 5 Hill and Kelley: Ch. 8 Angel 5e: 6.1-6.8 Angel 6e: 5.1-5.5 Making the scene more realistic Color models representing the

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Reconstruction of Discrete Surfaces from Shading Images by Propagation of Geometric Features

Reconstruction of Discrete Surfaces from Shading Images by Propagation of Geometric Features Reconstruction of Discrete Surfaces from Shading Images by Propagation of Geometric Features Achille Braquelaire and Bertrand Kerautret LaBRI, Laboratoire Bordelais de Recherche en Informatique UMR 58,

More information

Recovering light directions and camera poses from a single sphere.

Recovering light directions and camera poses from a single sphere. Title Recovering light directions and camera poses from a single sphere Author(s) Wong, KYK; Schnieders, D; Li, S Citation The 10th European Conference on Computer Vision (ECCV 2008), Marseille, France,

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #6: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Thursday in class: midterm #1 Closed book Material

More information

OBJECT RECOGNITION: OBTAINING 2-D RECONSTRUCTIONS FROM COLOR EDGES. G. Bellaire**, K. Talmi*, E. Oezguer *, and A. Koschan*

OBJECT RECOGNITION: OBTAINING 2-D RECONSTRUCTIONS FROM COLOR EDGES. G. Bellaire**, K. Talmi*, E. Oezguer *, and A. Koschan* Proc. IEEE Symposium on Image Analysis and Interpretation, April 5-7, 1998, Tucson, Arizona, USA, pp. 192-197. OBJECT RECOGNITION: OBTAINING 2-D RECONSTRUCTIONS FROM COLOR EDGES G. Bellaire**, K. Talmi*,

More information

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Note 1: Both the analytical problems and the programming assignments are due at the beginning of class on Nov 15,

More information

Shading. Reading. Pinhole camera. Basic 3D graphics. Brian Curless CSE 557 Fall Required: Shirley, Chapter 10

Shading. Reading. Pinhole camera. Basic 3D graphics. Brian Curless CSE 557 Fall Required: Shirley, Chapter 10 Reading Required: Shirley, Chapter 10 Shading Brian Curless CSE 557 Fall 2014 1 2 Basic 3D graphics With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 20: Shape from Shading Winter Semester 2015/16 Slides: Prof. Bernd Neumann Slightly

More information

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface Photometric stereo Illumination Cones and Uncalibrated Photometric Stereo Single viewpoint, multiple images under different lighting. 1. Arbitrary known BRDF, known lighting 2. Lambertian BRDF, known lighting

More information

Classifying Body and Surface Reflections using Expectation-Maximization

Classifying Body and Surface Reflections using Expectation-Maximization IS&T's 23 PICS Conference Classifying Body and Surface Reflections using Expectation-Maximization Hans J. Andersen and Moritz Störring Computer Vision and Media Technology Laboratory Institute of Health

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 8: Lighting and Shading Tamar Shinar Computer Science & Engineering UC Riverside Why we need shading Suppose we build a model of a sphere using many polygons and color

More information

3D Object Model Acquisition from Silhouettes

3D Object Model Acquisition from Silhouettes 4th International Symposium on Computing and Multimedia Studies 1 3D Object Model Acquisition from Silhouettes Masaaki Iiyama Koh Kakusho Michihiko Minoh Academic Center for Computing and Media Studies

More information

CHAPTER 3. From Surface to Image

CHAPTER 3. From Surface to Image CHAPTER 3 From Surface to Image 3.1. Introduction Given a light source, a surface, and an observer, a reflectance model describes the intensity and spectral composition of the reflected light reaching

More information

1.6 Rough Surface Scattering Applications Computer Graphic Shading and Rendering

1.6 Rough Surface Scattering Applications Computer Graphic Shading and Rendering 20 Durgin ECE 3065 Notes Rough Surface Scattering Chapter 1 1.6 Rough Surface Scattering Applications 1.6.1 Computer Graphic Shading and Rendering At optical frequencies, nearly every object in our everyday

More information

then assume that we are given the image of one of these textures captured by a camera at a different (longer) distance and with unknown direction of i

then assume that we are given the image of one of these textures captured by a camera at a different (longer) distance and with unknown direction of i Image Texture Prediction using Colour Photometric Stereo Xavier Lladó 1, Joan Mart 1, and Maria Petrou 2 1 Institute of Informatics and Applications, University of Girona, 1771, Girona, Spain fllado,joanmg@eia.udg.es

More information

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template The Lecture Contains: Diffuse and Specular Reflection file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2028/28_1.htm[12/30/2015 4:22:29 PM] Diffuse and

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Comment on Numerical shape from shading and occluding boundaries

Comment on Numerical shape from shading and occluding boundaries Artificial Intelligence 59 (1993) 89-94 Elsevier 89 ARTINT 1001 Comment on Numerical shape from shading and occluding boundaries K. Ikeuchi School of Compurer Science. Carnegie Mellon dniversity. Pirrsburgh.

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

On the distribution of colors in natural images

On the distribution of colors in natural images On the distribution of colors in natural images A. Buades, J.L Lisani and J.M. Morel 1 Introduction When analyzing the RGB distribution of colors in natural images we notice that they are organized into

More information

Light, Color, and Surface Reflectance. Shida Beigpour

Light, Color, and Surface Reflectance. Shida Beigpour Light, Color, and Surface Reflectance Shida Beigpour Overview Introduction Multi-illuminant Intrinsic Image Estimation Multi-illuminant Scene Datasets Multi-illuminant Color Constancy Conclusions 2 Introduction

More information

Analysis of photometric factors based on photometric linearization

Analysis of photometric factors based on photometric linearization 3326 J. Opt. Soc. Am. A/ Vol. 24, No. 10/ October 2007 Mukaigawa et al. Analysis of photometric factors based on photometric linearization Yasuhiro Mukaigawa, 1, * Yasunori Ishii, 2 and Takeshi Shakunaga

More information

Real-Time Specular Highlight Removal Using the GPU

Real-Time Specular Highlight Removal Using the GPU Real-Time Specular Highlight Removal Using the GPU Costin A. Boiangiu, Razvan M. Oita, and Mihai Zaharescu Abstract This paper focuses on a computationally-intense image preprocessing technique, specular

More information

DIRECT SHAPE FROM ISOPHOTES

DIRECT SHAPE FROM ISOPHOTES DIRECT SHAPE FROM ISOPHOTES V.Dragnea, E.Angelopoulou Computer Science Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA - (vdragnea, elli)@ cs.stevens.edu KEY WORDS: Isophotes, Reflectance

More information

Image segmentation through reasoning about optics

Image segmentation through reasoning about optics Image segmentation through reasoning about optics Bruce A. Maxwell University of North Dakota Grand Forks, ND Steven A. Shafer Microsoft Redmond, WA Abstract We have developed a general segmentation framework

More information

Lecture 4: Reflection Models

Lecture 4: Reflection Models Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models

More information

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source walters@buffalo.edu CSE 480/580 Lecture 18 Slide 1 Illumination and Shading Light reflected from nonluminous objects depends on: surface: reflectance transparency, opacity, translucency orientation illumination:

More information

CHAPTER 9. Classification Scheme Using Modified Photometric. Stereo and 2D Spectra Comparison

CHAPTER 9. Classification Scheme Using Modified Photometric. Stereo and 2D Spectra Comparison CHAPTER 9 Classification Scheme Using Modified Photometric Stereo and 2D Spectra Comparison 9.1. Introduction In Chapter 8, even we combine more feature spaces and more feature generators, we note that

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

Reading. Shading. An abundance of photons. Introduction. Required: Angel , 6.5, Optional: Angel 6.4 OpenGL red book, chapter 5.

Reading. Shading. An abundance of photons. Introduction. Required: Angel , 6.5, Optional: Angel 6.4 OpenGL red book, chapter 5. Reading Required: Angel 6.1-6.3, 6.5, 6.7-6.8 Optional: Shading Angel 6.4 OpenGL red book, chapter 5. 1 2 Introduction An abundance of photons So far, we ve talked exclusively about geometry. Properly

More information

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision Color n Used heavily in human vision n Color is a pixel property, making some recognition problems easy n Visible spectrum for humans is 400nm (blue) to 700 nm (red) n Machines can see much more; ex. X-rays,

More information

Starting this chapter

Starting this chapter Computer Vision 5. Source, Shadow, Shading Department of Computer Engineering Jin-Ho Choi 05, April, 2012. 1/40 Starting this chapter The basic radiometric properties of various light sources Develop models

More information

Specularities Reduce Ambiguity of Uncalibrated Photometric Stereo

Specularities Reduce Ambiguity of Uncalibrated Photometric Stereo CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Specularities Reduce Ambiguity of Uncalibrated Photometric Stereo Ondřej Drbohlav Radim Šára {drbohlav,sara}@cmp.felk.cvut.cz O. Drbohlav, and R.

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The central problem in computer graphics is creating, or rendering, realistic computergenerated images that are indistinguishable from real photographs, a goal referred to as photorealism.

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Multi-View 3D Reconstruction of Highly-Specular Objects

Multi-View 3D Reconstruction of Highly-Specular Objects Multi-View 3D Reconstruction of Highly-Specular Objects Master Thesis Author: Aljoša Ošep Mentor: Michael Weinmann Motivation Goal: faithful reconstruction of full 3D shape of an object Current techniques:

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Computer Vision Systems Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Viewing Systems Viewing Transformation Projective Transformation 2D Computer Graphics Devices

More information

Supplementary Material: Specular Highlight Removal in Facial Images

Supplementary Material: Specular Highlight Removal in Facial Images Supplementary Material: Specular Highlight Removal in Facial Images Chen Li 1 Stephen Lin 2 Kun Zhou 1 Katsushi Ikeuchi 2 1 State Key Lab of CAD&CG, Zhejiang University 2 Microsoft Research 1. Computation

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Ko Nishino, Zhengyou Zhang and Katsushi Ikeuchi Dept. of Info. Science, Grad.

More information

Method for estimating scene parameters from color histograms

Method for estimating scene parameters from color histograms 3020 Reprinted from Journal of the Optical Society of America A Method for estimating scene parameters from color histograms Carol L. Novak Siemens Corporate Research, 755 College Road East, Princeton,

More information

Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch

Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch 15-462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information