Enhanced Oil Recovery simulation Performances on New Hybrid Architectures

Size: px
Start display at page:

Download "Enhanced Oil Recovery simulation Performances on New Hybrid Architectures"

Transcription

1 Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources Enhanced Oil Recovery simulation Performances on New Hybrid Architectures A. Anciaux, J-M. Gratien, O. Ricois, T. Guignon, P. Theveny, M. Hacene Direction Technologies, Informatique et Mathématiques appliquées EOR Simulation Performances on New Hybrid Architectures 26/03/2014 GTC 2014

2 ArcEOR reservoir simulator New generation research reservoir simulator (RS) based on Arcane/ArcGeoSim platform: Parallel grid management Physics Numerical services: schemes, non linear solvers, linear solvers Focus on Enhanced Oil Recovery Processes: Thermal simulation with steam 2 Direction Technologie, Informatique et Mathématiques appliquées EOR Simulation Performances on New Hybrid Architectures 26/03/2014

3 Linear solver inside RS At each time step : non linear system to solve Newton For each Newton iteration : solve Ax = b (BiCGStab + precond.). Typical BO simulation: 80 % of time is spent in linear solver A: unstructured sparse matrix Non symetric Block CSR Format (3x3: Black Oil 3 phases) Adjacency graph close to reservoir grid connectivity. 3

4 GPU Linear solver inside RS Are we able to accelerate solver with GPU? What we need on GPU? sparse matrix vector product (SpMV) preconditioner Base vector linear algebra (CUBLAS) 4

5 SpMV on GPU CSR Block matrices: Non zero elements are small blocks (1x1,2x2,3x3,4x4..) SpMV exploits block structure to reduce indirection cost: 5

6 SpMV on GPU Also we use texture cache for x : 1. Bind texture with x 2. Compute y=a.x 3. Synchronize 4. Unbind texture Compare to Cusparse Ellpack (best perf. on our matrices) Cusparse provides a Block CSR format (BSR): Not as fast as point Cusparse Ellpack on our systems Slower than CSR with 3x3, close to Ellpack for 4x4 Directly use original structure (no csr2ell) 6

7 MFLOPS Single GPU SpMV performances SpMV on Nvidia K20c/K40c/K40cBoost (NOECC) compared to Intel Ghz IFPEN spmv v2 IFPEN spmv v2 K40 Boost cusparse ELLPACK K40 CPU 8 cores CPU IFPEN spmv v2 K40 cusparse ELLPACK cusparse ELLPACK K40 Boost CPU 4 cores X x x Canta (3x3), n=24048 MSUR_9 (4x4), n=86240 IvaskBO (3x3), n= matrices GCSN1 (3x3), n= GCS2K (3x3), n= spe10 (2x2), n=

8 Polynomial Neuman Polynomial: P(x) = Ix+Nx+N 2 x+n 3 x+...n d x with N= I - w.d -1.A Only requires SpMV and vector algebra As preconditioner: y = P(x) Highly parallel in every context (MPI, GPU, Pthread.) (very) low numerical efficiency High FLOP Cost: degree d means d SpMV to apply 8

9 ILU0 on GPU: graph coloring Natural order (ijk reservoir grid) LU solve exhibit low parallelism degree. Color matrix adjacency graph: for each node (equation) set a color different from is neighborhood Minimize the number of colors (maximize the number of node in each color) Permute matrix by ordering equations color by color A A 0 A 1 A 3 9

10 ILU0 on GPU: Permuted solve L i, U i : sparse blocks Solve L.x = y : 1. x 1 = D 1-1.y 1 SpMV 2. x 2 = D 2-1.y 2 L 2.x 1 3. Block tri. solve Solve U.x = y : 1. x 4 = D 4-1.y 4 2. x 3 = D -1 3.y 2 U 3.x

11 Color ILU0: performances and drawback 2 colors with majority of nodes: GCS2K example: Color Number of vertices system ILU0 CPU Solve (1 core) Color ILU0 GPU Solve (1GPU) spe e e GCS2K 2.75e e IvaskBO 6.30e e GPU/CPU acceleration K40c NOECC / E5-2680, average processor cycles / LU solve Coloring has negative impact on Krylov solver convergence. 11

12 AMGP and CPR-AMG Split linear system Ax = r : A = A 1,1 A 1,2 A 2,1 A 2,2, x = X 1 X 2, r = R 1 R 2 A 1,1 is the presure block, A 2,2 is the saturation block AMGP: only solve A 1,1 with AMG A 1,1 X 1 = R 1 12

13 AMGP and CPR-AMG CPR-AMG: solve A 1,1 with AMG and the whole system with a simple preconditioner (ILU0 or polynomial): Ax (1) = r with ILU0, x (1) = X (1) 1 (1) X 2 SpMV A 1,1 X 1 (2) = R1 A 1,1 X 1 1 A 1,2 X 2 1 with AMG final preconditioner solution is: We use AmgX from Nvidia X 1 (1) + X1 (2) X 2 (1) 13

14 Spe10 30 days simulation with GPU total solver time inside 30 days simulation (1e-4): Solver type Total num. of iterations total solver time (s) ILU0 CPU 1 core Block Jacobi ILU0 CPU, 8 cores MPI Block Jacobi ILU0 CPU, 16 cores MPI CPR-AMG CPU (IFPSolver) 1 core CPR-AMG CPU (IFPSolver), 8 cores MPI CPR-AMG CPU (IFPSolver), 16 cores MPI Color ILU0 GPU 1 core/1 gpu Poly GPU 1 core/1 gpu AMGP AmgX PMIS GPU, 1 core/1 gpu CPR-AMG AmgX PMIS, Poly GPU, 1 core /1 gpu K40c NOECC / E sockets 14

15 Black Oil Thermal simulation 200K cells, 30 days simulation (1e-7), easy case Solver type Total num. of iterations total solver time (s) Total setup time ILU0 CPU 1 core Block Jacobi ILU0 CPU, 8 cores MPI ,5 x Block Jacobi ILU0 CPU, 16 cores MPI ,5 x CPR-AMG CPU (IFPSolver) 1 core x Color ILU0 GPU 1 core/1 gpu ,1 Poly GPU 1 core/1 gpu AMGP AmgX PMIS GPU, 1 core/1 gpu CPR-AMG AmgX PMIS, Poly GPU, 1 core /1 gpu CPR-AMG AmgX PMIS, Color ILU0 GPU 1 core /1 gpu K40c NOECC / E sockets 15

16 GPU with MPI 2 primary objectives: How to make an hybrid GPU+MPI SpMV, does it works efficiently? How the full solver behaves (with polynomial)? Does it scale? Test system: Bullx Blade 2xE5-2470@2.3 Ghz + 2xK20m /node (ECC ON) 5 nodes: 80 cores + 10 gpus Infiniband backplane 16 Direction Technologie, Informatique et Mathématiques appliquées EOR Simulation Performances on New Hybrid Architectures 26/03/2014

17 GPU SpMV with MPI Split local SpMV for process p : y (p) = A (p) int. x (p) x (p) ext x (p) x (p) ext Get x (p) ext with halo/neigh. exchange y (p) ext = A (p) ext. x (p) ext p A (p) ext A (p) int A (p) ext y (p) y (p) ext y (p) = y (p) + y (p) ext Reorder local matrix to minimize y (p) ext and x (p) ext : External dependent equations at end. 17

18 GPU SpMV with MPI GPU + MPI SpMV WorkFlow: y (p) = A (p) int. x (p) y (p) = y (p) + y (p) ext GPU y (p) ext = A (p) ext. x (p) ext CPU x exchange Not real scale time 18

19 FLOPS GPU SpMV with MPI: good news 2,5E+11 2,0E+11 1,5E+11 1,0E+11 SpMV MPI+GPU FiveSpot _7 2x2 n= , K20m ECC + E5-2470@2.30GHz, 80 cores + 10 gpus MPI 1c1gpu/s CusparseEll MPI 1c1gpu/s IFPENV2 MPI 8c/s async com 9,24E+10 1,34E+11 1,78E+11 2,15E+11 x M. Cells (2x2) Close to x5 acc. 1c+1gpu/s against full socket use 5,0E+10 x5.5 4,70E+10 8,51E+09 1,68E+10 2,51E+10 3,41E+10 4,32E+10 1 node with 2 gpus equiv. to 5 nodes full socket use! 0,0E batch reserved cores 19

20 FLOPS GPU SpMV with MPI: bad news 1,6E+11 1,4E+11 1,2E+11 1,0E+11 8,0E+10 6,0E+10 4,0E+10 2,0E+10 0,0E+00 SpMV MPI+GPU GCSN1 3x3 n=556594, K20m ECC + E5-2470@2.30GHz, 80 cores + 10 gpus x3.5 MPI 1c1gpu/s CusparseEll MPI 1c1gpu/s IFPENV2 MPI 8c/s async com 3,89E+10 1,01E+10 6,42E+10 2,27E+10 8,15E+10 7,00E+10 1,17E+11 1,01E+11 1,41E+11 1,10E batch reserved cores x K Cells (3x3) 3.5 acc. 2c+1g/s against 16c (full node) At the and: CPU is faster Thanks to L3 cache effect 20

21 Stand alone MPI+GPU solver Test with Polynomial (spe10 matrix) Multi GPU intrinsic scalability? 1c/1g 2c/2g 4c/4g 6c/6g 8c/8g 10c/10g Total solver time (s) 20, It Acc ,6 6,5 21

22 Conclusions and work in progress Thanks to AmgX: good GPU CPR-AMG preconditioner (1gpu) But the «every day» preconditioner (Color ILU0) is not enough good: New coloring algorithm for decent numerical behavior? MPI+GPU: SpMV : ok with big systems (at least 200K equations per GPU) CPR-AMG and Color ILU0: work in progress 22

23 Thanks Special thanks to Nvidia AmgX Team: Marat Arsaev and Joe Eaton François Courteille (Nvidia) Work partialy supported by PETALH ANR project 23

24 Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 Agenda Introduction to AmgX Current Capabilities Scaling V2.0 Roadmap for the future 2 AmgX Fast, scalable linear solvers, emphasis on iterative

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS John R Appleyard Jeremy D Appleyard Polyhedron Software with acknowledgements to Mark A Wakefield Garf Bowen Schlumberger Outline of Talk Reservoir

More information

An Innovative Massively Parallelized Molecular Dynamic Software

An Innovative Massively Parallelized Molecular Dynamic Software Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources An Innovative Massively Parallelized Molecular Dynamic Software Mohamed Hacene, Ani Anciaux,

More information

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA GPU-Accelerated Algebraic Multigrid for Commercial Applications Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA ANSYS Fluent 2 Fluent control flow Accelerate this first Non-linear iterations Assemble

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU Robert Strzodka NVAMG Project Lead A Parallel Success Story in Five Steps 2 Step 1: Understand Application ANSYS Fluent Computational Fluid Dynamics

More information

GPU-based Parallel Reservoir Simulators

GPU-based Parallel Reservoir Simulators GPU-based Parallel Reservoir Simulators Zhangxin Chen 1, Hui Liu 1, Song Yu 1, Ben Hsieh 1 and Lei Shao 1 Key words: GPU computing, reservoir simulation, linear solver, parallel 1 Introduction Nowadays

More information

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI Efficient AMG on Hybrid GPU Clusters ScicomP 2012 Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann Fraunhofer SCAI Illustration: Darin McInnis Motivation Sparse iterative solvers benefit from

More information

14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs

14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs 14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs K. Esler, D. Dembeck, K. Mukundakrishnan, V. Natoli, J. Shumway and Y. Zhang Stone Ridge Technology, Bel Air, MD

More information

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Alexander Monakov, amonakov@ispras.ru Institute for System Programming of Russian Academy of Sciences March 20, 2013 1 / 17 Problem Statement In OpenFOAM,

More information

PARALUTION - a Library for Iterative Sparse Methods on CPU and GPU

PARALUTION - a Library for Iterative Sparse Methods on CPU and GPU - a Library for Iterative Sparse Methods on CPU and GPU Dimitar Lukarski Division of Scientific Computing Department of Information Technology Uppsala Programming for Multicore Architectures Research Center

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Iterative Solvers Numerical Results Conclusion and outlook 1/18 Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Eike Hermann Müller, Robert Scheichl, Eero Vainikko

More information

NEW ADVANCES IN GPU LINEAR ALGEBRA

NEW ADVANCES IN GPU LINEAR ALGEBRA GTC 2012: NEW ADVANCES IN GPU LINEAR ALGEBRA Kyle Spagnoli EM Photonics 5/16/2012 QUICK ABOUT US» HPC/GPU Consulting Firm» Specializations in:» Electromagnetics» Image Processing» Fluid Dynamics» Linear

More information

GPU PROGRESS AND DIRECTIONS IN APPLIED CFD

GPU PROGRESS AND DIRECTIONS IN APPLIED CFD Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 2015 GPU PROGRESS AND DIRECTIONS IN APPLIED CFD Stan POSEY 1*, Simon SEE 2, and

More information

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Distributed NVAMG Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Istvan Reguly (istvan.reguly at oerc.ox.ac.uk) Oxford e-research Centre NVIDIA Summer Internship

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

Multi-GPU simulations in OpenFOAM with SpeedIT technology.

Multi-GPU simulations in OpenFOAM with SpeedIT technology. Multi-GPU simulations in OpenFOAM with SpeedIT technology. Attempt I: SpeedIT GPU-based library of iterative solvers for Sparse Linear Algebra and CFD. Current version: 2.2. Version 1.0 in 2008. CMRS format

More information

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication Steve Rennich Nvidia Developer Technology - Compute Block Sparse Matrix Vector Multiplication Sparse Matrix-Vector Multiplication

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations

Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations Block Lanczos-Montgomery Method over Large Prime Fields with GPU Accelerated Dense Operations D. Zheltkov, N. Zamarashkin INM RAS September 24, 2018 Scalability of Lanczos method Notations Matrix order

More information

Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems

Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems Dr.-Ing. Achim Basermann, Melven Zöllner** German Aerospace Center (DLR) Simulation- and Software Technology

More information

CUDA Accelerated Compute Libraries. M. Naumov

CUDA Accelerated Compute Libraries. M. Naumov CUDA Accelerated Compute Libraries M. Naumov Outline Motivation Why should you use libraries? CUDA Toolkit Libraries Overview of performance CUDA Proprietary Libraries Address specific markets Third Party

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Krishnan Suresh Associate Professor Mechanical Engineering

Krishnan Suresh Associate Professor Mechanical Engineering Large Scale FEA on the GPU Krishnan Suresh Associate Professor Mechanical Engineering High-Performance Trick Computations (i.e., 3.4*1.22): essentially free Memory access determines speed of code Pick

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction 1/8 GPU Implementation of Elliptic Solvers in Numerical Weather- and Climate- Prediction Eike Hermann Müller, Robert Scheichl Department of Mathematical Sciences EHM, Xu Guo, Sinan Shi and RS: http://arxiv.org/abs/1302.7193

More information

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Iterative Solvers Numerical Results Conclusion and outlook 1/22 Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Part II: GPU Implementation and Scaling on Titan Eike

More information

D o s s i e r. Geosciences Numerical Methods Modélisation numérique en géosciences

D o s s i e r. Geosciences Numerical Methods Modélisation numérique en géosciences D o s s i e r Photos: DOI: 10.1051/ogst/2013204, IFPEN, X. This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 69, No. 4, pp. 507-766 and available online here Cet article

More information

On the Parallel Solution of Sparse Triangular Linear Systems. M. Naumov* San Jose, CA May 16, 2012 *NVIDIA

On the Parallel Solution of Sparse Triangular Linear Systems. M. Naumov* San Jose, CA May 16, 2012 *NVIDIA On the Parallel Solution of Sparse Triangular Linear Systems M. Naumov* San Jose, CA May 16, 2012 *NVIDIA Why Is This Interesting? There exist different classes of parallel problems Embarrassingly parallel

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

Accelerating the Iterative Linear Solver for Reservoir Simulation

Accelerating the Iterative Linear Solver for Reservoir Simulation Accelerating the Iterative Linear Solver for Reservoir Simulation Wei Wu 1, Xiang Li 2, Lei He 1, Dongxiao Zhang 2 1 Electrical Engineering Department, UCLA 2 Department of Energy and Resources Engineering,

More information

Solving the heat equation with CUDA

Solving the heat equation with CUDA Solving the heat equation with CUDA Oliver Meister January 09 th 2013 Last Tutorial CSR kernel - scalar One row per thread No coalesced memory access Non-uniform matrices CSR kernel - vectorized One row

More information

Batched Factorization and Inversion Routines for Block-Jacobi Preconditioning on GPUs

Batched Factorization and Inversion Routines for Block-Jacobi Preconditioning on GPUs Workshop on Batched, Reproducible, and Reduced Precision BLAS Atlanta, GA 02/25/2017 Batched Factorization and Inversion Routines for Block-Jacobi Preconditioning on GPUs Hartwig Anzt Joint work with Goran

More information

GPU Cluster Computing for FEM

GPU Cluster Computing for FEM GPU Cluster Computing for FEM Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de GPU Computing

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation Outline! Overview of CG benchmark! Overview of CUDA Libraries! CUSPARSE! CUBLAS! Porting Sequence! Algorithm Analysis! Data/Code

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

Optimising the Mantevo benchmark suite for multi- and many-core architectures

Optimising the Mantevo benchmark suite for multi- and many-core architectures Optimising the Mantevo benchmark suite for multi- and many-core architectures Simon McIntosh-Smith Department of Computer Science University of Bristol 1 Bristol's rich heritage in HPC The University of

More information

arxiv: v1 [cs.ms] 2 Jun 2016

arxiv: v1 [cs.ms] 2 Jun 2016 Parallel Triangular Solvers on GPU Zhangxin Chen, Hui Liu, and Bo Yang University of Calgary 2500 University Dr NW, Calgary, AB, Canada, T2N 1N4 {zhachen,hui.j.liu,yang6}@ucalgary.ca arxiv:1606.00541v1

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices CSE 599 I Accelerated Computing - Programming GPUS Parallel Pattern: Sparse Matrices Objective Learn about various sparse matrix representations Consider how input data affects run-time performance of

More information

Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs. 3-5 September 2012 Swissotel The Bosphorus, Istanbul, Turkey

Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs. 3-5 September 2012 Swissotel The Bosphorus, Istanbul, Turkey Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs 3-5 September 2012 Swissotel The Bosphorus, Istanbul, Turkey Fast and robust solvers for pressure systems on the GPU

More information

DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON NVIDIA GPU

DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON NVIDIA GPU INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 5, Number 1-2, Pages 13 20 c 2014 Institute for Scientific Computing and Information DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

CUDA 6.0 Performance Report. April 2014

CUDA 6.0 Performance Report. April 2014 CUDA 6. Performance Report April 214 1 CUDA 6 Performance Report CUDART CUDA Runtime Library cufft Fast Fourier Transforms Library cublas Complete BLAS Library cusparse Sparse Matrix Library curand Random

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations

Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations Hartwig Anzt 1, Marc Baboulin 2, Jack Dongarra 1, Yvan Fournier 3, Frank Hulsemann 3, Amal Khabou 2, and Yushan Wang 2 1 University

More information

Performance of deal.ii on a node

Performance of deal.ii on a node Performance of deal.ii on a node Bruno Turcksin Texas A&M University, Dept. of Mathematics Bruno Turcksin Deal.II on a node 1/37 Outline 1 Introduction 2 Architecture 3 Paralution 4 Other Libraries 5 Conclusions

More information

D036 Accelerating Reservoir Simulation with GPUs

D036 Accelerating Reservoir Simulation with GPUs D036 Accelerating Reservoir Simulation with GPUs K.P. Esler* (Stone Ridge Technology), S. Atan (Marathon Oil Corp.), B. Ramirez (Marathon Oil Corp.) & V. Natoli (Stone Ridge Technology) SUMMARY Over the

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

CUDA Toolkit 5.0 Performance Report. January 2013

CUDA Toolkit 5.0 Performance Report. January 2013 CUDA Toolkit 5.0 Performance Report January 2013 CUDA Math Libraries High performance math routines for your applications: cufft Fast Fourier Transforms Library cublas Complete BLAS Library cusparse Sparse

More information

Implicit schemes for wave models

Implicit schemes for wave models Implicit schemes for wave models Mathieu Dutour Sikirić Rudjer Bo sković Institute, Croatia and Universität Rostock April 17, 2013 I. Wave models Stochastic wave modelling Oceanic models are using grids

More information

OPENFOAM ON GPUS USING AMGX

OPENFOAM ON GPUS USING AMGX OPENFOAM ON GPUS USING AMGX Thilina Rathnayake Sanath Jayasena Mahinsasa Narayana ABSTRACT Field Operation and Manipulation (OpenFOAM) is a free, open-source, feature-rich Computational Fluid Dynamics

More information

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms H. Anzt, V. Heuveline Karlsruhe Institute of Technology, Germany

More information

ACCELERATING PRECONDITIONED ITERATIVE LINEAR SOLVERS ON GPU

ACCELERATING PRECONDITIONED ITERATIVE LINEAR SOLVERS ON GPU INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 5, Number 1-2, Pages 136 146 c 2014 Institute for Scientific Computing and Information ACCELERATING PRECONDITIONED ITERATIVE LINEAR

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography 1 A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography He Huang, Liqiang Wang, Po Chen(University of Wyoming) John Dennis (NCAR) 2 LSQR in Seismic Tomography

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Oleg Bessonov (B) Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, Vernadsky Avenue, 119526 Moscow, Russia

More information

Accelerating HPL on Heterogeneous GPU Clusters

Accelerating HPL on Heterogeneous GPU Clusters Accelerating HPL on Heterogeneous GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline

More information

Application of GPU technology to OpenFOAM simulations

Application of GPU technology to OpenFOAM simulations Application of GPU technology to OpenFOAM simulations Jakub Poła, Andrzej Kosior, Łukasz Miroslaw jakub.pola@vratis.com, www.vratis.com Wroclaw, Poland Agenda Motivation Partial acceleration SpeedIT OpenFOAM

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

AllScale Pilots Applications AmDaDos Adaptive Meshing and Data Assimilation for the Deepwater Horizon Oil Spill

AllScale Pilots Applications AmDaDos Adaptive Meshing and Data Assimilation for the Deepwater Horizon Oil Spill This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No. 671603 An Exascale Programming, Multi-objective Optimisation and Resilience

More information

Total efficiency of core components in Finite Element frameworks

Total efficiency of core components in Finite Element frameworks Total efficiency of core components in Finite Element frameworks Markus Geveler Inst. for Applied Mathematics TU Dortmund University of Technology, Germany markus.geveler@math.tu-dortmund.de MAFELAP13:

More information

PORTABLE AND SCALABLE SOLUTIONS FOR CFD ON MODERN SUPERCOMPUTERS

PORTABLE AND SCALABLE SOLUTIONS FOR CFD ON MODERN SUPERCOMPUTERS PORTABLE AND SCALABLE SOLUTIONS FOR CFD ON MODERN SUPERCOMPUTERS Ricard Borrell Pol Head and Mass Transfer Technological Center cttc.upc.edu Termo Fluids S.L termofluids.co Barcelona Supercomputing Center

More information

Lecture 13: March 25

Lecture 13: March 25 CISC 879 Software Support for Multicore Architectures Spring 2007 Lecture 13: March 25 Lecturer: John Cavazos Scribe: Ying Yu 13.1. Bryan Youse-Optimization of Sparse Matrix-Vector Multiplication on Emerging

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

High Performance Computing for PDE Towards Petascale Computing

High Performance Computing for PDE Towards Petascale Computing High Performance Computing for PDE Towards Petascale Computing S. Turek, D. Göddeke with support by: Chr. Becker, S. Buijssen, M. Grajewski, H. Wobker Institut für Angewandte Mathematik, Univ. Dortmund

More information

10th August Part One: Introduction to Parallel Computing

10th August Part One: Introduction to Parallel Computing Part One: Introduction to Parallel Computing 10th August 2007 Part 1 - Contents Reasons for parallel computing Goals and limitations Criteria for High Performance Computing Overview of parallel computer

More information

Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs. Baskar Rajagopalan Accelerated Computing, NVIDIA

Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs. Baskar Rajagopalan Accelerated Computing, NVIDIA Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs Baskar Rajagopalan Accelerated Computing, NVIDIA 1 Engineering & IT Challenges/Trends NVIDIA GPU Solutions AGENDA Abaqus GPU

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

The GPU as a co-processor in FEM-based simulations. Preliminary results. Dipl.-Inform. Dominik Göddeke.

The GPU as a co-processor in FEM-based simulations. Preliminary results. Dipl.-Inform. Dominik Göddeke. The GPU as a co-processor in FEM-based simulations Preliminary results Dipl.-Inform. Dominik Göddeke dominik.goeddeke@mathematik.uni-dortmund.de Institute of Applied Mathematics University of Dortmund

More information

A GPU Sparse Direct Solver for AX=B

A GPU Sparse Direct Solver for AX=B 1 / 25 A GPU Sparse Direct Solver for AX=B Jonathan Hogg, Evgueni Ovtchinnikov, Jennifer Scott* STFC Rutherford Appleton Laboratory 26 March 2014 GPU Technology Conference San Jose, California * Thanks

More information

nag sparse nsym sol (f11dec)

nag sparse nsym sol (f11dec) f11 Sparse Linear Algebra f11dec nag sparse nsym sol (f11dec) 1. Purpose nag sparse nsym sol (f11dec) solves a real sparse nonsymmetric system of linear equations, represented in coordinate storage format,

More information

CUDA 7.0 Performance Report. May 2015

CUDA 7.0 Performance Report. May 2015 CUDA 7.0 Performance Report May 2015 1 CUDA 7.0 Performance Report cufft Fast Fourier Transforms Library cublas Complete BLAS Library cusparse Sparse Matrix Library New in cusolver Linear Solver Library

More information

Automatic Tuning of Sparse Matrix Kernels

Automatic Tuning of Sparse Matrix Kernels Automatic Tuning of Sparse Matrix Kernels Kathy Yelick U.C. Berkeley and Lawrence Berkeley National Laboratory Richard Vuduc, Lawrence Livermore National Laboratory James Demmel, U.C. Berkeley Berkeley

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Figure 6.1: Truss topology optimization diagram.

Figure 6.1: Truss topology optimization diagram. 6 Implementation 6.1 Outline This chapter shows the implementation details to optimize the truss, obtained in the ground structure approach, according to the formulation presented in previous chapters.

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

A new sparse matrix vector multiplication graphics processing unit algorithm designed for finite element problems

A new sparse matrix vector multiplication graphics processing unit algorithm designed for finite element problems INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2015; 102:1784 1814 Published online 9 January 2015 in Wiley Online Library (wileyonlinelibrary.com)..4865 A new sparse

More information

GPU Acceleration of Unmodified CSM and CFD Solvers

GPU Acceleration of Unmodified CSM and CFD Solvers GPU Acceleration of Unmodified CSM and CFD Solvers Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de

More information

PCS - Part 1: Introduction to Parallel Computing

PCS - Part 1: Introduction to Parallel Computing PCS - Part 1: Introduction to Parallel Computing Institute of Computer Engineering University of Lübeck, Germany Baltic Summer School, Tartu 2009 Part 1 - Overview Reasons for parallel computing Goals

More information

Parallel Graph Coloring with Applications to the Incomplete-LU Factorization on the GPU

Parallel Graph Coloring with Applications to the Incomplete-LU Factorization on the GPU Parallel Graph Coloring with Applications to the Incomplete-LU Factorization on the GPU M. Naumov, P. Castonguay and J. Cohen NVIDIA, 2701 San Tomas Expressway, Santa Clara, CA 95050 Abstract In this technical

More information

Computing on GPU Clusters

Computing on GPU Clusters Computing on GPU Clusters Robert Strzodka (MPII), Dominik Göddeke G (TUDo( TUDo), Dominik Behr (AMD) Conference on Parallel Processing and Applied Mathematics Wroclaw, Poland, September 13-16, 16, 2009

More information

Phase inversion problem: performances on EOS. Annaïg PEDRONO IMFT Service Codes et Simulations Numériques

Phase inversion problem: performances on EOS. Annaïg PEDRONO IMFT Service Codes et Simulations Numériques Phase inversion problem: performances on EOS Annaïg PEDRONO IMFT Service Codes et Simulations Numériques IMFT and CALMIP IMFT and CALMIP : a partnership to improve code performances since 2004 2009-2014

More information

Sparse Matrix Formats

Sparse Matrix Formats Christopher Bross Friedrich-Alexander-Universität Erlangen-Nürnberg Motivation Sparse Matrices are everywhere Sparse Matrix Formats C. Bross BGCE Research Day, Erlangen, 09.06.2016 2/16 Motivation Sparse

More information

A Comparison of Algebraic Multigrid Preconditioners using Graphics Processing Units and Multi-Core Central Processing Units

A Comparison of Algebraic Multigrid Preconditioners using Graphics Processing Units and Multi-Core Central Processing Units A Comparison of Algebraic Multigrid Preconditioners using Graphics Processing Units and Multi-Core Central Processing Units Markus Wagner, Karl Rupp,2, Josef Weinbub Institute for Microelectronics, TU

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS.

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. Phoenix FD core SIMULATION & RENDERING. SIMULATION CORE - GRID-BASED

More information

An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC

An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC Pi-Yueh Chuang The George Washington University Fernanda S. Foertter Oak Ridge National Laboratory Goal Develop an OpenACC

More information

Generic Programming Experiments for SPn and SN transport codes

Generic Programming Experiments for SPn and SN transport codes Generic Programming Experiments for SPn and SN transport codes 10 mai 200 Laurent Plagne Angélique Ponçot Generic Programming Experiments for SPn and SN transport codes p1/26 Plan 1 Introduction How to

More information

Scalable, Hybrid-Parallel Multiscale Methods using DUNE

Scalable, Hybrid-Parallel Multiscale Methods using DUNE MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE R. Milk S. Kaulmann M. Ohlberger December 1st 2014 Outline MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE 2 /28 Abstraction

More information

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra

Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra Dominik Grewe Anton Lokhmotov Media Processing Division ARM School of Informatics University of Edinburgh December 13, 2010 Introduction

More information

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Fourth Workshop on Accelerator Programming Using Directives (WACCPD), Nov. 13, 2017 Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Takuma

More information