A simulator of sea clutter from X-band radar at low grazing angles

Size: px
Start display at page:

Download "A simulator of sea clutter from X-band radar at low grazing angles"

Transcription

1 A simulator of sea clutter from X-band radar at low grazing angles Guillaume Sicot, Nicolas Thomas Actimar 36 quai de la douane Brest - France guillaume.sicot@actimar.fr Jean-Marc Le Caillec Telecom-Bretagne, dpt ITI Lab-STICC UMR 3192 Technopôle Brest-Iroise CS Brest Cedex 3 - France Abstract Sea-return signals from X-band radar contain backscattering signals from the sea surface called sea clutter, due to the interaction between electromagnetic waves and the sea surface. In this paper, we will present a simulator that calculates the sea clutter spectrum from a coastal radar. This implies that sea clutter characteristics should be computed for low-grazing angles. The goal of this simulator is to implement models for all the components involved in the radar chain from the emission of electromagnetic waves to their reception. In order to be able to simulate back-scattering signals from a quite large area, the computation time is considered with care as part of the design of the simulator. I. INTRODUCTION In the context of a low grazing angle X-band radar, backscattering signals contain targets and the sea clutter. Spectral characteristics of the sea clutter affect the performance of detectors of targets such as moving target indicator filter or constant false alarm techniques. In order to quantify its influence on detectors, the first part is to simulate the sea clutter from environmental parameters, which is the purpose of this paper. Low grazing angle radar spectra can be explained by the coexistence of two kinds of back-scatterers : slow and fast scatterers. First ones can be explained by the Bragg resonance, the others ones are produced by breaking waves ([1]) and give spikes as results. Although the breaking waves phenomenon is still an open problem, one hydrodynamic criteria to explain breaking waves is the curvature of waves. Therefore, in order to localize breaking waves, we choose to simulate the sea surface. Hence our simulator is composed of three models : a hydrodynamic model, an electromagnetic model and a propagation model. II. THE MODELS As explained previously, we will describe models implemented in the simulator. A. The hydrodynamic model Low grazing angle radar spectra can be modeled as the result of two kinds of scatterers : slow and fast scatterers. Slow scatterers appeared near the Bragg frequency resonance and fast scatterers are associated with breaking waves. Although the breaking waves phenomenon is still an open problem, one hydrodynamic criteria to explain breaking waves is the curvature of waves. Therefore, in order to localize breaking waves, we choose to simulate the sea surface. To provide information on the sea state, the directional spectrum is used. One way to simulate sea surface from a directional spectrum is to compute an inverse fast fourier transform of it and to affect random phase to each sinusoid. This operation gives a linear sea surface. The non-linearities are due to phase rearrangement and give steeper waves which is interesting for us to simulate fast scatterers. Therefore we split the directional spectrum in two part : a bare spectrum and a dressed one as in [2], [3]. Hence each elementary wave are expressed as : η w (t) = a cos(ωt + θ) + α cos(2(ωt + θ)) + β sin(2(ωt + θ)) (1) where the first term in the sum is provided by the bare spectrum and the two other term are provided by the dressed spectrum. In this equation, ω represents the pulsation of the wave and θ its phase. This expression allows us to produce waves with asymmetries as shown on the figure 1. In the equation (1), the parameter α (resp. β) controls the amount of horizontal (resp. vertical) asymmetry in the final wave profile. In our implementation, the ratio between α and β is modified according to the wave direction and to the wind direction. If the wave moves in the same way as the wind direction, then this wave will only have vertical asymmetry. Horizontal asymmetry appears when the wave direction deviates from the wind one. Once the surface is simulated, it is analysed to detect and localize breaking waves. All parts of the surface whose slope exceeds a threshold are considered to break. Nevertheless, the final localization of breaking waves can be modified to appear at the top of waves. This part of the simulator provides a sea surface. In the next chapter, we will present how this surface will be involved in the computation of the back-scattering signal with the electromagnetic model. B. The electromagnetic model This paragraph will be divided in two parts, the first will deal with low scatterers and the second part with fast

2 (a) Wave profile with horizontal (b) Wave profile with vertical asymmetry asymmetry (c) Wave profile with both horizontal and vertical asymmetries Fig. 1. Wave profile obtain with equation 1. In dashed line, the equivalent linear wave is shown. ones. The model implemented to simulate the low scatterers is the two-scale model ([4]). It appears appropriate for our application and is relevant regarding the computation time. In this model, the sea elevation is split into two terms as it is shown below : h(x, y, t) = h 1 (x, y, t) + h 2 (x, y, t) (2) where h(x, y, t) represent the elevation of the surface at position (x, y) at a time t. h 1 (x, y, t) is the elevation of large scale of the wave spectrum (compared to the electromagnetic wavelength), and h 2 (x, y, t) is the elevation due to small scale. The waves that interact with the electromagnetic wave are in small-scale waves and large scale waves modulate them. The geometry involved in this model is shown on figure 2. In this model, only the statistics of the small scale waves are use in the computation of back-scattering cross section of a tilted facet. A tilted facet is described by a slope vector s = (s x, s y ), where s x = tanγ and s y = tanδ, according to the notation given in the figure 2. Moreover the sea surface is considered in motion, a speed vector u = (u x, u y, u z ) is also associated to each facet. Let A be a given area, with a distribution on slope and orbital velocity P A (s,u), provided by large scale waves. The Doppler spectrum, F A (ω), of the back-scattering signal from this area can be written as : F(ω) = P A (s,u)[σ + (s)δ(ω ω 0 ω 1 + (u)) (3) +σ (s)δ(ω ω 0 ω1 (u))] In the equation (3), σ ± (s) represents the back-scattering cross section of a tilted facet with a slope vector s for receding( ) or approaching (+) waves. ω 0 is frequency of the incident electromagnetic wave, and ω 1 ± (u) describes the Doppler shift of the back-scattering signal. This latter takes into account, Fig. 2. Geometry of the two scale model (from [4]) the speed of the Bragg resonant wave and the current. The expression of all these parameters can be found in [4]. Concerning the fast scatterers, we have implemented the model presented in [1]. In this paper, the back-scattering signal from breaking wave are considered to result from a large numbers of elementary isotropic scatterers. Hence each elementary scatterer sends back a fixed portion of the incident electromagnetic signal. The relevant speed use to estimate the shift of the back-scattering signal in the Doppler spectrum is the local phase speed of the breaking facet. With an Hilbert transform we can estimate the local wave frequency and the local wavenumber. The ratio of this two parameters gives us an estimation of the local phase speed. Finally, for each elementary scatterer, a randomly deviation from the mean value of the Doppler shift is performed according to a lorentzian distribution ([5]). In the next part, we will deal with the attenuation of the electromagnetic wave due to its propagation from the emission to the sea surface. C. The propagation model The attenuation of the electromagnetic field is obtained by resolving the parabolic equation. This equation was formerly use in sonar application, and became in the radar field in the middle of the 20 th century with the growth of calculation capacity ([6]). In two dimensions, where r represents the distance and z the altitude, the parabolic equation can be written as below: 2 Ψ(r, z) Ψ(r, z) z 2 +2jk 0 +k0 2 r (n2 (x, z) 1)Ψ(r, z) = 0 (4) In this equation, k 0 is wavenumber of the electromagnetic wave, Ψ is the complex attenuation and n is the refractive index over the air column. In order to resolve this equation we use the split step Fourier algorithm ([7], [8]). From a solution at r, this method calculates the solution at r + r.

3 (a) On flat surface, with a constant refractive index (b) On flat surface, with a variable refractive index Fig. 3. Fig. 4. Examples of attenuation due to propagation Examples of attenuation on an uneven surface Hence we can propagate a solution with this method. The initial solution is given by the characteristic of the antenna. Moreover we consider that the sea is a perfect conductor. The figure 3 presents two examples of attenuation calculated with the split step Fourier algorithm in two different contexts : the figure 3(b) show the result of the attenuation of the electromagnetic field on a flat surface with a constant refractive index and on the figure 3(b) is shown the attenuation over a flat surface but with a variable refractive index. Besides, in [7], a way to integrate rough terrain in the calculation process is presented. This modification is also implemented in our propagation model. This last improvement avoids us to compute the shadow parts on the sea surface due to its elevation. Indeed the shadow parts are directly obtained with the attenuation. The figure 4 presents an example of our implementation on a simple uneven surface. In the previous paragraph, we have presented the parabolic equation and some results for one horizontal dimension. However the sea surface generated by the hydrodynamic model provide surface with two horizontal dimensions. In order to get attenuation information over the sea surface, it is computed for different azimuths. We consider that the computation from one azimuth to another is independent. With all this information we are able to generate a map of the attenuation just over the sea surface. Another difficulty encountered is the link between the propagation model and the electromagnetic model. Indeed as we have seen previously, the electromagnetic field is considered as a ray that interacts with the sea surface. Therefore we have to determine the incident angle which is not well defined with our propagation model. Hence we compute the mean incident angle of the incident electromagnetic field. This is done by considering a small part of the complex attenuation over the surface. The Fourier transform produces theoretically the field distribution according to the variable p = k 0 sin θ, with k 0 the wave number of the radar and θ the incident angle ([8]). Hence with this decomposition and with a weighted mean according to the field distribution, an incident angle is estimated. In this section, we have described the model use in our simulator. In the next section we will focus on the structure of the simulator and how the computation is performed. III. STRUCTURE OF THE SIMULATOR The figure 5 presents the structure of the simulator. In order to comment this schematic, we will explain how the computation process progresses. We will consider that the system is a radar with an rotating antenna. The first step in the computation process is an initialization step. In this step, all the operations that we have to do just once are performed. It begin with the formatting of parameters in order to be usable in the different models. This can also be the re-gridding of data such as the directional spectrum. We also discretize the time dimension, and calculate instant where simulation of the back-scattered signal have to be done. The elementary computation element is the simulation of Doppler spectra at different range for a given azimuth of the antenna. This begin by the generation of the sea surface with the hydrodynamic model. The surface is then send to the propagation model in order to get the attenuation just over the surface and to estimate the incident angle. Before the electromagnetic model computes the back-scattering crosssection, an analysis of the surface is performed to detect and to localize breaking waves. This analysis will produce a map sent to the electromagnetic model. This map indicates the localization of fast back-scatterer which is required by the electromagnetic model. At the end all the Doppler spectra at each range by the electromagnetic model are mixed to produce the final Doppler spectra at a given instant. This is repeated for each relevant moment found in the initialization step. IV. SOME RESULTS In this section, some examples will be presented. The simulator can produce the energy of the Doppler spectrum for different meteo-oceanographic environment. Its phase is not computed. The integration of Doppler spectra over frequencies provides the energy of the back-scattered signal. The figure 6 presents this kind of result near the radar. In a second example, we present the Doppler spectrum of the simulated

4 Fig. 7. Doppler spectra at a fixed azimuth Fig. 5. Structure of the simulator back-scattered signal for a given azimuth. In that example the significant wave height was fixed at 3m. The considered area was at 10km and the radar was at 80m above the mean of the sea-surface elevation. The figure 7 shows the result from our simulator with frequency according to the distance for a HH polarization. In that example, we can see two points which are quite far in frequency compared to the other element of the Doppler spectrum. These points must be due to fast scatterers. V. CONCLUSION Fig. 6. Energy of the simulated back-scattered signal from the sea In this paper, a simulator of sea clutter is presented. In a first part we have presented, the models used to generate the sea surface, to calculate the cross-section of a small sea surface area and to compute the attenuation of the electromagnetic signal. The goal of this simulator is to aggregate all this model and to manage to make them work together. As a result we expect to have realistic sea clutter. This simulator is designed to accept different meteooceanographic environment. This can make this simulator a interesting tool to evaluate sea clutter before the installation of a radar according to typical environmental characteristics of the area of interest. In the actual version, the simulator is in a validation phase. Actually the simulated Doppler spectra should be compared to real data, which has not been done yet. Moreover different parts of the simulator could be improved. At first the sea surface can be modified to generate more realistic surface, and we are indeed developing a new model of non-linear sea surface. This is quite important in the simulator structure as it is used to distinguish slow and fast scattered and it is involved in the computation of the cross-section for slow scattered. Besides, we also think to modify the propagation model in order to integrate the fact that sea surface is not a perfect conductor.

5 REFERENCES [1] E. Caponi, B. Lake, and H. Yuen, Hydrodynamic effects in low-grazing angle backscattering from the ocean, IEEE Transactions on Antennas and Propagation, vol. 47, no. 2, pp , [2] T. Elfouhaily, M. Joelson, S. Guignard, H. Branger, D. Thompson, B. Chapron, and D. Vandemark, Analysis of random nonlinear water waves: the Stokes-Woodward technique, C. R. Acad. Sci. Paris, vol. 331, pp , [3] T. Elfouhaily, S. Guignard, H. Branger, D. Thompson, B. Chapron, and D. Vandemark, A time-frequency application with the stokes-woodward technique, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 11, pp , [4] V. Zavorotny and A. Voronovich, Two-scale model and ocean radar doppler spectra at moderate- and low-grazing angles, IEEE Transactions on Antennas and Propagation, vol. 46, no. 1, pp , [5] P. Lee, J. Barter, K. Beach, E. Caponi, C. Hindman, B. Lake, H. Rungaldier, and J. C. Shelton, Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angles, IEE proceedings. Radar, sonar and navigation, vol. 142, pp , [6] M. Leontovich and V. Fock, Solution of the problem of propagation of electromagnetic waves along the earth s surface bv the method of parabolic equation, Journal of Physics-USSR, vol. 10, pp , [7] A. Barrios, A terrain parabolic equation model for propagation in the troposphere, IEEE Transactions on antennas and propagation, vol. 42, no , [8] K. Craig and M. Levy, Parabolic equation modelling of the effects of multipath and ducting on radar svstems, IEE proceedings, vol. 138, pp , 1991.

MODELLING OF PROPAGATION OVER NON-HOMOGENEOUS EARTH WITH PARABOLIC EQUATION METHOD

MODELLING OF PROPAGATION OVER NON-HOMOGENEOUS EARTH WITH PARABOLIC EQUATION METHOD ODELLING OF PROPAGATION OVER NON-HOOGENEOUS EARTH WITH PARABOLIC EQUATION ETHOD Esin ÖZÇAKICILAR 1 Funda AKLEAN 1 Uludag UniversityEngineering-Architecture Faculty Electronic Engineering Department 1659-Görükle/BURSA

More information

SAR Image Simulation in the Time Domain for Moving Ocean Surfaces

SAR Image Simulation in the Time Domain for Moving Ocean Surfaces Sensors 2013, 13, 4450-4467; doi:10.3390/s130404450 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors SAR Image Simulation in the Time Domain for Moving Ocean Surfaces Takero Yoshida

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

A Numerical Study of the Retrieval of Sea Surface Height Profiles from Low Grazing Angle Radar Data

A Numerical Study of the Retrieval of Sea Surface Height Profiles from Low Grazing Angle Radar Data IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH XXXX 1 A Numerical Study of the Retrieval of Sea Surface Height Profiles from Low Grazing Angle Radar Data Joel T. Johnson, Robert

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

THE SCATTERING OF ELECTROMAGNETIC WAVES FROM ROUGH SURFACES

THE SCATTERING OF ELECTROMAGNETIC WAVES FROM ROUGH SURFACES THE SCATTERING OF ELECTROMAGNETIC WAVES FROM ROUGH SURFACES Petr Beckmann Andre Spizzichino CONTENTS Part I-THEORY By PETR BECKMANN 1. INTRODUCTION 2. QUALITATIVE CONSIDERATIONS 9 2.1. The Rayleigh Criterion

More information

SIGNIFICANT WAVE HEIGHT RETRIEVAL FROM SYNTHETIC RADAR IMAGES

SIGNIFICANT WAVE HEIGHT RETRIEVAL FROM SYNTHETIC RADAR IMAGES Proceedings of the 11 th International Conference on Hydrodynamics (ICHD 2014) October 19 24, 2014, Singapore SIGNIFICANT WAVE HEIGHT RETRIEVAL FROM SYNTHETIC RADAR IMAGES A. P. WIJAYA & E. VAN GROESEN

More information

SEA SURFACE SPEED FROM TERRASAR-X ATI DATA

SEA SURFACE SPEED FROM TERRASAR-X ATI DATA SEA SURFACE SPEED FROM TERRASAR-X ATI DATA Matteo Soccorsi (1) and Susanne Lehner (1) (1) German Aerospace Center, Remote Sensing Technology Institute, 82234 Weßling, Germany, Email: matteo.soccorsi@dlr.de

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering

More information

A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY. Craig Stringham

A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY. Craig Stringham A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY Craig Stringham Microwave Earth Remote Sensing Laboratory Brigham Young University 459 CB, Provo, UT 84602 March 18, 2013 ABSTRACT This paper analyzes

More information

Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies

Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies K. Tummala a,*, A. K. Jha a, S. Kumar b a Geoinformatics Dept., Indian Institute of Remote Sensing, Dehradun,

More information

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX L Thirion 1, C Dahon 2,3, A Lefevre 4, I Chênerie 1, L Ferro-Famil 2, C Titin-Schnaider 3 1 AD2M, Université

More information

The influence of coherent waves on the remotely sensed reflectance

The influence of coherent waves on the remotely sensed reflectance The influence of coherent waves on the remotely sensed reflectance J. Ronald V. Zaneveld and Emmanuel Boss College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis OR 97330 zaneveld@oce.orst.edu,

More information

ROUGH SURFACES INFLUENCE ON AN INDOOR PROPAGATION SIMULATION AT 60 GHz.

ROUGH SURFACES INFLUENCE ON AN INDOOR PROPAGATION SIMULATION AT 60 GHz. ROUGH SURFACES INFLUENCE ON AN INDOOR PROPAGATION SIMULATION AT 6 GHz. Yann COCHERIL, Rodolphe VAUZELLE, Lilian AVENEAU, Majdi KHOUDEIR SIC, FRE-CNRS 7 Université de Poitiers - UFR SFA Bât SPMI - Téléport

More information

Stable simulations of illumination patterns caused by focusing of sunlight by water waves

Stable simulations of illumination patterns caused by focusing of sunlight by water waves Stable simulations of illumination patterns caused by focusing of sunlight by water waves Sjoerd de Ridder ABSTRACT Illumination patterns of underwater sunlight have fascinated various researchers in the

More information

DSP Analysis of Digital Vector Slope Gauge Data Produced by Ocean Wave Simulation

DSP Analysis of Digital Vector Slope Gauge Data Produced by Ocean Wave Simulation DSP Analysis of Digital Vector Slope Gauge Data Produced by Ocean Wave Simulation EECS 803 - Introduction to Research Prof. Earl Schweppe,, Instructor Evan L. Bryson 618093 Overview Ocean Wave Behavior

More information

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k)

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k) Memorandum From: To: Subject: Date : Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k) 16-Sep-98 Project title: Minimizing segmentation discontinuities in

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

A RCS model of complex targets for radar performance prediction

A RCS model of complex targets for radar performance prediction Tampere University of Technology A RCS model of complex targets for radar performance prediction Citation Väilä, M., Jylhä, J., Väisänen, V., Perälä, H., Visa, A., Harju, M., & Virtanen, K. (217). A RCS

More information

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

The SMOS ocean salinity retrieval algorithm

The SMOS ocean salinity retrieval algorithm Microrad 2008, Firenze, 11-14 March 2008 The SMOS ocean salinity retrieval algorithm J. Font, J. Boutin, N. Reul, P. Waldteufel, C. Gabarró, S. Zine, J. Tenerelli, M. Talone, F. Petitcolin, J.L. Vergely,

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Contours of slopes of a rippled water surface

Contours of slopes of a rippled water surface Contours of slopes of a rippled water surface Charles Cox* and Xin Zhang Scripps Institution of Oceanography, UCSD 0213, La Jolla, California 9209, USA *cscox@ucsd.edu Abstract: The appearance of a horizontal

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE

SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE in Optics of Natural Waters (ONW 1), St. Petersburg, Russia, 1. SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE V. I. Haltrin, W. E. McBride III, and R. A. Arnone Naval

More information

Wave-ice interactions in wave models like WW3

Wave-ice interactions in wave models like WW3 Wave-ice interactions in wave models like WW3 Will Perrie 1, Hui Shen 1,2, Mike Meylan 3, Bash Toulany 1 1Bedford Institute of Oceanography, Dartmouth NS 2Inst. of Oceanology, China Academy of Sciences,

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 2.4 NORD 2000. STATE-OF-THE-ART

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Radar Scattering Statistics for Digital Terrain Models. Abstract. 1. Background

Radar Scattering Statistics for Digital Terrain Models. Abstract. 1. Background Radar Scattering Statistics for Digital Terrain Models Kelce Wilson PhD. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 Dale Patrick, Jim Blair Aeronautical Systems Center/XREI, Wright Patterson

More information

Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis!

Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis! Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis! M. Dechambre et al., LATMOS/IPSL, Université de Versailles 1

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Several imaging algorithms for synthetic aperture sonar and forward looking gap-filler in real-time and post-processing on IXSEA s Shadows sonar

Several imaging algorithms for synthetic aperture sonar and forward looking gap-filler in real-time and post-processing on IXSEA s Shadows sonar Several imaging algorithms for synthetic aperture sonar and forward looking gap-filler in real-time and post-processing on IXSEA s Shadows sonar F. Jean IXSEA, 46, quai François Mitterrand, 13600 La Ciotat,

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

PolSARpro v4.03 Forest Applications

PolSARpro v4.03 Forest Applications PolSARpro v4.03 Forest Applications Laurent Ferro-Famil Lecture on polarimetric SAR Theory and applications to agriculture & vegetation Thursday 19 April, morning Pol-InSAR Tutorial Forest Application

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Modeling the Interaction of a Laser Target Detection Device with the Sea

Modeling the Interaction of a Laser Target Detection Device with the Sea Modeling the Interaction of a Laser Target Detection Device with the Sea Gary Buzzard, Thales Missile Electronics Proximity Fuze Product Technical Manager Content Low Level & Embedded Threats TDD Sensor

More information

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE IRREGULAR TERRAIN EFFECT ON RADIOWAVE PROPAGATION

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE IRREGULAR TERRAIN EFFECT ON RADIOWAVE PROPAGATION SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 8 (0) IRREGULAR TERRAIN EFFECT ON RADIOWAVE PROPAGATION Department of electrical and electronic engineering and

More information

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course Do It Yourself 8 Polarization Coherence Tomography (P.C.T) Training Course 1 Objectives To provide a self taught introduction to Polarization Coherence Tomography (PCT) processing techniques to enable

More information

Background and Accuracy Analysis of the Xfactor7 Table: Final Report on QuikScat X Factor Accuracy

Background and Accuracy Analysis of the Xfactor7 Table: Final Report on QuikScat X Factor Accuracy Brigham Young University Department of Electrical and Computer Engineering 9 Clyde Building Provo, Utah 86 Background and Accuracy Analysis of the Xfactor7 Table: Final Report on QuikScat X Factor Accuracy

More information

A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Charles Werner Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents Aim is to obtain a deeper understanding of what

More information

Optical Photon Processes

Optical Photon Processes Optical Photon Processes GEANT4 is an effective and comprehensive tool capable of realistically modeling the optics of scintillation and Cerenkov detectors and their associated light guides. This is founded

More information

IMAGING WITH SYNTHETIC APERTURE RADAR

IMAGING WITH SYNTHETIC APERTURE RADAR ENGINEERING SCIENCES ; t rical Bngi.net IMAGING WITH SYNTHETIC APERTURE RADAR Didier Massonnet & Jean-Claude Souyris EPFL Press A Swiss academic publisher distributed by CRC Press Table of Contents Acknowledgements

More information

Simulation of Brightness Temperatures for the Microwave Radiometer (MWR) on the Aquarius/SAC-D Mission. Salman S. Khan M.S. Defense 8 th July, 2009

Simulation of Brightness Temperatures for the Microwave Radiometer (MWR) on the Aquarius/SAC-D Mission. Salman S. Khan M.S. Defense 8 th July, 2009 Simulation of Brightness Temperatures for the Microwave Radiometer (MWR) on the Aquarius/SAC-D Mission Salman S. Khan M.S. Defense 8 th July, 2009 Outline Thesis Objective Aquarius Salinity Measurements

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

Parametric Approaches for Refractivity-From-Clutter Inversion

Parametric Approaches for Refractivity-From-Clutter Inversion Parametric Approaches for Refractivity-From-Clutter Inversion Peter Gerstoft Marine Physical Laboratory, Scripps Institution of Oceanography La Jolla, CA 92093-0238 phone: (858) 534-7768 fax: (858) 534-7641

More information

Fresnel Reflection. angle of transmission. Snell s law relates these according to the

Fresnel Reflection. angle of transmission. Snell s law relates these according to the Fresnel Reflection 1. Reflectivity of polarized light The reflection of a polarized beam of light from a dielectric material such as air/glass was described by Augustin Jean Fresnel in 1823. While his

More information

Finite element modeling of reverberation and transmission loss

Finite element modeling of reverberation and transmission loss Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries Marcia J. Isakson a) and Nicholas P. Chotiros Applied Research Laboratories, The University

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Bistatic SAR coherence improvement through spatially variant polarimetry

Bistatic SAR coherence improvement through spatially variant polarimetry 1 Bistatic SAR coherence improvement through spatially variant polarimetry By Daniel Andre Centre for Electronic Warfare, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK. Abstract

More information

GLOBAL navigation satellite system reflectometry

GLOBAL navigation satellite system reflectometry 1064 IEEE GEOCIENCE AND REMOTE ENING LETTER, VOL. 13, NO. 8, AUGUT 2016 On the patial Resolution of GN Reflectometry Maria Paola Clarizia, Member, IEEE, and Christopher. Ruf, Fellow, IEEE Abstract A method

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

Development and Applications of an Interferometric Ground-Based SAR System

Development and Applications of an Interferometric Ground-Based SAR System Development and Applications of an Interferometric Ground-Based SAR System Tadashi Hamasaki (1), Zheng-Shu Zhou (2), Motoyuki Sato (2) (1) Graduate School of Environmental Studies, Tohoku University Aramaki

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Advanced Propagation Model (APM) Ver Computer Software Configuration Item (CSCI) Documents

Advanced Propagation Model (APM) Ver Computer Software Configuration Item (CSCI) Documents TECHNICAL DOCUMENT 3145 August 2002 Advanced Propagation Model (APM) Ver. 1.3.1 Computer Software Configuration Item (CSCI) Documents A. E. Barrios W. L. Patterson Approved for public release; distribution

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Underwater Acoustics Session 2aUW: Wave Propagation in a Random Medium

More information

High Frequency Acoustic Reflection and Transmission in Ocean Sediments

High Frequency Acoustic Reflection and Transmission in Ocean Sediments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High Frequency Acoustic Reflection and Transmission in Ocean Sediments Marcia J. Isakson Applied Research Laboratories

More information

Geo-Morphology Modeling in SAR Imagery Using Random Fractal Geometry

Geo-Morphology Modeling in SAR Imagery Using Random Fractal Geometry Geo-Morphology Modeling in SAR Imagery Using Random Fractal Geometry Ali Ghafouri Dept. of Surveying Engineering, Collage of Engineering, University of Tehran, Tehran, Iran, ali.ghafouri@ut.ac.ir Jalal

More information

The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal

The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal the underlying symmetry structure of the object that diffracts

More information

RCS CALCUATIONS USING THE PHYSICAL OPTICS CODES

RCS CALCUATIONS USING THE PHYSICAL OPTICS CODES RCS CALCATIONS SING THE PHYSICAL OPTICS CODES Introduction Physical optics based RCS calculations are performed by the two Matlab computer codes:. pofacets.m. pobistatic.m The first code (pofacets.m )

More information

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite. Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

More information

Ray tracing/correlation approach to estimation of surface-based duct parameters from radar clutter

Ray tracing/correlation approach to estimation of surface-based duct parameters from radar clutter Ray tracing/correlation approach to estimation of surface-based duct parameters from radar clutter Zhao Xiao-Feng( 赵小峰 ), Huang Si-Xun( 黄思训 ), and Sheng Zheng( 盛峥 ) Institute of Meteorology, PLA University

More information

ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE

ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE Progress In Electromagnetics Research, Vol. 117, 435 448, 2011 ITERATIVE HYBRID METHOD FOR ELECTROMAG- NETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE W. Yang, Z. Q. Zhao

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Diffraction of wave spectra by two breakwaters at an angle T. Zographou & C.D. Memos Department of Civil Engineering, National Technical University of Athens, 157 SOZografos, Greece EM ail: memos@hydro.civil.ntua.gr

More information

Geometrical modeling of light scattering from paper substrates

Geometrical modeling of light scattering from paper substrates Geometrical modeling of light scattering from paper substrates Peter Hansson Department of Engineering ciences The Ångström Laboratory, Uppsala University Box 534, E-75 Uppsala, weden Abstract A light

More information

Fig The light rays that exit the prism enter longitudinally into an astronomical telescope adjusted for infinite distance.

Fig The light rays that exit the prism enter longitudinally into an astronomical telescope adjusted for infinite distance. Romanian Master of Physics 07 Problem I Reflection and refraction of light A. An interesting prism The main section of a glass prism, situated in air n '.00, has the form of a rhomb with. A thin yellow

More information

PHYS 202 Notes, Week 8

PHYS 202 Notes, Week 8 PHYS 202 Notes, Week 8 Greg Christian March 8 & 10, 2016 Last updated: 03/10/2016 at 12:30:44 This week we learn about electromagnetic waves and optics. Electromagnetic Waves So far, we ve learned about

More information

Determining The Surface Tension Of Water Via Light Scattering

Determining The Surface Tension Of Water Via Light Scattering Determining The Surface Tension Of Water Via Light Scattering Howard Henry Physics Department, The College of Wooster, Wooster, Ohio 44691, USA (Dated: May 10, 007) The diffraction pattern created by the

More information

Wavelength Estimation Method Based on Radon Transform and Image Texture

Wavelength Estimation Method Based on Radon Transform and Image Texture Journal of Shipping and Ocean Engineering 7 (2017) 186-191 doi 10.17265/2159-5879/2017.05.002 D DAVID PUBLISHING Wavelength Estimation Method Based on Radon Transform and Image Texture LU Ying, ZHUANG

More information

ACOUSTIC MODELING UNDERWATER. and SIMULATION. Paul C. Etter. CRC Press. Taylor & Francis Croup. Taylor & Francis Croup, CRC Press is an imprint of the

ACOUSTIC MODELING UNDERWATER. and SIMULATION. Paul C. Etter. CRC Press. Taylor & Francis Croup. Taylor & Francis Croup, CRC Press is an imprint of the UNDERWATER ACOUSTIC MODELING and SIMULATION Paul C. Etter CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents

More information

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes 1. Particle Scattering Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes Generally gas and particles do not scatter isotropically. The phase function, scattering efficiency, and single scattering

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing

Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Retrieval of optical and microphysical properties of ocean constituents using polarimetric remote sensing Presented by: Amir Ibrahim Optical Remote Sensing Laboratory, The City College of the City University

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Workhorse ADCP Multi- Directional Wave Gauge Primer

Workhorse ADCP Multi- Directional Wave Gauge Primer Acoustic Doppler Solutions Workhorse ADCP Multi- Directional Wave Gauge Primer Brandon Strong October, 2000 Principles of ADCP Wave Measurement The basic principle behind wave the measurement, is that

More information

Mission Status and Data Availability: TanDEM-X

Mission Status and Data Availability: TanDEM-X Mission Status and Data Availability: TanDEM-X Irena Hajnsek, Thomas Busche, Alberto Moreira & TanDEM-X Team Microwaves and Radar Institute, German Aerospace Center irena.hajnsek@dlr.de 26-Jan-2009 Outline

More information

Lecture 17 (Polarization and Scattering) Physics Spring 2018 Douglas Fields

Lecture 17 (Polarization and Scattering) Physics Spring 2018 Douglas Fields Lecture 17 (Polarization and Scattering) Physics 262-01 Spring 2018 Douglas Fields Reading Quiz When unpolarized light passes through an ideal polarizer, the intensity of the transmitted light is: A) Unchanged

More information

Matthew Schwartz Lecture 19: Diffraction and resolution

Matthew Schwartz Lecture 19: Diffraction and resolution Matthew Schwartz Lecture 19: Diffraction and resolution 1 Huygens principle Diffraction refers to what happens to a wave when it hits an obstacle. The key to understanding diffraction is a very simple

More information

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Chapter 33 cont The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Polarization of Light Waves The direction of polarization of each individual wave is defined to be the direction

More information

3 - SYNTHETIC APERTURE RADAR (SAR) SUMMARY David Sandwell, SIO 239, January, 2008

3 - SYNTHETIC APERTURE RADAR (SAR) SUMMARY David Sandwell, SIO 239, January, 2008 1 3 - SYNTHETIC APERTURE RADAR (SAR) SUMMARY David Sandwell, SIO 239, January, 2008 Fraunhoffer diffraction To understand why a synthetic aperture in needed for microwave remote sensing from orbital altitude

More information

ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION

ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION I.Erer 1, K. Sarikaya 1,2, H.Bozkurt 1 1 Department of Electronics and Telecommunications Engineering Electrics and Electronics Faculty,

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Modeling the Effects of Wind Turbines on Radar Returns

Modeling the Effects of Wind Turbines on Radar Returns Modeling the Effects of Wind Turbines on Radar Returns R. Ryan Ohs, Gregory J. Skidmore, Dr. Gary Bedrosian Remcom, Inc. State College, PA USA Abstract Wind turbines located near radar installations can

More information

19 Total internal reflection (TIR) and evanescent

19 Total internal reflection (TIR) and evanescent 19 Total internal reflection (TIR) and evanescent waves Consider a TE- or TM-polarized wave (or a superposition) incident on an interface at x =0surface as depicted in the margin at an incidence angle.

More information

Processing techniques for a GNSS-R scatterometric remote sensing instrument

Processing techniques for a GNSS-R scatterometric remote sensing instrument Processing techniques for a GNSS-R scatterometric remote sensing instrument Philip J. Jales (1) Martin Unwin (2) Craig Underwood (1) (1) Surrey Space Centre, University Of Surrey, UK (2) Satellite Technology

More information

Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

More information