The reconstruction problem. Reconstruction by triangulation

Size: px
Start display at page:

Download "The reconstruction problem. Reconstruction by triangulation"

Transcription

1 The reconstruction problem Both intrinsic and extr insic parameters are known: we can solve the reconstruction problem unambiguously by triangulation. Only the intrinsic parameters are known: we can solve the reconstruction problem but only up to an unknown scaling factor. Neither the extr insic nor the intrinsic parameters are available: we can solve the reconstruction problem but only up to an unknown, global projective transformation. Reconstruction by triangulation Assumptions and problem statement Both the extrinsic and intrinsic camera parameters are known. Compute the location of the 3D points from their projections p l and p r What is the solution? -The point P lies at the intersection of the two rays from O l through p l and from O r through p r.

2 -2- Practical difficulties -The two rays will not intersect exactly in space because of errors in the location of the corresponding features. -Find the point that is closest to both rays. -This is the midpoint P of line segment being perpendicular to both rays. Parametric line representation (review) -The parametric respresentation of the line passing through P 1 and P 2 is given by: P(t) = P 1 + t(p 2 P 1 ) or x(t) = x 1 + t(x 2 x 1 ) and y(t) = y 1 + t(y 2 y 1 ) -The direction of the line is given bythe vector t(p 2 P 1 ) t=1 t>1 t=0 0<t<1 P 2 t<0 P 1

3 -3- Computing P -Parametric representation of the line passing through O l and p l : O l + a(p l O l ) = ap l -Parametric representation of the line passing through O r and p r : Or L + b(pr L Or L ) = T + br T p r since Or L = R T Or R + T = T and pr L = R T pr R + T (pr R = p r,, pl L = p l ) -Suppose the endpoints P 1 and P 2 are given by P 1 = a 0 p l and P 2 = T + b 0 R T p r -The parametric equation of the line passing through P 1 and P 2 is given by: P 1 + c(p 2 P 1 ) -The desired point P (midpoint) is computed for c = 1/2

4 -4- Computing a 0 and b 0 -Consider the vector w orthogonal to both l and r is given by: w = (p l O l )x(pr L Or L ) = p l xr T p r (since pr R = R( pr L Or L )) -The line s going through P 1 with direction w is given by: a 0 p l + cw = a 0 p l + c(p l xr T p r ) -The lines s and r intersect at P 2 : a 0 p l + c 0 ( p l xr T p r ) = T + b 0 R T p r (assume s passes through P 2 for c = c 0 ) -Wecan obtain a 0 and b 0 by solving the following system of equations: a 0 p l b 0 R T p r + c 0 ( p l xr T p r ) = T

5 -5- Reconstruction up to a scale factor Assumptions and problem statement Only the intrinsic camera parameters are known. We have established n 8correspondences to compute E Compute the location of the 3D points from their projections p l and p r. Comments: We cannot recover the true scale of the viewed scene since we do not know the T baselile T (recall: Z = f d ). Reconstruction is unique only up to an unknown scaling factor. This factor can be determined if we know the distance between two points in the scene. Estimate E -Wecan estimate E using the 8-point algorithm. -The solution is unique up to an unknown scale factor. Recover T E T E = S T R T RS = S T S = T y 2 + Tz 2 T y T x T z T x T x T y Tz 2 + T x 2 T z T y T x T z T y T z T 2 x + T 2 y note: Tr(E T E) = 2 T 2 or T = Tr(E T E)/2 To simplify the recovery of T,let s divide E by T : 1 ˆT 2 x ˆT x ˆT y ˆT x ˆT z Ê T Ê = ˆT y ˆT x 1 ˆT 2 y ˆT y ˆT z where ˆT = T / T ˆT z ˆT x ˆT z ˆT y 1 ˆT 2 z (we can compute ˆT much easier from Ê T Ê)

6 -6- Recover R It can be shown that R i = w i + w j xw k where w i = Ê i x ˆT Ambiguity in ( ˆT, R) There is a twofold ambiguity in the sign of Ê and ˆT There will be four different estimates for ( ˆT, R) 3D reconstruction Let s compute the z coordinate of each point in the left camera frame: p l = f l P l Z l and p r = f r P r Z r = f r R(P l ˆT ) R T 3 (P l ˆT ) (since P r = R(P l T )) The first component x r of p r is: x r = f r R T 1 (P l ˆT ) R T 3 (P l ˆT ) Substiting P l = p l Z l f l into the above equation we get: Compute X l and Y l from P l = p l Z l f l Z l = f l ( f r R 1 x r R 3 ) T ˆT ( f r R 1 x r R 3 ) T p l Compute (X r, Y r, Z r )from P r = R(P l T )

7 -7- Algorithm Input: a set of corresponding points p l and p r 1. Estimate E 2. Recover ˆT 3. Recover R 4. Reconstruct Z l and Z r 5. If the signs of Z l and Z r are: 5.1 both negative for some point, change the sign of ˆT and goto step one negative, one positive, for some point, change the sign of each entry of Ê and goto step both positive for all points, exit. Comment: the algorithm should not go through more than 4 iterations (why?)

8 -8- Reconstruction up to a projective transformation -Wewill not discuss this case (more complicated) -Look in the book if interested (pp )

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Geometry Pre AP Graphing Linear Equations

Geometry Pre AP Graphing Linear Equations Geometry Pre AP Graphing Linear Equations Name Date Period Find the x- and y-intercepts and slope of each equation. 1. y = -x 2. x + 3y = 6 3. x = 2 4. y = 0 5. y = 2x - 9 6. 18x 42 y = 210 Graph each

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

Lines and Planes in 3D

Lines and Planes in 3D Lines and Planes in 3D Philippe B. Laval KSU January 28, 2013 Philippe B. Laval (KSU) Lines and Planes in 3D January 28, 2013 1 / 20 Introduction Recall that given a point P = (a, b, c), one can draw a

More information

EECS 487, Fall 2005 Exam 2

EECS 487, Fall 2005 Exam 2 EECS 487, Fall 2005 Exam 2 December 21, 2005 This is a closed book exam. Notes are not permitted. Basic calculators are permitted, but not needed. Explain or show your work for each question. Name: uniqname:

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

From Vertices To Fragments-1

From Vertices To Fragments-1 From Vertices To Fragments-1 1 Objectives Clipping Line-segment clipping polygon clipping 2 Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Clipping and Intersection

Clipping and Intersection Clipping and Intersection Clipping: Remove points, line segments, polygons outside a region of interest. Need to discard everything that s outside of our window. Point clipping: Remove points outside window.

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

NAME: DATE: PERIOD: 1. Find the coordinates of the midpoint of each side of the parallelogram.

NAME: DATE: PERIOD: 1. Find the coordinates of the midpoint of each side of the parallelogram. NAME: DATE: PERIOD: Geometry Fall Final Exam Review 2017 1. Find the coordinates of the midpoint of each side of the parallelogram. My Exam is on: This review is due on: 2. Find the distance between the

More information

Problems of Plane analytic geometry

Problems of Plane analytic geometry 1) Consider the vectors u(16, 1) and v( 1, 1). Find out a vector w perpendicular (orthogonal) to v and verifies u w = 0. 2) Consider the vectors u( 6, p) and v(10, 2). Find out the value(s) of parameter

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 3: Lining Up: 2D Lines Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe Structured Light Tobias Nöll tobias.noell@dfki.de Thanks to Marc Pollefeys, David Nister and David Lowe Introduction Previous lecture: Dense reconstruction Dense matching of non-feature pixels Patch-based

More information

GEOMETRY HONORS COORDINATE GEOMETRY PACKET

GEOMETRY HONORS COORDINATE GEOMETRY PACKET GEOMETRY HONORS COORDINATE GEOMETRY PACKET Name Period 1 Day 1 - Directed Line Segments DO NOW Distance formula 1 2 1 2 2 2 D x x y y Midpoint formula x x, y y 2 2 M 1 2 1 2 Slope formula y y m x x 2 1

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

(Refer Slide Time: 00:02:02)

(Refer Slide Time: 00:02:02) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 20 Clipping: Lines and Polygons Hello and welcome everybody to the lecture

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

Light Reflection. Not drawn to scale.

Light Reflection. Not drawn to scale. Physics 25 Chapter 25 Dr. Alward Light Reflection In the figure at the right, the angle of reflection for Ray 1 equals the angle of incidence. The same is true for Ray 2. Not drawn to scale. Any image

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

3D Reconstruction from Scene Knowledge

3D Reconstruction from Scene Knowledge Multiple-View Reconstruction from Scene Knowledge 3D Reconstruction from Scene Knowledge SYMMETRY & MULTIPLE-VIEW GEOMETRY Fundamental types of symmetry Equivalent views Symmetry based reconstruction MUTIPLE-VIEW

More information

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes.

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes. Page 1 of 9 Are You Ready Chapter 1 Pretest & skills Attendance Problems Graph each inequality. 1. x > 3 2. 2 < x < 6 3. x > 1 or x < 0 Vocabulary undefined term point line plane collinear coplanar segment

More information

Perception and Action using Multilinear Forms

Perception and Action using Multilinear Forms Perception and Action using Multilinear Forms Anders Heyden, Gunnar Sparr, Kalle Åström Dept of Mathematics, Lund University Box 118, S-221 00 Lund, Sweden email: {heyden,gunnar,kalle}@maths.lth.se Abstract

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

521493S Computer Graphics Exercise 1 (Chapters 1-3)

521493S Computer Graphics Exercise 1 (Chapters 1-3) 521493S Computer Graphics Exercise 1 (Chapters 1-3) 1. Consider the clipping of a line segment defined by the latter s two endpoints (x 1, y 1 ) and (x 2, y 2 ) in two dimensions against a rectangular

More information

Also available in Hardcopy (.pdf): Coordinate Geometry

Also available in Hardcopy (.pdf): Coordinate Geometry Multiple Choice Practice Coordinate Geometry Geometry Level Geometry Index Regents Exam Prep Center Also available in Hardcopy (.pdf): Coordinate Geometry Directions: Choose the best answer. Answer ALL

More information

3D Computer Vision. Structured Light I. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light I. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light I Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Geometry of Multiple views

Geometry of Multiple views 1 Geometry of Multiple views CS 554 Computer Vision Pinar Duygulu Bilkent University 2 Multiple views Despite the wealth of information contained in a a photograph, the depth of a scene point along the

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

CS770/870 Spring 2017 Ray Tracing Implementation

CS770/870 Spring 2017 Ray Tracing Implementation Useful ector Information S770/870 Spring 07 Ray Tracing Implementation Related material:angel 6e: h.3 Ray-Object intersections Spheres Plane/Polygon Box/Slab/Polyhedron Quadric surfaces Other implicit/explicit

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system The Lecture Contains: Back-projection of a 2D point to 3D 6.3 Coordinate system conversion file:///d /...(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2032/32_1.htm[12/31/2015

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

Computer Graphics II

Computer Graphics II Computer Graphics II Autumn 2018-2019 Outline 1 Transformations Outline Transformations 1 Transformations Orthogonal Projections Suppose we want to project a point x onto a plane given by its unit-length

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera Stereo

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

8.1 Geometric Queries for Ray Tracing

8.1 Geometric Queries for Ray Tracing Fall 2017 CSCI 420: Computer Graphics 8.1 Geometric Queries for Ray Tracing Hao Li http://cs420.hao-li.com 1 Outline Ray-Surface Intersections Special cases: sphere, polygon Barycentric coordinates 2 Outline

More information

Slope, Distance, Midpoint

Slope, Distance, Midpoint Line segments in a coordinate plane can be analyzed by finding various characteristics of the line including slope, length, and midpoint. These values are useful in applications and coordinate proofs.

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Jiaolong Yang*, Yuchao Dai^, Hongdong Li^, Henry Gardner^ and Yunde Jia* *Beijing Institute of Technology

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Ray Tracing. CS116B Chris Pollett Apr 20, 2004.

Ray Tracing. CS116B Chris Pollett Apr 20, 2004. Ray Tracing CS116B Chris Pollett Apr 20, 2004. Outline Basic Ray-Tracing Intersections Basic Ray-Tracing Reference Point (i,j) Projection Plane Have a set up like in the above picture. Shoot rays from

More information

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer The exam consists of 10 questions. There are 2 points per question for a total of 20 points. You

More information

Gabriel Taubin. Desktop 3D Photography

Gabriel Taubin. Desktop 3D Photography Sring 06 ENGN50 --- D Photograhy Lecture 7 Gabriel Taubin Brown University Deskto D Photograhy htt://www.vision.caltech.edu/bouguetj/iccv98/.index.html D triangulation: ray-lane Intersection lane ray intersection

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 17: Breaking It Up: Triangles Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

3D Computer Vision. Structure from Motion. Prof. Didier Stricker

3D Computer Vision. Structure from Motion. Prof. Didier Stricker 3D Computer Vision Structure from Motion Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Structure

More information

Raycasting. Chapter Raycasting foundations. When you look at an object, like the ball in the picture to the left, what do

Raycasting. Chapter Raycasting foundations. When you look at an object, like the ball in the picture to the left, what do Chapter 4 Raycasting 4. Raycasting foundations When you look at an, like the ball in the picture to the left, what do lamp you see? You do not actually see the ball itself. Instead, what you see is the

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Geometry. Chapter 1 Points, Lines, Planes, and Angles

Geometry. Chapter 1 Points, Lines, Planes, and Angles Geometry Chapter 1 Points, Lines, Planes, and Angles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** Algebraic Equations Review Keystone Vocabulary

More information

CS559 Computer Graphics Fall 2015

CS559 Computer Graphics Fall 2015 CS559 Computer Graphics Fall 2015 Practice Final Exam Time: 2 hrs 1. [XX Y Y % = ZZ%] MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). You do not need to provide a justification

More information

Graphs and Linear Functions

Graphs and Linear Functions Graphs and Linear Functions A -dimensional graph is a visual representation of a relationship between two variables given by an equation or an inequality. Graphs help us solve algebraic problems by analysing

More information

Archeoviz: Improving the Camera Calibration Process. Jonathan Goulet Advisor: Dr. Kostas Daniilidis

Archeoviz: Improving the Camera Calibration Process. Jonathan Goulet Advisor: Dr. Kostas Daniilidis Archeoviz: Improving the Camera Calibration Process Jonathan Goulet Advisor: Dr. Kostas Daniilidis Problem Project Description Complete 3-D reconstruction of site in Tiwanaku, Bolivia Program for archeologists

More information

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping Interactive Computer Graphics The Graphics Pipeline: The Graphics Pipeline Input: - geometric model - illumination model - camera model - viewport Some slides adopted from F. Durand and B. Cutler, MIT

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Lecture 5 Epipolar Geometry

Lecture 5 Epipolar Geometry Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-24-Jan-18 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

CMPSCI 145 MIDTERM #2 SPRING 2017 April 7, 2017 Professor William T. Verts NAME PROBLEM SCORE POINTS GRAND TOTAL 100

CMPSCI 145 MIDTERM #2 SPRING 2017 April 7, 2017 Professor William T. Verts NAME PROBLEM SCORE POINTS GRAND TOTAL 100 CMPSCI 145 MIDTERM #2 SPRING 2017 April 7, 2017 NAME PROBLEM SCORE POINTS 1 15+5 2 25 3 20 4 10 5 18 6 12 GRAND TOTAL 100 15 Points Answer 15 of the following problems (1 point each). Answer more than

More information

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 12.5 Equations of Lines and Planes Definition 1: Vector Equation of a Line L Let L be a line in three-dimensional space. P (x,

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

Suggested problems - solutions

Suggested problems - solutions Suggested problems - solutions Writing equations of lines and planes Some of these are similar to ones you have examples for... most of them aren t. P1: Write the general form of the equation of the plane

More information

Test Name: Chapter 3 Review

Test Name: Chapter 3 Review Test Name: Chapter 3 Review 1. For the following equation, determine the values of the missing entries. If needed, write your answer as a fraction reduced to lowest terms. 10x - 8y = 18 Note: Each column

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

Transformations Part If then, the identity transformation.

Transformations Part If then, the identity transformation. Transformations Part 2 Definition: Given rays with common endpoint O, we define the rotation with center O and angle as follows: 1. If then, the identity transformation. 2. If A, O, and B are noncollinear,

More information

8r + 5 3r 4. HW: Algebra Skills. Name: Date: Period:

8r + 5 3r 4. HW: Algebra Skills. Name: Date: Period: HW: Algebra Skills Name: Date: Period: SHOW YOUR WORK!! Use this homework to recall your algebra skills. Additional help can be found in the textbook starting on page 753. You will be quizzed over algebra

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

3D Reconstruction with two Calibrated Cameras

3D Reconstruction with two Calibrated Cameras 3D Reconstruction with two Calibrated Cameras Carlo Tomasi The standard reference frame for a camera C is a right-handed Cartesian frame with its origin at the center of projection of C, its positive Z

More information

Announcements. Motion. Structure-from-Motion (SFM) Motion. Discrete Motion: Some Counting

Announcements. Motion. Structure-from-Motion (SFM) Motion. Discrete Motion: Some Counting Announcements Motion HW 4 due Friday Final Exam: Tuesday, 6/7 at 8:00-11:00 Fill out your CAPES Introduction to Computer Vision CSE 152 Lecture 20 Motion Some problems of motion 1. Correspondence: Where

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information