Lecture Notes (Reflection & Mirrors)

Size: px
Start display at page:

Download "Lecture Notes (Reflection & Mirrors)"

Transcription

1 Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection Specular And Rough Reflection: - when a light ray traveling in a transparent medium encounters a boundary leading into a second medium, part of the incident ray is reflected back into the first medium - the reflection of light from such a smooth surface is called specular reflection

2 - on the other hand, if the reflecting surface is rough, the surface reflects the rays in a variety of directions; reflection from any rough surface is known as diffuse reflection - a surface behaves as a smooth surface as long as its variations are small compared with the wavelength of the incident light Plane Mirror Images: - when you look into a plane mirror, you see an image of yourself that has four properties: 1) The image is upright. 2) The image is the same size you are. 3) The image is located as far behind the mirror as you are in front of it. 4) The image has left-right reversal. That is, if you wave your right-hand it is the left hand of the image that waves back. - light rays leave each point on an object, but we will simplify this process by looking at only three rays

3 - let's draw a diagram of an object in front of a plane mirror - the three rays leave the object; these rays reflect from the mirror and enter the eye; to the eye, it appears that the rays originate from behind the mirror, back along the dashed lines - although rays of light seem to come from the image, it is evident that no light emanates from behind the plane mirror - because the rays of light do not actually emanate from the image in the mirror, it is called a virtual image; in the text, the light rays that appear to come from a virtual image are represented by dashed lines - images in plane mirrors are located as far behind the mirror as the object is in front of it - the object distance is given the symbol d 0 and the image distance is d i

4 - the object height is the same as the image height in plane mirror reflection; the object height is symbolized as h 0 and the image height is h i - if the object and the image are pointing in the same direction, the image is called an erect image Curved Mirrors: - unlike plane mirrors, which only produce virtual images, curved mirrors can produce real images - real images are those which can be seen on a piece of paper or projected onto a screen, because rays actually converge and pass through the image - the most common type of curved mirror is a spherical mirror; a spherical mirror has the shape of a section from the surface of a sphere

5 - the inner surface of a hollow sphere will produce a concave mirror; the outer surface will produce a convex mirror - for spherical mirrors, the center of curvature is located at point C and the radius is r; the principal axis of the mirror is a straight line through C and the midpoint of the mirror which is called the vertex, M - it is found experimentally that rays striking a concave mirror parallel to its principal axis, and not too far away from this axis, are reflected by the mirror such that they all pass through the same point, F, on the principal axis; this point, which is lies between the center of curvature and the vertex, is called the focal point, or focus, of the mirror - the distance along the principal axis from the focus to the vertex is called the focal length of the mirror, and is denoted, f

6 - the focal point, F, lies halfway between the center of curvature, C, and the vertex, M; therefore, the focal length, f, is equal to one-half the radius, r f = ½ r - rays that lie close to the principle axis are called paraxial rays; and the above equation is only valid for such rays - rays that are far away from the principal axis do not converge to a single point after reflection from the mirror - the result is a blurred image; the fact that a spherical mirror cannot bring all rays parallel to the axis to a single image point is known as spherical aberration Parabolic Mirrors: - you can eliminate spherical aberration by either covering the outer edges of a spherical mirror, or by using a mirror of a different shape, such as a parabolic mirror

7 - all rays from a point source of light at the focus, which fall on the mirror, are reflected parallel to the axis; the mirror keeps them together and thus acts like a search light - during the Second World War, General Electric and the manufactured carbon arc searchlight models - they were mostly of 60 diameter with parabolic mirror reflectors; they reflected a carbon arc in to the night sky that has an effective beam visibility of about 30 miles - a separate trailer powered these searchlight units with an engine and generator; these units were high maintenance and had their own Army or Navy division for service and repair - rays of light from a distant source of light coming to the mirror parallel to the axis, pass on reflection through the focus

8 - parabolic mirrors are used in a method of capturing solar energy for commercial purposes; they use long rows of concave parabolic mirrors that reflect the sun's rays at an oilfilled pipe located at the focal point - the sun heated oil is used to generate steam; the steam is used to drive a turbine connected to an electric generator Convex Mirrors: - in convex mirrors, rays will diverge after being reflected - if the incident parallel rays are paraxial, then the rays will seem to come from a single point behind the mirror; this point is the focal point, F, of the convex mirror and its distance from the vertex, M, is the focal length, f - we assign a negative value to the focal length of the convex mirror; f = -½ r

9 Image Formation: A. Concave Mirrors: - as we have seen earlier, some of the light rays emitted from an object in front of a mirror strike the mirror, reflect from it, and form an image - we will draw three rays to form an image; this process is called ray tracing Ray 1: this ray is initially parallel to the principle axis and therefore passes through the focal point, F, upon reflection from the mirror Ray 2: this ray passes through the focal point, F, and is reflected parallel to the principle axis Ray 3: this ray travels along a line that passes through the center of curvature; this ray strikes the mirror perpendicularly and reflects back upon itself

10 Ray Tracing Example: (Concave Mirrors) - you may have difficulty understanding how an entire image of an object can be deduced once a single point on the image has been determined - in theory, it would be necessary to pick each point on the object and draw a separate ray diagram to determine the location of the image of that point; that would require a lot of ray diagrams - for our purposes, we will only deal with the simpler situations in which the object is a vertical line which has its bottom located upon the principal axis - for such simplified situations, the image is a vertical line with the lower extremity located upon the principal axis

11 More Ray Tracing Examples: (Concave Mirrors)

12 Convex Image Formation: - for determining the image, location and size of a convex mirror, it is similar to a concave mirror, but the focal point and center of curvature of a convex mirror lie behind the mirror, not in front of it - the method of drawing ray diagrams for convex mirrors is described below Step 1: Pick a point on the top of the object and draw two incident rays traveling towards the mirror. Step 2: Once these incident rays strike the mirror, reflect them according to the two rules of reflection for convex mirrors. Step 3: Locate and mark the image of the top of the object. Step 4: Repeat the process for the bottom of the object.

13 Mirror Equation: - ray diagrams drawn to scale are useful for determining the location and size of the image formed by a mirror, but for accurate descriptions of an image, more analytical techniques are needed - the mirror equation gives the image distance if the object distance and the focal length of the mirror are known - the mirror equation is: Magnification: d d f o i - the magnification (m) of a mirror is the ratio of the image height (h i ) to the object height (h o ) - if the image height is less than the object height, (m) is less than one image height hi d m = = = - i object height h d - the value of m is positive if the image is upright and negative if the image is inverted o o

14 Summary of Sign Conventions: Object Distance: - d o is positive if the object is in front of the mirror (real object) - d o is negative if the object is behind the mirror (virtual object) Image Distance: - d i is positive if the image is in front of the mirror (real image) - d i is negative if the image is behind the mirror (virtual image) Focal Length: - f is positive for a concave mirror - f is negative for a convex mirror Magnification: - m is positive for an image that is upright with respect to the object - m is negative for an image that is inverted with respect to the object

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Reflection and Mirrors

Reflection and Mirrors Reflection and Mirrors 1 The Law of Reflection The angle of incidence equals the angle of reflection. 2 The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

The Reflection of Light

The Reflection of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

The Role of Light to Sight

The Role of Light to Sight Reflection The Role of Light to Sight The visual ability of humans and other animals is the result of the complex interaction of light, eyes and brain. Absence of Light Darkness. Luminous objects are objects

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line.

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line. LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Reflection Light: It is a form of energy which is needed to see things around us. It travels in a straight line. Nature of Light: Light

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Geometric Optics Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 36! The study of light divides itself into three fields geometric optics wave optics quantum optics! In the previous chapter,

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION CHAPTER- 10 LIGHT REFLECTION AND REFRACTION LIGHT Light is a form of energy, which enable us to see the object. Its speed is 3 10 8 m/s in vacuum. Light always travel in straight line. Reflection: The

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

Image Formed by a Plane Mirror. point object A, source of light

Image Formed by a Plane Mirror. point object A, source of light Today s agenda: Plane Mirrors. You must be able to draw ray diagrams for plane mirrors, and be able to calculate image and object heights, distances, and magnifications. Spherical Mirrors: concave and

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

P06 ray diagrams with concave mirrors and intro to problem solving.notebook

P06 ray diagrams with concave mirrors and intro to problem solving.notebook Ray Diagrams Concave Mirror A concave mirror is a converging mirror because parallel rays will. For any object, millions and millions of rays are reflected in all directions. Some of these rays hit the

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

P H Y L A B 1 : G E O M E T R I C O P T I C S

P H Y L A B 1 : G E O M E T R I C O P T I C S P H Y 1 4 3 L A B 1 : G E O M E T R I C O P T I C S Introduction Optics is the study of the way light interacts with other objects. This behavior can be extremely complicated. However, if the objects in

More information

Propagation and Reflection of Light

Propagation and Reflection of Light Al-Saudia Virtual Academy Online tuition Pakistan Online Tutor Pakistan Propagation and Reflection of Light Q1. Define reflection of light. State the laws of reflection. Ans: REFLECTION OF LIGHT: When

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Locating Images is Curved Mirrors

Locating Images is Curved Mirrors Locating Images is Curved Mirrors Part 1: Intro and Concave Mirrors Types of Mirrors Concave (Converging) mirror - the centre of the mirror bulges away from you (eg. makeup mirror, car headlight, flashlight)

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Discover how to solve this problem in this chapter.

Discover how to solve this problem in this chapter. A 2 cm tall object is 12 cm in front of a spherical mirror. A 1.2 cm tall erect image is then obtained. What kind of mirror is used (concave, plane or convex) and what is its focal length? www.totalsafes.co.uk/interior-convex-mirror-900mm.html

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

STD:- VIII PHYSICS SPHERICAL MIRRORS

STD:- VIII PHYSICS SPHERICAL MIRRORS STD:- VIII PHYSICS SPHERICAL MIRRORS A spherical mirror is a mirror with a curved reflective surface, which may be either convex (bulging outward) or concave (bulging inward). There are two types of spherical

More information

Spherical Mirrors Learning Outcomes

Spherical Mirrors Learning Outcomes 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors

Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

Reflection of Light. 1)Students will discover how light interacts with certain types of surfaces

Reflection of Light. 1)Students will discover how light interacts with certain types of surfaces Reflection of Light 1)Students will discover how light interacts with certain types of surfaces 2) Students will understand the laws governing the phenomenon of reflection 3) Discover how images are formed,

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich LECTURE 17 MIRRORS AND THIN LENS EQUATION Instructor: Kazumi Tolich Lecture 17 2 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions

More information

30/08/2016. Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors - Images

30/08/2016. Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors - Images 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses.

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses. 3/23/ LIGO mirror Announcements LIGO mirror Two exams down, one to go! No HW this week. Credit: LIGO Laboratory, Caltech Office hours: My office hours today from 2-3 pm (or make an appointment) Chapter

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image Ray Diagrams Reflection for concave mirror: Any incident ray traveling parallel to the principal axis on the way to the mirror will pass through the focal point upon reflection. Any incident ray passing

More information

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

SPH3UW Unit 7.2 Reflection Page 1 of 7

SPH3UW Unit 7.2 Reflection Page 1 of 7 SPH3UW Unit 7.2 Reflection Page 1 of 7 Notes Physics Tool box Law of Reflection On flat surfaces, the angle of incidence equals the angle of reflection. Diffuse Reflection when light is incident on a rough

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

Chapter 28 Reflection

Chapter 28 Reflection Lecture 31 Chapter 28 Reflection Midterm 2 Monday Nov. 15 Reflection We say light is reflected when it is returned into the medium from which it came the process is reflection. When light illuminates a

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Geometry of image formation

Geometry of image formation Geometry of image formation discussing here... mirrors definition of mirror types of mirrors aspects of plane mirror aspects of curved mirrors what is mirror? glass sheet with silvery / metallic coating

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Refraction at a single curved spherical surface

Refraction at a single curved spherical surface Refraction at a single curved spherical surface This is the beginning of a sequence of classes which will introduce simple and complex lens systems We will start with some terminology which will become

More information

11.1 CHARACTERISTICS OF LIGHT

11.1 CHARACTERISTICS OF LIGHT CHARACTERISTICS OF LIGHT 11.1 An electromagnetic wave has both electric and magnetic parts; it does not require a medium, and it travels at the speed of light. As wavelength decreases, energy increases.

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

Unit 3: Chapter 5. Reflection

Unit 3: Chapter 5. Reflection Unit 3: Chapter 5 Reflection The Law of Reflection To show how light is reflected from a solid surface, we can use ray diagrams. A ray diagram has 5 main components: this is the incoming ray that will

More information

Refraction & Concave Mirrors

Refraction & Concave Mirrors rev 05/2018 Equipment List Refraction & Concave Mirrors Qty Items Part Numbers 1 Light Source OS-8517 1 Ray Optics Set OS-8516 1 Optics Bench OS-8518 1 50 mm Concave Mirror, and Half Screen OS-8519 1 Viewing

More information

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2 Optics Homework Assignment #1 Textbook: Read Section 22-3 (Honors only) Textbook: Read Section 23-1 Online: Reflection Lesson 1a: * problems are for all students ** problems are for honors physics 1. *

More information