1 Introduction. For example, consider four points A, B, C, D which form a convex polygon in the plane.

Size: px
Start display at page:

Download "1 Introduction. For example, consider four points A, B, C, D which form a convex polygon in the plane."

Transcription

1 TOPCOM: Triangulations of Point Configurations and Oriented Matroids - Jörg Rambau - Handout by Clemens Pohle - Student Seminar in Combinatorics: Mathematical Software 1 Introduction TOPCOM is a package written by Jörg Rambau which can be used to compute the number of triangulations of a given point configuration. But it provides also much more functionality, for example it s possible to compute the chirotope of a point configuration or the flip graph component of a triangulation. Before we continue, we give the definition of a triangulation. For a d-dimensional configuration A R d of n points we call a sub-configuration σ A a k-simplex if it consists of k + 1 affinely independent points. For example, a 1-simplex consists of two different points, a 2-simplex is a non-degenerate triangle and a 3-simplex is a (not necessarily regular) tetrahedron. We call a collection T of d-simplices a triangulation if the convex hulls of the d-simplices cover the convex hull of A and if the d-simplices intersect properly, i.e. σ, τ T : conv(σ τ) = conv(σ) conv(τ). For example, consider four points A, B, C, D which form a convex polygon in the plane. Then {{A, B, C}, {A, C, D}} is a triangulation, but {{A, B, C}, {A, C, D}, {B, C, D}} is not since conv({a, B, C} {B, C, D}) conv({a, B, C}) conv({b, C, D}). 1

2 Figure 1: k-simplices for k {1, 2, 3} 2 The Chirotope of a Point Configuration ( The chirotope of a point configuration A is a function χ : A d+1) {+,, 0} which assigns every (d+1)-subset of A its orientation. If the d+1 points of such a subset σ are not affinely independent, then χ(σ) = 0. If the points of A are given in homogeneous coordinates, then χ can be computed as χ({a 1,..., a d+1 }) = sign(det(a 1,..., a d+1 )). An example for the chirotope of a point configuration can be found in figure 2. Chirotope χ: Figure 2: Four points in the plane and their chirotope The interesting and useful fact about chirotopes is that they contain all the necessary information to compute the triangulations of a given point configuration. Further, by using the chirotope, round-off errors can be avoided. We ll discuss the commands of TOPCOM with a concrete example. For that purpose, consider the following point configuration in the plane: A 0 = {(0, 0), (1, 1), (3, 1), (5, 0), (1, 5)} 2

3 The point configuration can be seen in figure 3. Figure 3: The 2-dimensional point configuration A 0 To use A 0 in TOPCOM, we have to save [[0,0,1],[1,1,1],[3,1,1],[5,0,1][1,5,1]] as a txt-file. Let s say we called this file example.txt. Note that we transformed the coordinates into homogeneous coordinates. The command points2chiro computes the chirotope of a given point configuration. To use it, type points2chiro < example.txt into the terminal. As output, we get 5,3: is the number of points, 3 is equal to d + 1 and the sequence of plus and minus signs corresponds to the function values of χ of the (d + 1)-subsets of A 0, in lexicographic order. So for example, the first minus indicates that the orientation of the triangle 012 = {(0, 0), (1, 1), (3, 1)} is negative. 3 Placing Triangulations and Flips The following algorithm describes a very easy way to obtain a triangulation for a given configuration of points. We will call such a triangulation a placing triangulation. In each step k, we maintain the following sets: 3

4 A k : set of points that is already triangulated T k : placing triangulation of A k F k : set of all boundary facets of T k that are interior in A We take the first (d + 1)-subset S in lexicographic order which is a d-simplex and set A d+1 = S, T d+1 = {S} and F d+1 = {F S F is a facet of S and not in the boundary of A}. In each step, we add a point a k+1 to A k and all simplices F a k+1 to T k for which F is in F k and visible from a k+1. This yields A k+1 and T k+1. Here, visible means that χ(f a k+1 ) χ(s ) for all S T k with F S. Then, the visible facets are removed from F k and the new non-boundary facets of the new simplices are added to F k, yielding F k+1. The process stops when F k is empty for some k. Since we add a point in each step, the process stops at the latest when k = n. It s also possible that the process stops earlier. In that case, we didn t use all of the points for our triangulation. To compute a placing triangulation, one can use the command points2placingtriang. So in our example, we have to write into the terminal. As output, we get points2placingtriang < example.txt {{0,1,2},{0,2,3},{1,2,4},{0,1,4},{2,3,4}} We see that this triangulation makes sense. First, the algorithm starts with the simplex 012. Then, the point 3 is added, but the only facet visible from 3 is the facet 02, so we only add the triangle 023. In the last step, the point 4 is added, and the triangles 014, 124 and 234 since the facets 01, 12 and 23 are visible from 4. If we change the order of the points, then we might get another triangulation. For example, let s exchange point 1 and point 4 in our example. Then the new triangulation is {{0, 1, 2}, {0, 2, 3}, {1, 2, 3}}, as shown in figure 4. Note that this triangulation does not use the point 4. If one wants a triangulation which uses all the points, then one can flip in the missing points. A flip is the exchange between the two possible triangulations in a subset of d + 2 points. The possible flips for the cases d = 1 and d = 2 are shown in figure 5. 4

5 Figure 4: It s possible that not all points are used in a placing triangulation 4 Flip graph Figure 5: The possible flips for d = 1 and d = 2 Let A be a point configuration and denote by V the set of all triangulations of A. Then we can define a graph G which has the set V as vertices and where two vertices are connected by an edge if the corresponding triangulations only differ by a single flip. TOPCOM uses a Breadth-First-Search procedure to explore the component of a flip graph and constructs the edges dynamically during the exploration. To find the edges of a placing triangulation, one can use the command points2flips. In our example, points2flips < example.txt outputs the following: [5,3:[[1,3,0,2]->0,[0,2,4,1]->0]] This means that we can either replace the triangles 012 and 023 by 013 and 123 or flip out the point 1 in the triangle 024. Using points2triangs, one can get all triangulations in the flip graph component of the corresponding placing triangulation. In our 5

6 example, there are five triangulations, and the flip graph can be seen in figure 6. Figure 6: The flip graph of our example If one wants only the triangulations which use all points, then one has to use the command points2finetriangs. If one is only interested in the number of triangulations, then one can use the commands points2ntriangs and points2nfinetriangs. For d = 2, it s known that the flip graph is connected, so by exploring the flip graph component of a triangulation one can find all triangulations. For d = 3 and d = 4, the problem of deciding wether the flip graphs of all point configurations in R d are connected is still open. For d 5, there are point configurations for which the flip graph is not connected. If the flip graph of a point configuration is not connected, then finding all triangulations gets more involved. We refer the interested reader to [1]. The command to get all triangulations is points2alltriangs. If one is only interested in the number of triangulations or the triangulations using all points, then one can use the commands points2nalltriangs, points2allfinetriangs and points2nallfinetriangs. 6

7 5 Further functionality of TOPCOM As we mentioned before, the chirotope contains all the necessary information. In TOP- COM, it s possible to work directly with the chirotope. In order to do so, one has to save the chirotope of a point configuration in a txt-file and replace points in each command with chiro. TOPCOM includes some commands to generate standard examples, for example cube d generates the d-dimensional cube and cyclic n d generates the cyclic d-polytope with n vertices. To use multiple commands at the same time, one has to connect them by a vertical bar. For example, points2chiro < example.txt chiro2nalltriangs computes the number of all triangulations of our example. The degree of a vertex in the flip graph of the cyclic 2-polytope with 6 vertices can be computed by For the complete list of commands, see [2]. References cyclic 6 2 points2nflips. [1] J. Rambau, TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical software (Beijing, 2002), pages World Sci. Publ., River Edge, NJ, 2002 [2] [3] J. A. de Loera, S. Hoşten, F. Santos, and B. Sturmfels. The polytope of all triangulations of a point configuration. Documenta Mathematika, 1: , 1996 [4] Francisco Santos, Triangulations of polytopes: personales.unican.es/santosf/talks/icm2006.pdf 7

TOPCOM: Triangulations of Point Configurations and Oriented Matroids

TOPCOM: Triangulations of Point Configurations and Oriented Matroids Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany JÖRG RAMBAU TOPCOM: Triangulations of Point Configurations and Oriented Matroids ZIB-Report 02-17 (April 2002)

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Geometric bistellar flips: the setting, the context and a construction

Geometric bistellar flips: the setting, the context and a construction Geometric bistellar flips: the setting, the context and a construction Francisco Santos Abstract. We give a self-contained introduction to the theory of secondary polytopes and geometric bistellar flips

More information

Enumerating Triangulations of Convex Polytopes

Enumerating Triangulations of Convex Polytopes Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 111 122 Enumerating Triangulations of Convex Polytopes Sergei Bespamyatnikh Department of Computer Science, University

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Tiling Polyhedra with Tetrahedra

Tiling Polyhedra with Tetrahedra CCCG 2012, Charlottetown, P.E.I., August 8 10, 2012 Tiling Polyhedra with Tetrahedra Andras Bezdek Braxton Carrigan Abstract When solving an algorithmic problem involving a polyhedron in R 3, it is common

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Triangulations: Applications, Structures, Algorithms

Triangulations: Applications, Structures, Algorithms Triangulations: Applications, Structures, Algorithms Jesús A. De Loera Dept. of Mathematics, University of California Davis, California, USA deloera@math.ucdavis.edu Jörg Rambau Konrad-Zuse-Zentrum für

More information

Triangulations Of Point Sets

Triangulations Of Point Sets Triangulations Of Point Sets Applications, Structures, Algorithms. Jesús A. De Loera Jörg Rambau Francisco Santos MSRI Summer school July 21 31, 2003 (Book under construction) Triangulations Of Point Sets

More information

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem Chapter 8 Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem 8.1 Shellings The notion of shellability is motivated by the desire to give an inductive

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

Elementary Combinatorial Topology

Elementary Combinatorial Topology Elementary Combinatorial Topology Frédéric Meunier Université Paris Est, CERMICS, Ecole des Ponts Paristech, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex E-mail address: frederic.meunier@cermics.enpc.fr

More information

Triangulations of polytopes

Triangulations of polytopes Triangulations of polytopes Francisco Santos Universidad de Cantabria http://personales.unican.es/santosf Outline of the talk 1. Triangulations of polytopes 2. Geometric bistellar flips 3. Regular and

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

arxiv: v2 [math.co] 24 Aug 2016

arxiv: v2 [math.co] 24 Aug 2016 Slicing and dicing polytopes arxiv:1608.05372v2 [math.co] 24 Aug 2016 Patrik Norén June 23, 2018 Abstract Using tropical convexity Dochtermann, Fink, and Sanyal proved that regular fine mixed subdivisions

More information

Geometric Computations for Simulation

Geometric Computations for Simulation 1 Geometric Computations for Simulation David E. Johnson I. INTRODUCTION A static virtual world would be boring and unlikely to draw in a user enough to create a sense of immersion. Simulation allows things

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

THE HYPERDETERMINANT AND TRIANGULATIONS OF THE 4-CUBE

THE HYPERDETERMINANT AND TRIANGULATIONS OF THE 4-CUBE MATHEMATICS OF COMPUTATION Volume 77, Number 263, July 2008, Pages 1653 1679 S 0025-5718(08)02073-5 Article electronically published on February 4, 2008 THE HYPERDETERMINANT AND TRIANGULATIONS OF THE 4-CUBE

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

Finding Small Triangulations of Polytope Boundaries Is Hard

Finding Small Triangulations of Polytope Boundaries Is Hard Discrete Comput Geom 24:503 517 (2000) DOI: 10.1007/s004540010052 Discrete & Computational Geometry 2000 Springer-Verlag New York Inc. Finding Small Triangulations of Polytope Boundaries Is Hard J. Richter-Gebert

More information

On the Size of Higher-Dimensional Triangulations

On the Size of Higher-Dimensional Triangulations Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 On the Size of Higher-Dimensional Triangulations PETER BRASS Abstract. I show that there are sets of n points in three dimensions,

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

LOWER BOUNDS FOR SIMPLICIAL COVERS AND TRIANGULATIONS OF CUBES

LOWER BOUNDS FOR SIMPLICIAL COVERS AND TRIANGULATIONS OF CUBES LOWER BOUNDS FOR SIMPLICIAL COVERS AND TRIANGULATIONS OF CUBES ADAM BLISS AND FRANCIS EDWARD SU Abstract. We show that the size of a minimal simplicial cover of a polytope P is a lower bound for the size

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

Solutions to problem set 1

Solutions to problem set 1 Massachusetts Institute of Technology Handout 5 6.838: Geometric Computation October 4, 2001 Professors Piotr Indyk and Seth Teller Solutions to problem set 1 (mostly taken from the solution set of Jan

More information

Classification of Six-Point Metrics

Classification of Six-Point Metrics Classification of Six-Point Metrics Bernd Sturmfels and Josephine Yu Department of Mathematics University of California Berkeley, CA 94720 [bernd,jyu]@mathberkeleyedu Submitted: Mar 10, 2004; Accepted:

More information

Geometric Algorithms in Three Dimensions Tutorial. FSP Seminar, Strobl,

Geometric Algorithms in Three Dimensions Tutorial. FSP Seminar, Strobl, Geometric Algorithms in Three Dimensions Tutorial FSP Seminar, Strobl, 22.06.2006 Why Algorithms in Three and Higher Dimensions Which algorithms (convex hulls, triangulations etc.) can be generalized to

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Sudesh Kalyanswamy 1 Introduction Euler characteristic is a very important topological property which started out as nothing more than a simple formula involving polyhedra. Euler observed

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

A Topologically Convex Vertex-Ununfoldable Polyhedron

A Topologically Convex Vertex-Ununfoldable Polyhedron A Topologically Convex Vertex-Ununfoldable Polyhedron Zachary Abel 1 Erik D. Demaine 2 Martin L. Demaine 2 1 MIT Department of Mathematics 2 MIT CSAIL CCCG 2011 Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable

More information

Geometry. Tropical Secant Varieties of Linear Spaces. Mike Develin. 1. Introduction

Geometry. Tropical Secant Varieties of Linear Spaces. Mike Develin. 1. Introduction Discrete Comput Geom 35:117 129 (2006) DOI: 101007/s00454-005-1182-2 Discrete & Computational Geometry 2005 Springer Science+Business Media, Inc Tropical Secant Varieties of Linear Spaces Mike Develin

More information

Classification of Ehrhart quasi-polynomials of half-integral polygons

Classification of Ehrhart quasi-polynomials of half-integral polygons Classification of Ehrhart quasi-polynomials of half-integral polygons A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

Multi-tiling and equidecomposability of polytopes by lattice translates

Multi-tiling and equidecomposability of polytopes by lattice translates Multi-tiling and equidecomposability of polytopes by lattice translates Bochen Liu Bar-Ilan University, Israel Joint work with Nir Lev 1 / 19 Multi-tiling Let A R d be a polytope and denote χ A as its

More information

Sperner and Tucker s lemma

Sperner and Tucker s lemma Sperner and Tucker s lemma Frédéric Meunier February 8th 2010 Ecole des Ponts, France Sperner s lemma Brouwer s theorem Let B be a d-dimensional ball and f be a continuous B B map. Then always Theorem

More information

Lower Bounds for Simplicial Covers and Triangulations of Cubes

Lower Bounds for Simplicial Covers and Triangulations of Cubes Discrete Comput Geom 33:669 686 (2005) DOI: 10.1007/s00454-004-1128-0 Discrete & Computational Geometry 2004 Springer Science+Business Media, Inc. Lower Bounds for Simplicial Covers and Triangulations

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

arxiv: v1 [math.co] 26 Apr 2013

arxiv: v1 [math.co] 26 Apr 2013 UNIMODULAR TRIANGULATIONS OF DILATED 3-POLYTOPES arxiv:1304.7296v1 [math.co] 26 Apr 2013 FRANCISCO SANTOS AND GÜNTER M. ZIEGLER Abstract. A seminal result in the theory of toric varieties, due to Knudsen,

More information

Weierstraß-Institut. im Forschungsverbund Berlin e.v. Preprint ISSN

Weierstraß-Institut. im Forschungsverbund Berlin e.v. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.v. Preprint ISSN 0946 8633 The Existence of Triangulations of Non-convex Polyhedra without New Vertices Hang Si

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Triangulations Of Point Sets

Triangulations Of Point Sets Triangulations Of Point Sets Applications, Structures, Algorithms Jesús A. De Loera Dept. of Mathematics, University of California Davis, California, USA deloera@math.ucdavis.edu Jörg Rambau Konrad-Zuse-Zentrum

More information

arxiv: v2 [math.co] 4 Jul 2018

arxiv: v2 [math.co] 4 Jul 2018 SMOOTH CENTRALLY SYMMETRIC POLYTOPES IN DIMENSION 3 ARE IDP MATTHIAS BECK, CHRISTIAN HAASE, AKIHIRO HIGASHITANI, JOHANNES HOFSCHEIER, KATHARINA JOCHEMKO, LUKAS KATTHÄN, AND MATEUSZ MICHAŁEK arxiv:802.0046v2

More information

TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS

TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS Abstract. The notions of convexity and convex polytopes are introduced in the setting of tropical geometry. Combinatorial types of tropical polytopes

More information

Geometry. Visibility Complexes and the Baues Problem for Triangulations in the Plane. P. H. Edelman and V. Reiner. 1. Introduction

Geometry. Visibility Complexes and the Baues Problem for Triangulations in the Plane. P. H. Edelman and V. Reiner. 1. Introduction Discrete Comput Geom 20:35 59 (1998) Discrete & Computational Geometry 1998 Springer-Verlag New York Inc. Visibility Complexes and the Baues Problem for Triangulations in the Plane P. H. Edelman and V.

More information

Lattice points in Minkowski sums

Lattice points in Minkowski sums Lattice points in Minkowski sums Christian Haase, Benjamin Nill, Andreas affenholz Institut für Mathematik, Arnimallee 3, 14195 Berlin, Germany {christian.haase,nill,paffenholz}@math.fu-berlin.de Francisco

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

4.2 Simplicial Homology Groups

4.2 Simplicial Homology Groups 4.2. SIMPLICIAL HOMOLOGY GROUPS 93 4.2 Simplicial Homology Groups 4.2.1 Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Chapter 10 projective toric varieties and polytopes: definitions 10.1 Introduction Tori varieties are algebraic varieties related to the study of sparse polynomials.

More information

Three-Dimensional α Shapes

Three-Dimensional α Shapes Herbert Edelsbrunner and Ernst P. Mücke ACM Tran. Graph. 13(1), 1994 20 September 2005 1 2 α-complexes Edelsbrunner s Algorithm 3 Properties Surface Reconstruction Shape Question Given a set of points,

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Triangulations Of Point Sets

Triangulations Of Point Sets Triangulations Of Point Sets Applications, Structures, Algorithms Jesús A. De Loera Dept. of Mathematics, University of California Davis, California, USA deloera@math.ucdavis.edu Jörg Rambau Konrad-Zuse-Zentrum

More information

Homological theory of polytopes. Joseph Gubeladze San Francisco State University

Homological theory of polytopes. Joseph Gubeladze San Francisco State University Homological theory of polytopes Joseph Gubeladze San Francisco State University The objects of the category of polytopes, denoted Pol, are convex polytopes and the morphisms are the affine maps between

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

A NEW VIEW ON THE CAYLEY TRICK

A NEW VIEW ON THE CAYLEY TRICK A NEW VIEW ON THE CAYLEY TRICK KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK (ZIB) TAKUSTR. 7 D-14195 BERLIN GERMANY email: rambau@zib.de joint work with: BIRKETT HUBER, FRANCISCO SANTOS, Mathematical Sciences

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 On the Complexity of Polytopes in LI( Komei Fuuda May Szedlá July, 018 arxiv:170610114v1 [cscc] 30 Jun 017 Abstract In this paper we consider polytopes given by systems of n inequalities in d variables,

More information

TWO-PLAYER ENVY-FREE MULTI-CAKE DIVISION

TWO-PLAYER ENVY-FREE MULTI-CAKE DIVISION TWO-PLAYER ENVY-FREE MULTI-CAKE DIVISION JOHN CLOUTIER DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA AT SANTA BARBARA SANTA BARBARA CA 906 KATHRYN L. NYMAN DEPARTMENT OF MATHEMATICS AND STATISTICS

More information

Polytopes With Large Signature

Polytopes With Large Signature Polytopes With Large Signature Joint work with Michael Joswig Nikolaus Witte TU-Berlin / TU-Darmstadt witte@math.tu-berlin.de Algebraic and Geometric Combinatorics, Anogia 2005 Outline 1 Introduction Motivation

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Lecture 3 Randomized Algorithms

Lecture 3 Randomized Algorithms Lecture 3 Randomized Algorithms Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology Randomized

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

The Gift Wrapping Method in PHCpack

The Gift Wrapping Method in PHCpack The Gift Wrapping Method in PHCpack Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES

A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES PACIFIC JOURNAL OF MATHEMATICS Vol. 46, No. 2, 1973 A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES DAVID BARNETTE A d polytope is defined to be a cz-dimensional set that is the convex hull

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

) for all p. This means however, that the map ϕ 0 descends to the quotient

) for all p. This means however, that the map ϕ 0 descends to the quotient Solutions to sheet 6 Solution to exercise 1: (a) Let M be the Möbius strip obtained by a suitable identification of two opposite sides of the unit square [0, 1] 2. We can identify the boundary M with S

More information

A result on flip-graph connectivity

A result on flip-graph connectivity Lionel Pournin 1 A result on flip-graph connectivity June 21, 2011 Abstract. A polyhedral subdivision of a d-dimensional point configuration A is k-regular if it is projected from the boundary complex

More information

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Yuanxin Liu and Jack Snoeyink Joshua Levine April 18, 2007 Computer Science and Engineering, The Ohio State University 1 / 24

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Distance and Collision Detection

Distance and Collision Detection Distance and Collision Detection Efi Fogel efif@post.tau.ac.il School of computer science, Tel Aviv University Fall 2003/4 Motion Planning seminar 1/33 The Papers A Fast Procedure for Computing the Distance

More information

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11 Search and Intersection O Rourke, Chapter 7 de Berg et al., Chapter 11 Announcements Assignment 3 web-page has been updated: Additional extra credit Hints for managing a dynamic half-edge representation

More information

arxiv: v1 [math.co] 28 Nov 2007

arxiv: v1 [math.co] 28 Nov 2007 LATTICE OINTS IN MINKOWSKI SUMS CHRISTIAN HAASE, BENJAMIN NILL, ANDREAS AFFENHOLZ, AND FRANCISCO SANTOS arxiv:0711.4393v1 [math.co] 28 Nov 2007 ABSTRACT. Fakhruddin has proved that for two lattice polygons

More information

CS195H Homework 5. Due:March 12th, 2015

CS195H Homework 5. Due:March 12th, 2015 CS195H Homework 5 Due:March 12th, 2015 As usual, please work in pairs. Math Stuff For us, a surface is a finite collection of triangles (or other polygons, but let s stick with triangles for now) with

More information

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi 1. Euler Characteristic of Surfaces Leonhard Euler noticed that the number v of vertices, the number e of edges and

More information

arxiv: v1 [math.co] 27 Feb 2015

arxiv: v1 [math.co] 27 Feb 2015 Mode Poset Probability Polytopes Guido Montúfar 1 and Johannes Rauh 2 arxiv:1503.00572v1 [math.co] 27 Feb 2015 1 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany,

More information

arxiv: v1 [cs.cg] 7 Oct 2017

arxiv: v1 [cs.cg] 7 Oct 2017 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations Anna Lubiw 1, Zuzana Masárová 2, and Uli Wagner 2 arxiv:1710.02741v1 [cs.cg] 7 Oct 2017 1 School of Computer Science, University

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Question 6 in [, Section 6] asks whether the scheme is connected. In our example this is not the case. Baues posets appear also as important objects i

Question 6 in [, Section 6] asks whether the scheme is connected. In our example this is not the case. Baues posets appear also as important objects i A point set whose space of triangulations is disconnected. Francisco Santos Departamento de Matematicas, Estadstica y Computacion Universidad de Cantabria, E-3907, Santander, SPAIN. santos@matesco.unican.es

More information

PUBLICATION LIST ( ) Jesús Antonio De Loera

PUBLICATION LIST ( ) Jesús Antonio De Loera PUBLICATION LIST (1995-2013) Jesús Antonio De Loera Books (1) (with F. Santos and J. Rambau) Triangulations: Structure for Algorithms and Applications, No. 25 of the series Algorithms and Computation in

More information

The Newton polytope of implicit curves. Ioannis Z. Emiris National University of Athens, Greece

The Newton polytope of implicit curves. Ioannis Z. Emiris National University of Athens, Greece The Newton polytope of implicit curves Ioannis Z. Emiris National University of Athens, Greece Joint work with: Christos Konaxis (Athens) and Leonidas Palios (Ioannina) Oberwolfach Nov 07 Outline 03. Toric

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY MOSCOW MATHEMATICAL JOURNAL Volume 3, Number 3, July September 2003, Pages 1013 1037 L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY A. KHOVANSKII AND D. NOVIKOV Dedicated to Vladimir Igorevich

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 2: THE SIMPLICIAL COMPLEX DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU

More information

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P. Title Author(s) The orientability of small covers and coloring simple polytopes Nishimura, Yasuzo; Nakayama, Hisashi Citation Osaka Journal of Mathematics. 42(1) P.243-P.256 Issue Date 2005-03 Text Version

More information