Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11

Size: px
Start display at page:

Download "Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11"

Transcription

1 Search and Intersection O Rourke, Chapter 7 de Berg et al., Chapter 11

2 Announcements Assignment 3 web-page has been updated: Additional extra credit Hints for managing a dynamic half-edge representation

3 Outline Review Duality Linear Programming Half-Spaces and Convex Hulls (2D)

4 Duality Definition: Given a point p = (α, β) in the plane, define the dual line to be the (non-vertical) line with equation: p = x, y y = 2αx β Given a line L = x, y y = mx + b, define the dual point to be the point with coordinates: L = m 2, b

5 Duality Properties: Given a point p and lines L, L 1, and L 2 : p = p and L = L. p L iff. L p. p L 1 L 2 iff. L 1, L 2 p. L is below/above p iff. L is above/below p. p is on the parabola y = x 2 iff. p is tangent to the parabola at p.

6 Duality Properties: Given a point p = α, β : The slope of p is the slope of the tangent to the parabola at (α, α 2 ). p passes through the point α, α 2 + α 2 β.

7 Linear Programming Goal: Given a set of linear constraints: C i = p p, n i d i and a linear energy function: E p = p, n + d we would like to find the point p that satisfies the constraints and minimizes the energy.

8 Linear Programming Approach: Since the constraints are linear, each one defines a half-space of valid solutions. The intersection of these half-spaces is convex. E Since the energy is linear, it has a constant gradient E pointing away from the minimum. The minimizer is the point in the convex region which is extreme along direction n.

9 Linear Programming Approach: Since the constraints are linear, each one defines a half-space of valid solutions. The intersection of these half-spaces is convex. Since the energy is linear, it has a constant gradient E pointing away from the minimum. The minimizer is the point in the convex region which is extreme along direction n. E How do we compute the convex hull corresponding to the intersection of half spaces?

10 Outline Review Half-Spaces and Convex Hulls (2D)

11 Half-Spaces and Convex Hulls (2D) Notation: Given a set of points, P = {p 1,, p n }: Denote the convex hull of the points as: H(P) Denote the upper hull of the points as: U(P) Denote the lower hull of the points as: L(P) P H(P) U(P) L(P)

12 Half-Spaces and Convex Hulls (2D) Goal: Given a set of half-spaces, represented by directed lines {L 1,, L n } compute the convex hull, H, corresponding to the boundary of their intersection. L k H L 3 L 1 L 2

13 Half-Spaces and Convex Hulls (2D) Approach: Consider the upper/lower hulls, U/L, independently. For the upper (resp. lower) part, assume all line segments have (0, ) (resp. (0, )) to their left. L k L 7 L 6 L 5 L 4 H L 3 L 3 L 1 L 2 U L 1 L 2

14 Half-Spaces and Convex Hulls (2D) Approach: Consider the upper/lower hulls, U/L, independently. An edge e U is the set of points on a line that are below all the other lines: e L i and Below v, L k k i, v e Dually: L i v and Below L k, v k i, v e Lines v, with v e, pass through L i and have all other L 1,, L n below. L L L L i is a vertex of: U = U L 1,, L n U L 4 L 3 L 1 L 2

15 Half-Spaces and Convex Hulls (2D) Approach: Consider the upper/lower hulls, U/L, independently. An edge e U is the set of points on a line that are below all the other lines: e L i and Below v, L k k i, v e Dually: L i v and Below L k, v k i, v e L 3 L 5 L 7 L 6 L 5 L 4 L 1 L 2 U L 4 L 6 L 7 U L 3 L 1 L 2

16 Half-Spaces and Convex Hulls (2D) Approach: Consider the upper/lower hulls, U/L, independently. A vertex v U lies on the intersection of two lines and is below all the other lines: v L i L j and Below(v, L k ) k i, j Dually: L i, L j v and Below L k, v k i, j The line segment L i L j has all other L 1,, L n L i L j is an edge of U = U L 1,, L n L 7 L 6 L 5 below. L 4 L 3 U L 1 L 2

17 Half-Spaces and Convex Hulls (2D) Approach: Consider the upper/lower hulls, U/L, independently. A vertex v U lies on the intersection of two lines and is below all the other lines: v L i L j and Below(v, L k ) k i, j Dually: L i, L j v and Below L k, v k i, j L 1 L 3 L 1 L 2 L 3 L 3 L 5 U L 4 L 5 L 5 L 6 L 6 L 6 L 7 L 7 L 7 L 6 U L 5 L 4 L 3 L 1 L 2

18 Half-Spaces and Convex Hulls (2D) Implementation: UpperHull( {L 1,, L n } ) {v 1,, v m } UpperHull( {L 1,, L n } ) return v m,, v 1 This gives the lines in the (CCW) order in which they appear on the intersection of half-spaces. L 1 L 3 L 1 L 2 L 3 L 3 L 5 U L 4 L 5 L 5 L 6 L 6 L 6 L 7 L 7 L 7 L 6 U L 5 L 4 L 3 L 1 L 2

19 Half-Spaces and Convex Hulls (2D) Implementation: UpperHull( {L 1,, L n } ) {v 1,, v m } UpperHull( {L 1,, L n } ) return v m,, v 1 LowerHull( {L 1,, L n } ) {v 1,, v m } LowerHull( {L 1,, L n } ) return v 1,, v m L 1 L 1 L 2 L L 2 L 3 L 2 L 4 L 4 L 1 L 2 L L 3 L 4

20 Half-Spaces and Convex Hulls (2D) Implementation: UpperHull( {L 1,, L n } ) {v 1,, v m } UpperHull( {L 1,, L n } ) return v m,, v 1 LowerHull( {L 1,, L n } ) {v 1,, v m } LowerHull( {L 1,, L n } ) return v 1,, v m Taking the intersection (in linear time), we get the convex hull. U L

21 Half-Spaces and Convex Hulls (2D) Implementation: UpperHull( We have {Lto 1, separately, L n } ) compute the upper and lower {v 1,, hulls v m } because UpperHull( the dual {L 1, map, L n } is ) undefined return v (discontinuous) m,, v 1 as lines approach vertical. LowerHull( Is there an {L alternate 1,, L n definition } ) of duality that would allow {v 1,, us v m to } compute LowerHull( the {L hulls 1, simultaneously?, L n } ) return v No! The 1, convex, v m hull of the dual cannot be Taking empty, the but intersection the intersection of half-spaces can be. L (in linear time), we get the convex hull. U

22 Half-Spaces and Convex Hulls Writing p R n as: p = α 1,, α n 1, β = α, β we can define duality in n-dimensional space. Given a point p = ( α, β), define the dual hyperplane to be the (non-vertical) plane: p = x, y y = 2 x, α β Given a plane H = x, y y = m, x + b, define the dual point to be the point with coordinates: H = m 2, b

23 Half-Spaces and Convex Hulls Writing p R n as: p = α 1,, α n 1, β = α, β we The can same define properties duality hold in in n-dimensional n-dimensions: space. p = p and H = H. Given p a H point iff. H p = p ( α,. β), define the dual hyperplane p to H be the (non-vertical) plane: 1 H p 2 iff. H 1, H 2 p. H is below/above = x, p y iff. y H = is 2 above/below x, α β p. p = ( x, y) is on the parabola y = x 2 iff. p is tangent to the parabola at p. Given a plane H = x, y y = m, x + b, define the dual point to be the point with coordinates: H = m 2, b

24 Half-Spaces and Convex Hulls In 3D: Let {H 1,, H m } be oriented hyper-planes in R 3 with (0, 0, ) to the left and let U be the intersection of the associate half-spaces. H i, H j, H k is a triangle of U H 1,, H m H i H j H k is a vertex of U.

25 Half-Spaces and Convex Hulls In 3D: Let {H 1,, H m } be oriented hyper-planes in R 3 with (0, 0, ) to the left and let U be the intersection of the associate half-spaces. H i, H j is an edge of U H 1,, H m H i H j contains one edge of U.

26 Half-Spaces and Convex Hulls In 3D: Let {H 1,, H m } be oriented hyper-planes in R 3 with (0, 0, ) to the left and let U be the intersection of the associate half-spaces. H i is a vertex of U H 1,, H m H i contains one face of U.

27 Half-Spaces and Convex Hulls More Generally: Let {H 1,, H m } be oriented hyper-planes in R n with (0,, 0, ) to the left and let U be the intersection of the associate half-spaces. H i1,, H ik is a k-simplex of U H 1,, H m k j=1 H ij contains one (n d)-dimensional face of U.

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

Linear Programming. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Linear Programming. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Linear Programming 2015 Goodrich and Tamassia 1 Formulating the Problem q The function

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann 10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann During the course of this lecture we encountered several situations where it was convenient to assume

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Math 1313 Prerequisites/Test 1 Review

Math 1313 Prerequisites/Test 1 Review Math 1313 Prerequisites/Test 1 Review Test 1 (Prerequisite Test) is the only exam that can be done from ANYWHERE online. Two attempts. See Online Assignments in your CASA account. Note the deadline too.

More information

Lecture 3 Randomized Algorithms

Lecture 3 Randomized Algorithms Lecture 3 Randomized Algorithms Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology Randomized

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

We have already studied equations of the line. There are several forms:

We have already studied equations of the line. There are several forms: Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

notes13.1inclass May 01, 2015

notes13.1inclass May 01, 2015 Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

We have already studied equations of the line. There are several forms:

We have already studied equations of the line. There are several forms: Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Convex Sets. Pontus Giselsson

Convex Sets. Pontus Giselsson Convex Sets Pontus Giselsson 1 Today s lecture convex sets convex, affine, conical hulls closure, interior, relative interior, boundary, relative boundary separating and supporting hyperplane theorems

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

Convex Optimization. Chapter 1 - chapter 2.2

Convex Optimization. Chapter 1 - chapter 2.2 Convex Optimization Chapter 1 - chapter 2.2 Introduction In optimization literatures, one will frequently encounter terms like linear programming, convex set convex cone, convex hull, semidefinite cone

More information

6.5. SYSTEMS OF INEQUALITIES

6.5. SYSTEMS OF INEQUALITIES 6.5. SYSTEMS OF INEQUALITIES What You Should Learn Sketch the graphs of inequalities in two variables. Solve systems of inequalities. Use systems of inequalities in two variables to model and solve real-life

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

Minimal mutation-infinite quivers. Introduction. Quivers. John Lawson. Workshop on Cluster Algebras and finite dimensional algebras

Minimal mutation-infinite quivers. Introduction. Quivers. John Lawson. Workshop on Cluster Algebras and finite dimensional algebras Durham University John Lawson Workshop on Cluster Algebras and finite dimensional algebras John Lawson Thank organisers for the conference. Durham University Workshop on Cluster Algebras and finite dimensional

More information

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Course Title: Linear Programming Full Marks: 50 Course No. : Math 403 Pass Mark: 17.5 Level

More information

Dirichlet Voronoi Diagrams and Delaunay Triangulations

Dirichlet Voronoi Diagrams and Delaunay Triangulations Chapter 9 Dirichlet Voronoi Diagrams and Delaunay Triangulations 9.1 Dirichlet Voronoi Diagrams In this chapter we present very briefly the concepts of a Voronoi diagram and of a Delaunay triangulation.

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Lecture 3: Totally Unimodularity and Network Flows

Lecture 3: Totally Unimodularity and Network Flows Lecture 3: Totally Unimodularity and Network Flows (3 units) Outline Properties of Easy Problems Totally Unimodular Matrix Minimum Cost Network Flows Dijkstra Algorithm for Shortest Path Problem Ford-Fulkerson

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Design and Analysis of Algorithms (V)

Design and Analysis of Algorithms (V) Design and Analysis of Algorithms (V) An Introduction to Linear Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Homework Assignment 2 is announced! (deadline Apr. 10) Linear Programming

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

! Linear programming"! Duality "! Smallest enclosing disk"

! Linear programming! Duality ! Smallest enclosing disk ! Linear programming"! Duality "! Smallest enclosing disk" 14. 24.! Define:" " i types of foods (1!i!d).! " j types of vitamins (1!j!n)." " x i the amount of food of type i." " a ji the amount of vitamin

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

11.3 The Tangent Line Problem

11.3 The Tangent Line Problem 11.3 The Tangent Line Problem Copyright Cengage Learning. All rights reserved. What You Should Learn Understand the tangent line problem. Use a tangent line to approximate the slope of a graph at a point.

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0 The Simplex Algorithm Chapter 5 Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Outline 1 Gaussian Elimination 2 Satisfiability with Simplex 3 General Simplex Form

More information

Computational Geometry 2D Convex Hulls. Joseph S. B. Mitchell Stony Brook University

Computational Geometry 2D Convex Hulls. Joseph S. B. Mitchell Stony Brook University Computational Geometry 2D Convex Hulls Joseph S. B. Mitchell Stony Brook University Comparing O(n), O(n log n), O(n 2 ) n n log n n² 2 10 10³ 10 2 10 10 4 2 20 10 6 2 20 10 6 20 2 20 2 10 7 2 40 10 12

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

A Linear Programming Approach to Concave Approximation and Value Function Iteration

A Linear Programming Approach to Concave Approximation and Value Function Iteration A Linear Programming Approach to Concave Approximation and Value Function Iteration Ronaldo Carpio Takashi Kamihigashi May 18, 2015 Abstract A basic task in numerical computation is to approximate a continuous

More information

Minimum norm points on polytope boundaries

Minimum norm points on polytope boundaries Minimum norm points on polytope boundaries David Bremner UNB December 20, 2013 Joint work with Yan Cui, Zhan Gao David Bremner (UNB) Minimum norm facet December 20, 2013 1 / 27 Outline 1 Notation 2 Maximum

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

Lecture 4: Planes, Interior Point Testing, Duality

Lecture 4: Planes, Interior Point Testing, Duality Lecture 4: Planes, Interior Point Testing, Duality Chris Tralie, Duke University 1/26/2016 Table of Contents Normals and Planes Interior Point Testing Duality Announcements Everyone got Mini 1 Part 1 in

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

PARABOLA SYNOPSIS 1.S is the focus and the line l is the directrix. If a variable point P is such that SP

PARABOLA SYNOPSIS 1.S is the focus and the line l is the directrix. If a variable point P is such that SP PARABOLA SYNOPSIS.S is the focus and the line l is the directrix. If a variable point P is such that SP PM = where PM is perpendicular to the directrix, then the locus of P is a parabola... S ax + hxy

More information

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Geometry Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Introduce the elements of geometry - Scalars - Vectors - Points

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Instructions: Answer all questions in the space provided (or attach additional pages as needed). You are permitted to use pencils/pens, one cheat sheet

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In

More information

Elaborations Example Exam 1 Wiskunde B 2018

Elaborations Example Exam 1 Wiskunde B 2018 Elaborations Example Exam 1 Wiskunde B 2018 Question 1a 4 points yields ; yields so in point A we have ;, so and This yields Question 1b 4 points ( ) ( ) ( ) Question 1c 4 points ( ). This is the normal

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information