A Topologically Convex Vertex-Ununfoldable Polyhedron

Size: px
Start display at page:

Download "A Topologically Convex Vertex-Ununfoldable Polyhedron"

Transcription

1 A Topologically Convex Vertex-Ununfoldable Polyhedron Zachary Abel 1 Erik D. Demaine 2 Martin L. Demaine 2 1 MIT Department of Mathematics 2 MIT CSAIL CCCG 2011 Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

2 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges Leave it connected Fold it flat Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

3 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected Fold it flat Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

4 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

5 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat: folds like a hinged figure Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

6 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat: folds like a hinged figure Crossing hinges are not allowed. Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

7 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat: folds like a hinged figure Crossing hinges are not allowed. Introduced in [DEEHO, SoCG 02] to be easier than edge-unfolding. Any edge-unfolding is a vertex-unfolding. Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

8 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat: folds like a hinged figure Crossing hinges are not allowed. Introduced in [DEEHO, SoCG 02] to be easier than edge-unfolding. Any edge-unfolding is a vertex-unfolding. Open Question Can every convex polyhedron be edge-unfolded? Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

9 Vertex-Unfolding Fundamentals Vertex-unfolding is like edge-unfolding Cut some edges: Cut all edges! Leave it connected with vertex hinges Fold it flat: folds like a hinged figure Crossing hinges are not allowed. Introduced in [DEEHO, SoCG 02] to be easier than edge-unfolding. Any edge-unfolding is a vertex-unfolding. Open Question (Weaker) Can every convex polyhedron be vertex-unfolded? Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

10 Previous Work: Positive Results Theorem (DEE+02) Any triangulated manifold can be vertex-unfolded. So the Witch s Hat Tetrahedron has a vertex unfolding (but no edge unfolding). Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

11 Previous Work: Positive Results Theorem (DEE+02) triangle shares one vertex with the previous triangle in the graphics pipeline. This result is in some sense best possible: an ideal rendering for a 2-vertex cache in which every adjacent pair of triangles shares two vertices is not always achievable, because there are triangulations whose dual graphs have no Hamiltonian path [1]. Figure 2(a) shows a vertex-unfolding of the triangulated surface of a cube, obtained from a facet path by our algorithm. Figure 2(b) shows a less regular vertex-unfolding. Note that the vertices do not necessarily lie on a line. Several more complex examples are shown in Figure 3. In our examples, we permit the triangles to touch along segments at the strip boundaries (as in Any triangulated manifold can be vertex-unfolded into a chain. So the Witch s Hat Tetrahedron has a vertex unfolding (but no edge (a) of the figure), but this could easily be avoided if desired so that each strip unfolding). boundary contains just the one vertex shared between the adjacent triangles. (a) (b) Figure 2. Laying out facet paths in vertical strips: (a) cube; Abel, Demaine, and Demaine (b) (MIT) 16-facet convex A Vertex-Ununfoldable polyhedron. Polyhedron CCCG / 8

12 Previous Work: Negative Results Not every convex polyhedron has a chain vertex-unfolding [DEE+02]: [Image source: Wikipedia] Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

13 Previous Work: Negative Results Not every convex polyhedron has a chain vertex-unfolding [DEE+02]: Not every polyhedron has a vertex-unfolding [BDDLOORW, CCCG 98]: [Image source: Wikipedia] Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

14 Local Obstructions to Vertex-Unfolding Suppose we have two vertices v 1, v 2 of different polygons with angles α 1, α 2 respectively. Observation 1 If α 1 + α 2 > 360, these vertices cannot be hinged in the plane without overlap. Observation 2 If α 1 + α 2 = 360, and the polygons are hinged at these vertices without overlap, then they must be oriented to exactly cover the 360 surrounding the hinge. Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

15 A New Vertex-Ununfoldable Polyhedron Topologically Convex B S 1 C S 2 β γ A α G D E S 3 F Polyhedron P A Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

16 A New Vertex-Ununfoldable Polyhedron Topologically Convex B S 1 C S 2 β γ A α G D E S 3 F Polyhedron P A Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

17 A More Local Example Topologically Convex C B D β γ E A α G F Polyhedron P Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

18 Looking Forward Which families of polyhedra have vertex unfoldings? Not always: All Polyhedra Topologically convex (and star-shaped) Open: Convex faces (and topologically convex) Convex Always: Triangulated Complexity of vertex-unfolding? Abel, Demaine, and Demaine (MIT) A Vertex-Ununfoldable Polyhedron CCCG / 8

Zipper Unfoldings of Polyhedral Complexes

Zipper Unfoldings of Polyhedral Complexes Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine Martin L. Demaine Anna Lubiw Arlo Shallit Jonah L. Shallit Abstract We explore which polyhedra and polyhedral complexes can be formed by folding

More information

VERTEX-UNFOLDINGS OF SIMPLICIAL MANIFOLDS. ERIK D. DEMAINE MIT Laboratory for Computer Science, 200 Technology

VERTEX-UNFOLDINGS OF SIMPLICIAL MANIFOLDS. ERIK D. DEMAINE MIT Laboratory for Computer Science, 200 Technology VERTEX-UNFOLDINGS OF SIMPLICIAL MANIFOLDS ERIK D. DEMAINE MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA. DAVID EPPSTEIN 1 Department of Information and Computer Science,

More information

Zipper Unfoldings of Polyhedral Complexes. Erik Demaine Martin Demaine Anna Lubiw Arlo Shallit Jonah Shallit

Zipper Unfoldings of Polyhedral Complexes. Erik Demaine Martin Demaine Anna Lubiw Arlo Shallit Jonah Shallit Zipper Unfoldings of Polyhedral Complexes Erik Demaine Martin Demaine Anna Lubiw Arlo Shallit Jonah Shallit 1 Unfolding Polyhedra Durer 1400 s Durer, 1498 snub cube 2 Unfolding Polyhedra Octahedron all

More information

Triangulations of hyperbolic 3-manifolds admitting strict angle structures

Triangulations of hyperbolic 3-manifolds admitting strict angle structures Triangulations of hyperbolic 3-manifolds admitting strict angle structures Craig D. Hodgson, J. Hyam Rubinstein and Henry Segerman segerman@unimelb.edu.au University of Melbourne January 4 th 2012 Ideal

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

arxiv: v1 [cs.cg] 2 Jul 2016

arxiv: v1 [cs.cg] 2 Jul 2016 Reversible Nets of Polyhedra Jin Akiyama 1, Stefan Langerman 2, and Kiyoko Matsunaga 1 arxiv:1607.00538v1 [cs.cg] 2 Jul 2016 1 Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete CCCG 2011, Toronto ON, August 10 12, 2011 Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete Zachary Abel Erik D. Demaine Abstract We prove that it is strongly NP-complete to decide whether a

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

EUCLID AND DEMAINE 11/12/2014 AWESOME TWIST-AND-CUT RESULTS EXPERIMENTS? WARM-UP THE ONE-CUT ARROW

EUCLID AND DEMAINE 11/12/2014 AWESOME TWIST-AND-CUT RESULTS EXPERIMENTS? WARM-UP THE ONE-CUT ARROW WARM-UP AWESOME TWIST-AND-CUT RESULTS FROM @HOME EXPERIMENTS? Can you cut an arrow -shape out of a piece of paper with a single straight-line cut? Step 1: Draw an arrow Step 2: Attempt to fold it up so

More information

Department of Mathematics, Box University of Washington Seattle, WA

Department of Mathematics, Box University of Washington Seattle, WA Geombinatorics 11(2001), 43 48. A starshaped polyhedron with no net Branko Grünbaum Department of Mathematics, Box 354350 University of Washington Seattle, WA 98195-4350 e-mail: grunbaum@math.washington.edu

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Folding Triangular and Hexagonal Mazes

Folding Triangular and Hexagonal Mazes Folding Triangular and Hexagonal Mazes Erik D. Demaine, Jason S. Ku, Madonna Yoder Abstract: We present algorithms to fold a convex sheet of paper into a maze formed by extruding from a floor, a subset

More information

Reversible Nets of Polyhedra

Reversible Nets of Polyhedra Reversible Nets of Polyhedra Jin Akiyama 1, Stefan Langerman 2(B), and Kiyoko Matsunaga 1 1 Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan ja@jin-akiyama.com, matsunaga@mathlab-jp.com

More information

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Convex Hull in 2D Shireen Y. Elhabian Aly A. Farag University of Louisville February 2010 Agenda Introduction Definitions of Convexity and Convex Hulls Naïve Algorithms

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions. Polyhedra Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Platonic Solids and the Euler Characteristic

Platonic Solids and the Euler Characteristic Platonic Solids and the Euler Characteristic Keith Jones Sanford Society, SUNY Oneonta September 2013 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

Unfolding Face-Neighborhood Convex Patches: Counterexamples and Positive Results

Unfolding Face-Neighborhood Convex Patches: Counterexamples and Positive Results CCCG 2013, Waterloo, Ontario, August 8 10, 2013 Unfolding Face-Neighborhood Convex Patches: Counterexamples and Positive Results Joseph O Rourke Abstract We address unsolved problems of unfolding polyhedra

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

Isotopy classes of crossing arcs in hyperbolic alternating links

Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova (Rutgers Isotopy University, Newark) classes of crossing arcs in hyperbolic 1 altern / 21 Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova Rutgers

More information

Research on the Common Developments of Plural Cuboids

Research on the Common Developments of Plural Cuboids Research on the Common Developments of Plural Cuboids By Xu Dawei A thesis submitted to School of Information Science, Japan Advanced Institute of Science and Technology, in partial fulfillment of the

More information

Ununfoldable Polyhedra with Convex Faces

Ununfoldable Polyhedra with Convex Faces Ununfoldable Polyhedra with Convex Faces arxiv:cs/9908003v2 [cs.cg] 27 Aug 2001 Marshall Bern Erik D. Demaine David Eppstein Eric Kuo Andrea Mantler Jack Snoeyink Abstract Unfolding a convex polyhedron

More information

arxiv:submit/ [cs.cg] 8 Jun 2011

arxiv:submit/ [cs.cg] 8 Jun 2011 Common Edge-Unzippings for Tetrahedra Joseph O Rourke arxiv:submit/68 [cs.cg] 8 Jun June 8, Abstract It is shown that there are examples of distinct polyhedra, each with a Hamiltonian path of edges, which

More information

Refold rigidity of convex polyhedra

Refold rigidity of convex polyhedra Refold rigidity of convex polyhedra The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Demaine, Erik

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares.

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares. Berkeley Math Circle Intermediate I, 1/23, 1/20, 2/6 Presenter: Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series Part 1 Polygon Angle Formula Let s start simple. How do we find the sum of

More information

Researches on polyhedra, Part I A.-L. Cauchy

Researches on polyhedra, Part I A.-L. Cauchy Researches on polyhedra, Part I A.-L. Cauchy Translated into English by Guy Inchbald, 2006 from the original: A.-L. Cauchy, Recherches sur les polyèdres. Première partie, Journal de l École Polytechnique,

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

CS Object Representation. Aditi Majumder, CS 112 Slide 1

CS Object Representation. Aditi Majumder, CS 112 Slide 1 CS 112 - Object Representation Aditi Majumder, CS 112 Slide 1 What is Graphics? Modeling Computer representation of the 3D world Analysis For efficient rendering For catering the model to different applications..

More information

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017 (1/26) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 1st and 3rd of November, 2017 1 Recall... planar graphs and Euler s formula 2 Non-planar

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Euler s Formula. Math 123. March 2006

Euler s Formula. Math 123. March 2006 Euler s Formula Math 123 March 2006 1 Purpose Although Euler s Formula is relatively simple to memorize, it is actually a manifestation of a very deep mathematical phenomenon. In this activity, we will

More information

Folding Polyominoes into (Poly)Cubes

Folding Polyominoes into (Poly)Cubes Folding Polyominoes into (Poly)Cubes Oswin Aichholzer Institute for Software Technology, Graz University of Technology, oaich@ist.tugraz.at. Michael Biro Department of Mathematics and Statistics, Swarthmore

More information

arxiv: v1 [cs.cg] 11 Sep 2007

arxiv: v1 [cs.cg] 11 Sep 2007 Unfolding Restricted Convex Caps Joseph O Rourke arxiv:0709.1647v1 [cs.cg] 11 Sep 2007 September 11, 2007 Abstract This paper details an algorithm for unfolding a class of convex polyhedra, where each

More information

NO-NET POLYHEDRA Branko Grünbaum

NO-NET POLYHEDRA Branko Grünbaum Geombinatorics 11(2002), 111 114 NO-NET POLYHEDRA Branko Grünbaum Department of Mathematics, Box 354350 University of Washington, Seattle, WA 98195-4350 e-mail: grunbaum@math.washington.edu Dedicated with

More information

Spiral Unfoldings of Convex Polyhedra

Spiral Unfoldings of Convex Polyhedra Spiral Unfoldings of Convex Polyhedra Joseph O Rourke arxiv:509.0032v2 [cs.cg] 9 Oct 205 October 20, 205 Abstract The notion of a spiral unfolding of a convex polyhedron, a special type of Hamiltonian

More information

Folding Polyominoes into (Poly)Cubes*

Folding Polyominoes into (Poly)Cubes* International Journal of Computational Geometry & Applications Vol. 28, No. 3 (2018) 197 226 c World Scientific Publishing Company DOI: 10.1142/S0218195918500048 Folding Polyominoes into (Poly)Cubes* Oswin

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

Unfolding Prismatoids as Convex Patches: Counterexamples and Positive Results

Unfolding Prismatoids as Convex Patches: Counterexamples and Positive Results CCCG 2012, Charlottetown, P.E.I., August 8 10, 2012 Unfolding Prismatoids as Convex Patches: Counterexamples and Positive Results Joseph O Rourke Abstract We address the unsolved problem of unfolding prismatoids

More information

A Generalization of the Source Unfolding of Convex Polyhedra

A Generalization of the Source Unfolding of Convex Polyhedra Generalization of the Source Unfolding of onvex Polyhedra The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. itation s Published Publisher

More information

arxiv: v1 [cs.cg] 9 May 2012

arxiv: v1 [cs.cg] 9 May 2012 CCCG 2012, Charlottetown, P.E.I., August 8 10, 2012 Unfolding Prismatoids as Convex Patches: Counterexamples and Positive Results Joseph O Rourke arxiv:1205.2048v1 [cs.cg] 9 May 2012 Abstract We address

More information

What is dimension? An investigation by Laura Escobar. Math Explorer s Club

What is dimension? An investigation by Laura Escobar. Math Explorer s Club What is dimension? An investigation by Laura Escobar Math Explorer s Club The goal of this activity is to introduce you to the notion of dimension. The movie Flatland is also a great way to learn about

More information

NESTED AND FULLY AUGMENTED LINKS

NESTED AND FULLY AUGMENTED LINKS NESTED AND FULLY AUGMENTED LINKS HAYLEY OLSON Abstract. This paper focuses on two subclasses of hyperbolic generalized fully augmented links: fully augmented links and nested links. The link complements

More information

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015 From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Summer April 6, 2015 Mathematical Analysis of Uniform Polyhedron Trapezohedron having 2n congruent right kite faces, 4n edges & 2n+2 vertices

More information

Partial Results on Convex Polyhedron Unfoldings

Partial Results on Convex Polyhedron Unfoldings Partial Results on Convex Polyhedron Unfoldings Brendan Lucier 004/1/11 Abstract This paper is submitted for credit in the Algorithms for Polyhedra course at the University of Waterloo. We discuss a long-standing

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

Araki, Yoshiaki; Horiyama, Takashi; Author(s) Ryuhei. Citation Lecture Notes in Computer Science, 8.

Araki, Yoshiaki; Horiyama, Takashi; Author(s) Ryuhei. Citation Lecture Notes in Computer Science, 8. JAIST Reposi https://dspace.j Title Common Unfolding of Regular Johnson-Zalgaller Solid Tetrahed Araki, Yoshiaki; Horiyama, Takashi; Author(s) Ryuhei Citation Lecture Notes in Computer Science, 8 Issue

More information

Universal Hinge Patterns for Folding Strips Efficiently into Any Grid Polyhedron

Universal Hinge Patterns for Folding Strips Efficiently into Any Grid Polyhedron Universal Hinge Patterns for Folding Strips Efficiently into Any Grid Polyhedron Nadia M. Benbernou 1, Erik D. Demaine 2, Martin L. Demaine 2, and Anna Lubiw 3 1 Google Inc., nbenbern@gmail.com. 2 MIT

More information

Appendix E Calculating Normal Vectors

Appendix E Calculating Normal Vectors OpenGL Programming Guide (Addison-Wesley Publishing Company) Appendix E Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use

More information

Ununfoldable polyhedra with convex faces

Ununfoldable polyhedra with convex faces Computational Geometry 24 (2003) 51 62 www.elsevier.com/locate/comgeo Ununfoldable polyhedra with convex faces Marshall Bern a, Erik D. Demaine b,, David Eppstein c, Eric Kuo d,1, Andrea Mantler e,2, Jack

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

MISCELLANEOUS SHAPES

MISCELLANEOUS SHAPES MISCELLANEOUS SHAPES 4.1. INTRODUCTION Five generic shapes of polygons have been usefully distinguished in the literature: convex, orthogonal, star, spiral, and monotone. 1 Convex polygons obviously do

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Paperclip graphs Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Abstract By taking a strip of paper and forming an S curve with paperclips

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

The Geometry of Carpentry and Joinery

The Geometry of Carpentry and Joinery The Geometry of Carpentry and Joinery Pat Morin and Jason Morrison School of Computer Science, Carleton University, 115 Colonel By Drive Ottawa, Ontario, CANADA K1S 5B6 Abstract In this paper we propose

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Common Unfoldings of Polyominoes and Polycubes

Common Unfoldings of Polyominoes and Polycubes Common Unfoldings of Polyominoes and Polycubes Greg Aloupis 1, Prosenjit K. Bose 3, Sébastien Collette 2, Erik D. Demaine 4, Martin L. Demaine 4, Karim Douïeb 3, Vida Dujmović 3, John Iacono 5, Stefan

More information

Key Question. Focus. What are the geometric properties of a regular tetrahedron, and how do these compare to a bird tetrahedron?

Key Question. Focus. What are the geometric properties of a regular tetrahedron, and how do these compare to a bird tetrahedron? Key Question What are the geometric properties of a regular tetrahedron, and how do these compare to a bird tetrahedron? Math Properties of polyhedra faces edges vertices Surface area Integrated Processes

More information

COMBINATORIAL GEOMETRY

COMBINATORIAL GEOMETRY 4 TH CLASS STARTER 9/23/14 3 RD CLASS STARTER 9/16/14 If you re allowed to make only a single, planar (flat) cut in order to slice a cube of cheese into two pieces, what shapes can the resulting faces

More information

The Art Gallery Problem

The Art Gallery Problem The Art Gallery Problem Connor Bohlken Nebraska Wesleyan University cbohlken@nebrwesleyan.edu May 11, 2016 Abstract Given a polygonal art gallery of n vertices, how many security guards are necessary to

More information

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE DHRUBAJIT CHOUDHURY, SUHYOUNG CHOI, AND GYE-SEON LEE Abstract. The aim of this work is to investigate properties

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2017 1 / 45 12.1 12.2. Planar graphs Definition

More information

arxiv: v1 [cs.cg] 1 Jul 2017

arxiv: v1 [cs.cg] 1 Jul 2017 CCCG 2017, Ottawa, Ontario, July 26 28, 2017 Angle-monotone Paths in Non-obtuse Triangulations Anna Lubiw Joseph O Rourke arxiv:1707.00219v1 [cs.cg] 1 Jul 2017 Abstract We reprove a result of Dehkordi,

More information

polygon meshes polygon meshes representation

polygon meshes polygon meshes representation polygon meshes computer graphics polygon meshes 2009 fabio pellacini 1 polygon meshes representation which representation is good? often triangles/quads only will work on triangles compact efficient for

More information

Unit I: Euler's Formula (and applications).

Unit I: Euler's Formula (and applications). Unit I: Euler's Formula (and applications). We define a roadmap to be a nonempty finite collection of possibly curvedlil1e segments in a piane, each with exactly two endpoints, such that if any pair of

More information

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015 Math 7H Professor: Padraic Bartlett Lecture 9: Trees and Art Galleries Week 10 UCSB 2015 1 Prelude: Graph Theory This talk uses the mathematical concepts of graphs from our previous class. In particular,

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen Grade VIII Mathematics Geometry Notes #GrowWithGreen Polygons can be classified according to their number of sides (or vertices). The sum of all the interior angles of an n -sided polygon is given by,

More information

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra.

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra. Unfolding polyhedra Ezra Miller University of Minnesota ezra@math.umn.edu University of Nebraska 27 April 2007 Outline 1. Edge unfolding 2. Cut sets 3. Source foldouts 4. Proof and algorithm 5. Complexity

More information

arxiv:cs/ v1 [cs.cg] 13 Jun 2001

arxiv:cs/ v1 [cs.cg] 13 Jun 2001 Hinged Kite Mirror Dissection David Eppstein arxiv:cs/0106032v1 [cs.cg] 13 Jun 2001 Abstract Any two polygons of equal area can be partitioned into congruent sets of polygonal pieces, and in many cases

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

H.Geometry Chapter 7 Definition Sheet

H.Geometry Chapter 7 Definition Sheet Section 7.1 (Part 1) Definition of: - A mapping of points in a figure to points in a resulting figure - Manipulating an original figure to get a new figure - The original figure - The resulting figure

More information

1 The Platonic Solids

1 The Platonic Solids 1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the best-known and most celebrated of all polyhedra the Platonic solids. Before doing so, however,

More information

Polyhedral Sculptures with Hyperbolic Paraboloids

Polyhedral Sculptures with Hyperbolic Paraboloids Polyhedral Sculptures with Hyperbolic Paraboloids Erik D. Demaine Martin L. Demaine Anna Lubiw Department of Computer Science University of Waterloo Waterloo Ontario N2L 3G 1 Canada Email: {eddemaine.mldemaine.alubiw}@uwaterloo.ca

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

EULER S FORMULA AND THE FIVE COLOR THEOREM

EULER S FORMULA AND THE FIVE COLOR THEOREM EULER S FORMULA AND THE FIVE COLOR THEOREM MIN JAE SONG Abstract. In this paper, we will define the necessary concepts to formulate map coloring problems. Then, we will prove Euler s formula and apply

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

Multiply using the grid method.

Multiply using the grid method. Multiply using the grid method. Learning Objective Read and plot coordinates in all quadrants DEFINITION Grid A pattern of horizontal and vertical lines, usually forming squares. DEFINITION Coordinate

More information

The Game of Criss-Cross

The Game of Criss-Cross Chapter 5 The Game of Criss-Cross Euler Characteristic ( ) Overview. The regions on a map and the faces of a cube both illustrate a very natural sort of situation: they are each examples of regions that

More information