λ = What About Elementary Inverses? Transformations II Scale Inverse Shear Inverse λ = λ 0 1 CS Scale Shear CS5600 Computer Graphics by

Size: px
Start display at page:

Download "λ = What About Elementary Inverses? Transformations II Scale Inverse Shear Inverse λ = λ 0 1 CS Scale Shear CS5600 Computer Graphics by"

Transcription

1 Lecture Set 6 Transformations II CS56 Comuter Grahics b Rich Riesenfeld March 23 Scale Shear What About Elementar Inverses? Rotation Translation CS56 2 Scale Inverse Shear Inverse λ λ λ λ CS56 3 b a b a CS56 4 CS56

2 CS56 2 CS56 5 Shear Inverse b b a a CS56 6 Rotation Inverse - - (- (- -(- (- - CS56 7 Rotation Inverse + + ( ( ( ( CS56 8 Rotation Inverse - -

3 Translation Inverse Translation Inverse d ( d + d d CS56 9 d d CS56 (, Shear in then in (, (, ( a, ( + a, (, Shear in then in (, (, ( a, ( + a, (, (, (, (, (, (, (, (, (, + b ( a, ab ( + a + ab, + b (, + b ( a, + ab ( + a, + b + ab (, (, (, b (, (+ ab, b CS56 (, (, (, (, b (, (, (, + b CS56 2 (, CS56 3

4 Results Are Different Want the RHR to Work then : then : CS56 3 i j k j k i k i j i j k CS56 4 3D Positive Rotations Transformations as a Change in Coordinate Sstem z Useful in man situations Use most natural coordination sstem locall Tie things together in a global sstem CS56 5 CS56 6 CS56 4

5 Eamle Eamle 3 4 M i j is the transformation that takes a oint j in coordinate sstem ( ( i j and converts it to a oint in 2 coordinate sstem i CS56 7 CS56 8 Eamle Eamle ( i M i j ( j M 2 T (4, 2 ( j M j k ( k M 2 3 S(2,2 T(2,3 M i k M i j M j k M 3 4 T R( 45 (6.7,.8 CS56 9 CS56 2 CS56 5

6 Recall the Following Since M i j M j i ( AB B A M T M 2 ( 4, T ( 2, 3 S(, 2 2 M 4 3 T( 6.7,.8 R( + 45 CS56 2 CS56 22 Change of Coordinate Sstem Describe the old coordinate sstem in terms of the new one. Change of Coordinate Sstem Move to the new coordinate sstem and describe the one old. Old is a negative rotation of the new. CS56 23 CS56 24 CS56 6

7 What is Persective? Man Kinds of Persective Used A mechanism for ortraing 3D in 2D True Persective corresonds to rojection onto a lane True Persective corresonds to an ideal camera image Mechanical Engineering Cartograh Art CS56 25 CS56 26 Persective in Art Egtian Frontalism Naïve (wrong Egtian Cubist (unrealistic Esher Miro Matisse Head rofile Bod front Ees full Rigid stle CS56 27 CS56 28 CS56 7

8 Uccello's ( hand drawing was the first etant comle geometrical form rendered according to the laws of linear ersective Persective in Cubism Braque, Georges Persective Stud of a Chalice, Drawing, Gabinetto dei Disegni, Uffizi, Florence, ca 43 Woman with a Guitar Sorgues, autumn CS56 3 Persective in Cubism Pablo Picaso, Madre con niño muerto (937 CS CS56 8

9 Persective (Mural Games Pablo Picaso Cabeza de mujer llorando con añuelo M C Esher, Another World II ( CS56 34 Persective M. C. Esher M.C. Escher, Ascending and Descending (96 M.C. Escher, Ascending and Descending (96 CS56 35 CS56 36 CS56 9

10 M. C. Esher Nonlanar (Herbolic Projection Persective is local Persective consistenc is not transitive Nonlanar (herbolic rojection M C Esher, Heaven and Hell CS56 37 CS56 38 Nonlanar (Herbolic Projection David McAllister M C Esher, Heaven and Hell The March of Progress, (995 CS56 39 CS56 4 CS56

11 Joan Miro: Flat Persective The Tilled Field Flat Persective: What cues are misg? What cues are misg? Henri Matisse, La Lecon de Musique CS Atlas Projection Henri Matisse, Danse II (9 43 CS56 44 CS56

12 Norwa is at High Latitude Isometric View There is considerable size distortion CS56 45 CS56 46 Isometric View Engineering Drawing A Section AA A CS56 47 CS56 48 CS56 2

13 Engineering Drawing: Eloded View True Persective in 2D (, Understanding 3D Assembl in a 2D Medium 49 CS56 5 h True Persective in 2D h h + + True Persective in 2D CS56 5 CS56 52 CS56 3

14 Geometr is Same for Ee at Origin Screen Plane (, What Haens to Secial Points? h CS56 53 What is this oint?? CS56 54 Let s Look at a Limit Where does Ee Point Go? Observe, We see that n n n lim n n + on -ais CS56 55 It gets sent to Where does + on -ais on -ais go? CS56 56 CS56 4

15 What haens to +? What Does This Mean? It comes back to virtual ee oint! CS56 57 CS56 58 The Pencil of Lines Becomes Parallel Parallel Lines Become a Pencil of Lines! CS56 59 CS56 6 CS56 5

16 What Does This Mean? True Persective in 2D + CS56 6 CS56 62 True Persective in 2D Viewing Frustum CS56 63 CS56 64 CS56 6

17 What haens for large? Projection Becomes Orthogonal: Right Thing Haens lim CS56 65 (, h CS56 66 Lecture Set 6 The End of Transformations II 67 CS56 7

What is Perspective?

What is Perspective? Fall 25 M ss =M screen * M ersective * M view What is Persective? A mechanism for ortraing 3D in 2D True Persective corresons to rojection onto a lane True Persective corresons to an ieal camera image

More information

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation Comuter Grahics (Fall 24) COMS 416, Lecture 3: ransformations 1 htt://www.cs.columbia.edu/~cs416 o Do Start (thinking about) assignment 1 Much of information ou need is in this lecture (slides) Ask A NOW

More information

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1 CS 428: Fall 21 Introduction to Comuter Grahics Geometric Transformations Andrew Nealen, Rutgers, 21 9/15/21 1 Toic overview Image formation and OenGL (last week) Modeling the image formation rocess OenGL

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Comuter Grahics Virtual Realit Viewing an rojection Classical an General Viewing Transformation Pieline CPU CPU Pol. Pol. DL DL Piel Piel Per Per Verte Verte Teture Teture Raster Raster Frag

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

Computer Graphics. Viewing. Fundamental Types of Viewing. Perspective views. Parallel views. October 12, finite COP (center of projection)

Computer Graphics. Viewing. Fundamental Types of Viewing. Perspective views. Parallel views. October 12, finite COP (center of projection) Comuter Grahics Viewing October 2, 25 htt://www.hallm.ac.kr/~sunkim/teach/25/cga Funamental Tes of Viewing Persective views finite COP (center of rojection) Parallel views COP at infinit DOP (irection

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Homographies and Mosaics

Homographies and Mosaics Tri reort Homograhies and Mosaics Jeffrey Martin (jeffrey-martin.com) CS94: Image Maniulation & Comutational Photograhy with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 06 Steve Seitz and

More information

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand Imaging Geometr 1. Basic Geometric Coordinate Transorms emember: The equation o rojection Cartesian coordinates: (,, z) ( z, z ) C36 Martin Jagersand How do we develo a consistent mathematical ramework

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Geri s Game, Pixar, 1997] January 26, 2011

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

Announcements. The equation of projection. Image Formation and Cameras

Announcements. The equation of projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 5-4 HW will be on web site tomorrow or Saturda. Irfanview: http://www.irfanview.com/ is

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Escher s Circle Limit Anneke Bart Saint Louis University Introduction

Escher s Circle Limit Anneke Bart Saint Louis University  Introduction Escher s Circle Limit Anneke Bart Saint Louis University http://math.slu.edu/escher/ Introduction What are some of the most fundamental things we do in geometry? In the beginning we mainly look at lines,

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection January 25, 2012 Jernej Barbic University of Southern California Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato Image Formation 2. amera Geometr omuter Vision oltan Kato htt://www.in.u-seged.hu/~kato seged.hu/~kato/ 3D Scene Surace Light (Energ) Source inhole Lens Imaging lane World Otics Sensor Signal amera: Sec

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Graphics I Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] January 30, 2003 [Red

More information

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection Lesson 10 Transformational Designs Creating Designs M.C. Escher was an artist that made remarkable pieces of art using geometric transformations. He was first inspired by the patterns in mosaic tiles.

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 29-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 29 lecture 2 Toda s GPU eample: moldabilit feedback Two-part mold [The Complete Sculptor

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

Homework 5: Transformations in geometry

Homework 5: Transformations in geometry Math 21b: Linear Algebra Spring 2018 Homework 5: Transformations in geometry This homework is due on Wednesday, February 7, respectively on Thursday February 8, 2018. 1 a) Find the reflection matrix at

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3 Section 9.1 The Square Root Function 879 9.1 Eercises In Eercises 1-, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete

More information

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1 Fondations of Compter Graphics (Fall 212) CS 184, Lectre 3: Transformations 1 http://inst.eecs.berkele.ed/~cs184 Sbmit HW b To Do Start looking at HW 1 (simple, bt need to think) Ais-angle rotation and

More information

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard Computer Graphics and Image Processing a6: Projections Tob.Howard@manchester.ac.uk Introduction In part 2 of our stud of Viewing, we ll look at The theor of geometrical planar projections Classes of projections

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Name Date. using the vector 1, 4. Graph ABC. and its image. + to find the image

Name Date. using the vector 1, 4. Graph ABC. and its image. + to find the image _.1 ractice 1. Name the vector and write its component form. K J. The vertices of, 3, 1,, and 0, 1. Translate using the vector 1,. Graph and its image. are ( ) ( ) ( ) 3. Find the component form of the

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion Notes_0_0 of efinitions Kinematics the stud of constrained motion without regard to forces that cause that motion namics the stud of how forces cause motion ausalit the relationship between cause and effect

More information

Gabriel Taubin. Desktop 3D Photography

Gabriel Taubin. Desktop 3D Photography Sring 06 ENGN50 --- D Photograhy Lecture 7 Gabriel Taubin Brown University Deskto D Photograhy htt://www.vision.caltech.edu/bouguetj/iccv98/.index.html D triangulation: ray-lane Intersection lane ray intersection

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

3.1 Viewing and Projection

3.1 Viewing and Projection Fall 2017 CSCI 420: Computer Graphics 3.1 Viewing and Projection Hao Li http://cs420.hao-li.com 1 Recall: Affine Transformations Given a point [xyz] > form homogeneous coordinates [xyz1] > The transformed

More information

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1 CS 428: Fall 29 Introduction to Computer Graphics Viewing and projective transformations Andrew Nealen, Rutgers, 29 9/23/29 Modeling and viewing transformations Canonical viewing volume Viewport transformation

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2 Cliing MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

Camera Models. Acknowledgements Used slides/content with permission from

Camera Models. Acknowledgements Used slides/content with permission from Camera Models Acknowledgements Used slides/content with ermission rom Marc Polleeys or the slides Hartley and isserman: book igures rom the web Matthew Turk: or the slides Single view geometry Camera model

More information

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

Transformation Stretch Solutions. October 6, 2004

Transformation Stretch Solutions. October 6, 2004 Transformation Stretch Solutions October 6, 2004 Problem 1 A shape is translated so that the point (7, 2) moves to (15, 15). Under the same translation, to what point does the point ( 8, 3) move? In a

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS560 Reminder - Pieline Polgon at [(,9), (5,7), (8,9)] Polgon at [ ] D Model Transformations Reminder - Pieline Object Camera Cli Normalied device Screen Inut: Polgons in normalied device Model-view Projection

More information

XPM 2D Transformations Week 2, Lecture 3

XPM 2D Transformations Week 2, Lecture 3 CS 430/585 Computer Graphics I XPM 2D Transformations Week 2, Lecture 3 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Reminder: Affine Transformations. Viewing and Projection. Shear Transformations. Transformation Matrices in OpenGL. Specification via Ratios

Reminder: Affine Transformations. Viewing and Projection. Shear Transformations. Transformation Matrices in OpenGL. Specification via Ratios CSCI 420 Computer Graphics Lecture 6 Viewing and Projection Jernej Barbic University o Southern Caliornia Shear Transormation Camera Positioning Simple Parallel Projections Simple Perspective Projections

More information

Perry High School. Geometry: S2W6

Perry High School. Geometry: S2W6 Geometry: S2W6 Monday: 7.1 Rigid Motion in a Plane Pre-reading due Tuesday: 7.1 Work Day Wednesday: 7.2 Reflections Pre-reading due Thursday: 7.2 Work Day Friday: 7.3 Rotations Pre-reading due Next Week:

More information

XPM 2D Transformations Week 2, Lecture 3

XPM 2D Transformations Week 2, Lecture 3 CS 430/585 Computer Graphics I XPM 2D Transformations Week 2, Lecture 3 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Computer Graphics: Viewing in 3-D. Course Website:

Computer Graphics: Viewing in 3-D. Course Website: Computer Graphics: Viewing in 3-D Course Website: http://www.comp.dit.ie/bmacnamee 2 Contents Transformations in 3-D How do transformations in 3-D work? 3-D homogeneous coordinates and matrix based transformations

More information

Graphics Pipeline 2D Geometric Transformations

Graphics Pipeline 2D Geometric Transformations Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

The 3-D Graphics Rendering Pipeline

The 3-D Graphics Rendering Pipeline The 3-D Graphics Rendering Pipeline Modeling Trival Rejection Illumination Viewing Clipping Projection Almost ever discussion of 3-D graphics begins here Seldom are an two versions drawn the same wa Seldom

More information

Game Engineering: 2D

Game Engineering: 2D Game Engineering: 2D CS420-2010F-07 Objects in 2D David Galles Department of Computer Science University of San Francisco 07-0: Representing Polygons We want to represent a simple polygon Triangle, rectangle,

More information

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker)

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker) Viewing in 3D (Chapt. 6 in FVD, Chapt. 2 in Hearn & Baker) Viewing in 3D s. 2D 2D 2D world Camera world 2D 3D Transformation Pipe-Line Modeling transformation world Bod Sstem Viewing transformation Front-

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

Objective: Students will

Objective: Students will Please read the entire PowerPoint before beginning. Objective: Students will (1) Understand the concept of and the process of making tessellations. (2) Create tessellations using: Rotation, Translation,

More information

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z.

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z. Fondations of Compter Graphics Online Lectre 3: Transformations 1 Basic 2D Transforms Motivation Man different coordinate sstems in graphics World, model, bod, arms, To relate them, we mst transform between

More information

L6 Transformations in the Euclidean Plane

L6 Transformations in the Euclidean Plane L6 Transformations in the Euclidean Plane NGEN06(TEK230) Algorithms in Geographical Information Systems by: Irene Rangel, updated by Sadegh Jamali, Per-Ola Olsson (source: Lecture notes in GIS, Lars Harrie)

More information

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Computer Viewing CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song CS 563 Advanced Topics in Computer Graphics Stereoscopy by Sam Song Stereoscopy Introduction Parallax Camera Displaying and Viewing Results Stereoscopy What is it? seeing in three dimensions creates the

More information

3D Stereo Visualization

3D Stereo Visualization Astrophysical Institute Potsdam Cosmology group 12th January 2005 1. 2 Depth cues Stereographics using stereo pairs 3 Diagram OpenGL Anaglyph Computer based generation of stereo pairs as used to create

More information

Homework 5: Transformations in geometry

Homework 5: Transformations in geometry Math b: Linear Algebra Spring 08 Homework 5: Transformations in geometry This homework is due on Wednesday, February 7, respectively on Thursday February 8, 08. a) Find the reflection matrix at the line

More information

p =(x,y,d) y (0,0) d z Projection plane, z=d

p =(x,y,d) y (0,0) d z Projection plane, z=d Projections ffl Mapping from d dimensional space to d 1 dimensional subspace ffl Range of an projection P : R! R called a projection plane ffl P maps lines to points ffl The image of an point p under P

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry Last time: Disarity Lecture 11: Stereo II Thursday, Oct 4 CS 378/395T Prof. Kristen Grauman Disarity: difference in retinal osition of same item Case of stereo rig for arallel image lanes and calibrated

More information

CS 351: Perspective Viewing

CS 351: Perspective Viewing CS 351: Perspective Viewing Instructor: Joel Castellanos e-mail: joel@unm.edu Web: http://cs.unm.edu/~joel/ 2/16/2017 Perspective Projection 2 1 Frustum In computer graphics, the viewing frustum is the

More information