An Introduction to the Directional Derivative and the Gradient Math Insight

Size: px
Start display at page:

Download "An Introduction to the Directional Derivative and the Gradient Math Insight"

Transcription

1 An Introduction to the Directional Derivative and the Gradient Math Insight The directional derivative Let the function f(x,y) be the height of a mountain range at each point x=(x,y). If you stand at some point x=a, the slope of the ground in front of you will depend on the direction you are facing. It might slope steeply up in one direction, be relatively flat in another direction, and slope steeply down in yet another direction. The partial derivatives 1 of f will give the slope in the positive x direction and the slope in the positive y direction. We can generalize the partial derivatives to calculate the slope in any direction. The result is called the directional derivative. The first step in taking a directional derivative, is to specify the direction. One way to specify a direction is with a vector u=(u1,u2)that points in the direction in which we want to compute the slope. For simplicity, we will insist that u is a unit vector 2. We write the directional derivative of f in the direction u at the point a as Duf(a). We could define it with a limit definition just as an ordinary derivative or a partial derivative 3. However, it turns out that for differentiable 4 f(x,y), we won't need to worry about that definition. The concept of the directional derivative is simple; Duf(a) is the slope of f(x,y) when standing at the point a and facing the direction given by u. If x and y were given in meters, then Duf(a) would be the change in height per meter as you moved in the direction given by u when you are at the point a. Note that Duf(a) is a number, not a matrix. In fact, the directional derivative is the same as a partial derivative if u points in the positive x or positive y direction. For example, if In the following image, the height f(x,y) of a mountain range is shown as a level curve plot 5. You can recognize two steep mountain peaks by the closely spaced circular level curves. If u points straight east (θ=0 in the image), then u points in Page 1 of 7

2 the positive x direction (u=(1,0)) so that Duf(a)= (a). Similarly, when u points straight north (θ=π/2), then u points in the positive y direction (u=(0,1)) so that Duf(a)= (a). Directional derivative on a mountain shown as level curves. The height of a mountain ranged described by a function f(x,y)is shown as a level curve plot. If you make u point in a direction parallel to the level curve, what happens to Duf(a)? (Since the height is constant along a level curve, you should be able to infer what the slope in that direction should be.) What happens to Duf(a) when you turn u to point in the opposite direction (i.e., add or subtract π from θ)? To help you visualize what is going on in case you are not yet comfortable with level curve plots, a second applet, below, duplicates the above applet but with a mesh plot of the surface z=f(x,y). In this view, the steepness may be easier to see. However, this view is a little misleading for two reasons. First, the dark red dot now floats on the surface of the mountain. Hence, the dark red dot is no longer a, which for this example is really a point in two dimensions. Second, the light green vector is now a three-dimensional vector that points up or down the mountain. The light green vector is no longer exactly the direction vector u, which for this example is really a two-dimensional vector. Nonetheless, this second Page 2 of 7

3 view further illustrates the concepts of the directional derivative. You can use it to help you understand what is happening in the above level curve plot. Directional derivative on a mountain shown as mesh plot. The height of a mountain ranged described by a function f(x,y) is shown as a mesh plot. The gradient In most cases, there is always one direction u where the directional derivative Duf(a) is the largest. This is the uphill direction. (In some cases, such as when you are at the top of a mountain peak or at the lowest point in a valley, this might not be true.) Let's call this direction of maximal slope m. Both the direction m and the maximal directional derivative Dmf(a) are captured by something called the gradient 6 of f and denoted by f(a). The gradient is a vector that points in the direction of m and whose magnitude is Dmf(a). In math, we can write this as The below image illustrates the gradient, as well as its relationship to the directional derivative. The definition of θ is different from that of the above applets. Here θ is the angle between the gradient and vector u. Page 3 of 7

4 When θ=0, u points in the same direction as the gradient (and is hidden in the image). Gradient and directional derivative on a mountain shown as level curves. The height of a mountain ranged described by a function f(x,y) is shown as a level curve plot. The height f(a) is shown on the bottom cyan slider labeled by f. The direction of steepest increase of f is given by the gradient vector f(a) (the dark blue vector is ten times longer than the actual gradient). The actual length of the gradient f(a) is shown by the dark blue line on the middle (light green) slider. The light green line on that slider indicates the value of the directional derivative Duf(a), where u is represented by the light green vector coming out of a. The direction of u is controlled by θ where θ is the angle between f(a) and u. Notice how the dark blue gradient vector always points up the mountains (in fact, the gradient is always perpendicular to the level curves). When the level curves are close together, the gradient is large. What happens to the gradient at the tops of the mountains? Note that when θ=0 (or θ=2π), the directional derivative Duf(a) (shown by the light green line on the middle slider) and the magnitude of the gradient f(a) (shown by the dark blue line on the middle slider) are identical, i.e., Duf(a)= f(a). When θ=π, then u points in the opposite direction of the gradient, and Duf(a)= f(a). For what values of θ is Duf(a)=0? By moving a (the dark red point) around and changing θ, I hope you can convince yourself that, for a fixed a, the maximal value of Duf(a) occurs when u and f(a) point in the same direction (i.e., when θ=0 or θ=2π), and the Page 4 of 7

5 minimum value occurs when u and f(a) point in opposite directions (i.e., when θ=π). Hence Duf(a) always lies between f(a) and f(a). It turns out that the relationship between the gradient and the directional derivative can be summarized by the equation where θ is the angle between u and the gradient. (Recall that u is a unit vector, meaning that u =1.) The image is repeated using a plot of z=f(x,y), below. Although its steepness may be easier to see, recall from the above discussion that the dark red point is no longer really a and the light green vector is no longer really u. Similarly, since the dark blue vector points up the mountain, it is no longer really the gradient f(a), which, for a function f(x,y) of two variables, is a two-dimensional vector. Despite its shortcomings, this image may help you see how the gradient always points in the direction where the mountain rises most steeply. Gradient and directional derivative on a mountain shown as mesh plot. The dark blue vector points in the direction of the gradient. The magnitude of the gradient is shown by the dark blue line on the light green slider. The light green vector points at an angle θ from the gradient; the directional derivative in that direction is shown by the light green line on the light green slider. The dark blue and the light green vectors are shown as three-dimensional vectors titling up or down the mountain, and hence are not exactly the two dimensional vectors f or the u of Duf. Page 5 of 7

6 But what exactly is the gradient? This page was designed to give you an intuitive feel for what the directional directive and gradient are. But, we've failed to mention what exactly is the gradient. The above formula for the directional derivative is nice, but it's not very useful if you don't know how to calculate f. Fortunately, the end result is fairly simple, as the gradient 7 is just a reformulation of the matrix of partial derivatives 8. You can check out a simple derivation of the gradient 9 to see why this is true. Once you know how to calculate the gradient 10, you can follow these examples 11. Page 6 of 7

7 Notes and Links: Page 7 of 7

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

An Introduction to Double Integrals Math Insight

An Introduction to Double Integrals Math Insight An Introduction to Double Integrals Math Insight Suppose that you knew the hair density at each point on your head and you wanted to calculate the total number of hairs on your head. In other words, let

More information

MATH Harrell. Which way is up? Lecture 9. Copyright 2008 by Evans M. Harrell II.

MATH Harrell. Which way is up? Lecture 9. Copyright 2008 by Evans M. Harrell II. MATH 2401 - Harrell Which way is up? Lecture 9 Copyright 2008 by Evans M. Harrell II. A set does not necessarily have boundaries If it does have boundaries Are the boundaries part of the set or not? Sets

More information

Visualizing Images. Lecture 2: Intensity Surfaces and Gradients. Images as Surfaces. Bridging the Gap. Examples. Examples

Visualizing Images. Lecture 2: Intensity Surfaces and Gradients. Images as Surfaces. Bridging the Gap. Examples. Examples Visualizing Images Recall two ways of visualizing an image Lecture : Intensity Surfaces and Gradients Intensity pattern d array of numbers We see it at this level Computer works at this level Bridging

More information

Robert Collins CSE486, Penn State. Lecture 2: Intensity Surfaces and Gradients

Robert Collins CSE486, Penn State. Lecture 2: Intensity Surfaces and Gradients Lecture 2: Intensity Surfaces and Gradients Visualizing Images Recall two ways of visualizing an image Intensity pattern 2d array of numbers We see it at this level Computer works at this level Bridging

More information

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Example 1: The Gradient Vector 2 df Let f(x) x. Then 2x. This can be thought of as a vector that dx tells you the direction of

More information

Exploring Slope. We use the letter m to represent slope. It is the ratio of the rise to the run.

Exploring Slope. We use the letter m to represent slope. It is the ratio of the rise to the run. Math 7 Exploring Slope Slope measures the steepness of a line. If you take any two points on a line, the change in y (vertical change) is called the rise and the change in x (horizontal change) is called

More information

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013.

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. 1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. TANGENTS Suppose that Apple Computers notices that every time they raise (or lower) the price of a $5,000 Mac II by $100, the number

More information

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS SLIDES NUMBER 5.2 GEOMETRY 2 (The straight line) by A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2.3 Perpendicular straight lines 5.2.4 Change of origin UNIT 5.2

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

GeoGebra 4. Calculus - Differentiation

GeoGebra 4. Calculus - Differentiation GeoGebra 4 Calculus - Differentiation Approximating the gradient of a curve with a chord Creating Slider-dependent points on a graph Open a new file and create 3 Slider controls named n, p and h. From

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and Partial Derivatives James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Partial Derivatives Tangent Planes

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

graphing_9.1.notebook March 15, 2019

graphing_9.1.notebook March 15, 2019 1 2 3 Writing the equation of a line in slope intercept form. In order to write an equation in y = mx + b form you will need the slope "m" and the y intercept "b". We will subsitute the values for m and

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 15, 2017 Outline 1 2 Tangent Planes Let s go back to our simple surface

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

What is a Topographic Map?

What is a Topographic Map? Topographic Maps Topography From Greek topos, place and grapho, write the study of surface shape and features of the Earth and other planetary bodies. Depiction in maps. Person whom makes maps is called

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS Page 1 of 22 ORDINARY DIFFERENTIAL EQUATIONS Lecture 5 Visualization Tools for Solutions of First-Order ODEs (Revised 02 February, 2009 @ 08:05) Professor Stephen H Saperstone Department of Mathematical

More information

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens.

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. 6. LETURE 6 Objectives I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. So far, we ve learned the definition of the gradient

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Patterning Math Lab 4a

Patterning Math Lab 4a Patterning Math Lab 4a This lab is an exploration of transformations of functions, a topic covered in your Precalculus textbook in Section 1.5. As you do the exercises in this lab you will be closely reading

More information

UNIT 4 NOTES. 4-1 and 4-2 Coordinate Plane

UNIT 4 NOTES. 4-1 and 4-2 Coordinate Plane UNIT 4 NOTES 4-1 and 4-2 Coordinate Plane y Ordered pairs on a graph have several names. (X coordinate, Y coordinate) (Domain, Range) (Input,Output) Plot these points and label them: a. (3,-4) b. (-5,2)

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

F8-18 Finding the y-intercept from Ordered Pairs

F8-18 Finding the y-intercept from Ordered Pairs F8-8 Finding the -intercept from Ordered Pairs Pages 5 Standards: 8.F.A., 8.F.B. Goals: Students will find the -intercept of a line from a set of ordered pairs. Prior Knowledge Required: Can add, subtract,

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Section 1: Section 2: Section 3: Section 4:

Section 1: Section 2: Section 3: Section 4: Announcements Topics: In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several Variables (Basic Definitions and Notation) - Section 2: Graphs, Level Curves + Contour

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Problem Set 4 Due Thursday

More information

Logistic Regression and Gradient Ascent

Logistic Regression and Gradient Ascent Logistic Regression and Gradient Ascent CS 349-02 (Machine Learning) April 0, 207 The perceptron algorithm has a couple of issues: () the predictions have no probabilistic interpretation or confidence

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Name: Tutor s

Name: Tutor s Name: Tutor s Email: Bring a couple, just in case! Necessary Equipment: Black Pen Pencil Rubber Pencil Sharpener Scientific Calculator Ruler Protractor (Pair of) Compasses 018 AQA Exam Dates Paper 1 4

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Math-2. Lesson 3-1. Equations of Lines

Math-2. Lesson 3-1. Equations of Lines Math-2 Lesson 3-1 Equations of Lines How can an equation make a line? y = x + 1 x -4-3 -2-1 0 1 2 3 Fill in the rest of the table rule x + 1 f(x) -4 + 1-3 -3 + 1-2 -2 + 1-1 -1 + 1 0 0 + 1 1 1 + 1 2 2 +

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 2.1 Derivatives and Rates of Change In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a slope of a tangent line, or a velocity, or any instantaneous

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

Section 4.1: Introduction to Trigonometry

Section 4.1: Introduction to Trigonometry Section 4.1: Introduction to Trigonometry Review of Triangles Recall that the sum of all angles in any triangle is 180. Let s look at what this means for a right triangle: A right angle is an angle which

More information

Excel Spreadsheets and Graphs

Excel Spreadsheets and Graphs Excel Spreadsheets and Graphs Spreadsheets are useful for making tables and graphs and for doing repeated calculations on a set of data. A blank spreadsheet consists of a number of cells (just blank spaces

More information

FLC Ch 3. Ex 1 Plot the points Ex 2 Give the coordinates of each point shown. Sec 3.2: Solutions and Graphs of Linear Equations

FLC Ch 3. Ex 1 Plot the points Ex 2 Give the coordinates of each point shown. Sec 3.2: Solutions and Graphs of Linear Equations Math 100 Elementary Algebra Sec 3.1: The Rectangular Coordinate System x-axis and y-axis origin ordered pair x-coordinate y-coordinate quadrants (I, II, III, and IV) Rectangular/Cartesian Coordinate System

More information

Activity Guide APIs and Using Functions with Parameters

Activity Guide APIs and Using Functions with Parameters Unit 3 Lesson 5 Name(s) Period Date Activity Guide APIs and Using Functions with Parameters CS Content An API is a reference guide which catalogs and explains the functionality of a programming language.

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING)

WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING) WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING) 1 Contents Some Simple Straight Lines y = mx + c Parallel Lines Perpendicular Lines Plotting Equations Shaded Regions Credits WJEC Question

More information

Math 1113 Notes - Functions Revisited

Math 1113 Notes - Functions Revisited Math 1113 Notes - Functions Revisited Philippe B. Laval Kennesaw State University February 14, 2005 Abstract This handout contains more material on functions. It continues the material which was presented

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Lesson 1: Slope and Distance

Lesson 1: Slope and Distance Common Core Georgia Performance Standards MCC8.G.8* (Transition Standard 01 013; asterisks denote Transition Standards) MCC9 1.G.GPE.4 MCC9 1.G.GPE.5 Essential Questions 1. How is the Pythagorean Theorem

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

A Function of Two Variables A function of two variables is a function that is, to each input is associated exactly one output.

A Function of Two Variables A function of two variables is a function that is, to each input is associated exactly one output. Chapter 4 Functions of Two Variables Applied Calculus 240 Section 1: Functions of Two Variables Real life is rarely as simple as one input one output. Many relationships depend on lots of variables. Examples:

More information

GCSE-AS Mathematics Bridging Course. Chellaston School. Dr P. Leary (KS5 Coordinator) Monday Objectives. The Equation of a Line.

GCSE-AS Mathematics Bridging Course. Chellaston School. Dr P. Leary (KS5 Coordinator) Monday Objectives. The Equation of a Line. GCSE-AS Mathematics Bridging Course Chellaston School Dr (KS5 Coordinator) Monday Objectives The Equation of a Line Surds Linear Simultaneous Equations Tuesday Objectives Factorising Quadratics & Equations

More information

Section 5.4: Modeling with Circular Functions

Section 5.4: Modeling with Circular Functions Section 5.4: Modeling with Circular Functions Circular Motion Example A ferris wheel with radius 25 feet is rotating at a rate of 3 revolutions per minute, When t = 0, a chair starts at its lowest point

More information

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method Intro to Template Matching and the Lucas-Kanade Method Appearance-Based Tracking current frame + previous location likelihood over object location current location appearance model (e.g. image template,

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Geometry: Angle Relationships

Geometry: Angle Relationships Geometry: Angle Relationships I. Define the following angles (in degrees) and draw an example of each. 1. Acute 3. Right 2. Obtuse 4. Straight Complementary angles: Supplementary angles: a + b = c + d

More information

Geometric Primitives. Chapter 5

Geometric Primitives. Chapter 5 Chapter 5 Geometric Primitives In this chapter, we discuss the basic geometric primitives we will use to represent the world in which our graphic objects live. As discussed at the beginning of this class,

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

LIGHT: Two-slit Interference

LIGHT: Two-slit Interference LIGHT: Two-slit Interference Objective: To study interference of light waves and verify the wave nature of light. Apparatus: Two red lasers (wavelength, λ = 633 nm); two orange lasers (λ = 612 nm); two

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

NENS 230 Assignment 4: Data Visualization

NENS 230 Assignment 4: Data Visualization NENS 230 Assignment 4: Data Visualization Due date: Tuesday, October 20, 2015 Goals Get comfortable manipulating figures Familiarize yourself with common 2D and 3D plots Understand how color and colormaps

More information

List of Topics for Analytic Geometry Unit Test

List of Topics for Analytic Geometry Unit Test List of Topics for Analytic Geometry Unit Test 1. Finding Slope 2. Rule of 4 (4 forms of a line) Graph, Table of Values, Description, Equation 3. Find the Equations- Vertical and Horizontal Lines 4. Standard

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

MODULE - 7. Subject: Computer Science. Module: Other 2D Transformations. Module No: CS/CGV/7

MODULE - 7. Subject: Computer Science. Module: Other 2D Transformations. Module No: CS/CGV/7 MODULE - 7 e-pg Pathshala Subject: Computer Science Paper: Computer Graphics and Visualization Module: Other 2D Transformations Module No: CS/CGV/7 Quadrant e-text Objectives: To get introduced to the

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite.

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite. Integration 1. Calculate (a) ( 5) d (b) 4 + 3 1 d (c) ( ) + d 1 = 6. Calculate the shaded area in the diagram opposite. 3. The diagram shows part of the graph of = 7 10. 5 = + 0 4. Find the area between

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

What's the Slope of a Line?

What's the Slope of a Line? What's the Slope of a Line? These lines look pretty different, don't they? Lines are used to keep track of lots of info -- like how much money a company makes. Just off the top of your head, which of the

More information

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.2 GEOMETRY 2 (The straight line) b A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2. Perpendicular straight lines 5.2.4 Change of origin 5.2.5 Exercises

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

slope rise run Definition of Slope

slope rise run Definition of Slope The Slope of a Line Mathematicians have developed a useful measure of the steepness of a line, called the slope of the line. Slope compares the vertical change (the rise) to the horizontal change (the

More information

DEEP LEARNING IN PYTHON. The need for optimization

DEEP LEARNING IN PYTHON. The need for optimization DEEP LEARNING IN PYTHON The need for optimization A baseline neural network Input 2 Hidden Layer 5 2 Output - 9-3 Actual Value of Target: 3 Error: Actual - Predicted = 4 A baseline neural network Input

More information

CHAPTER. Graphs of Linear Equations. 3.1 Introduction to Graphing 3.2 Graphing Linear Equations 3.3 More with Graphing 3.4 Slope and Applications

CHAPTER. Graphs of Linear Equations. 3.1 Introduction to Graphing 3.2 Graphing Linear Equations 3.3 More with Graphing 3.4 Slope and Applications Graphs of Linear Equations CHAPTER 3 3.1 Introduction to Graphing 3.2 Graphing Linear Equations 3.3 More with Graphing 3.4 Slope and Applications Slide 2 3.1 Introduction to Graphing OBJECTIVES a Plot

More information

Gradient Descent - Problem of Hiking Down a Mountain

Gradient Descent - Problem of Hiking Down a Mountain Gradient Descent - Problem of Hiking Down a Mountain Udacity Have you ever climbed a mountain? I am sure you had to hike down at some point? Hiking down is a great exercise and it is going to help us understand

More information

The TI-83 and TI-83 Plus graphics calculators are loaded with

The TI-83 and TI-83 Plus graphics calculators are loaded with 04 549707 Ch01.qxd 11/13/03 8:51 AM Page 9 Chapter 1 Coping with the Basics In This Chapter Turning the calculator on and off Using the keyboard Using the menus Setting the mode of the calculator Using

More information

SPM Add Math Form 5 Chapter 3 Integration

SPM Add Math Form 5 Chapter 3 Integration SPM Add Math Form Chapter Integration INDEFINITE INTEGRAL CHAPTER : INTEGRATION Integration as the reverse process of differentiation ) y if dy = x. Given that d Integral of ax n x + c = x, where c is

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

5 Control Reference! "! # $ # % " &

5 Control Reference! ! # $ # %  & 5 2 Control Definition Parts Reference Controls are the functional components of the parts which contain them. A control is called by either the Operation Parameter (must be enabled) or by a program. If

More information

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection Why Edge Detection? How can an algorithm extract relevant information from an image that is enables the algorithm to recognize objects? The most important information for the interpretation of an image

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information