Microstructured anti-reflection surface design for the omni-directional solar cells

Size: px
Start display at page:

Download "Microstructured anti-reflection surface design for the omni-directional solar cells"

Transcription

1 Microstructured anti-reflection surface design for the omni-directional solar cells Li Chen, Hongjun Yang, Men Tao and Weidong Zhou Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, TX 7619, USA ABSTRACT In this paper, a new process for the formation of hemispherical structures as an omni-directional anti-reflection (omni-ar) coating in solar cell is reported. We also demonstrated the simulation results of the angular and spectral dependences of the total reflectivity on various micro-structured surfaces. Close to zero reflection can be achieved in some micro-structured surfaces over an extended spectral region for large ranges of incident light angles. Daily generated current in such hemispherical solar cells hence enhanced to 1.5 times of bulk silicon solar cells. The impact of feature size, density, shape and refractive index has all been investigated. The experimental results agree reasonably well with the theoretical work. Such an omni-ar structure offers an attractive solution to current bulk crystalline silicon solar cells, as well as thin film, organic and future quantum based solar cells. Keywords: coating, anti-reflection, surface texturing, solar cells. 1. INTRODUCTION For bulk silicon solar cells, optical loss is mainly due to the front surface reflection. A flexible optical design for light collection is vital in achieving high performance solar cells.[1] An ideal anti-reflection (AR) structure should lead to zero reflection loss on solar cell surfaces over an extended solar spectral range for all angles of incidence. Such a coating can eliminate the need for a mechanical tracking device for proper optical alignment of the solar cell with respect to incident sunlight.[1] The perfect omni-directional AR (omni-ar) structure has been a subject of intensive research in thin film optics and most importantly, for solar cell applications. A series of papers were published by Dobrowolski and Poitras et al. in search for the perfect AR structure.[2-4] In theory, there are three major types of non-absorbing omni-ar structures. The first group is the single or multilayer quarter-wavelength film stacks.[5, 6] Close to zero reflection over a certain spectral range for certain ranges of incident angles can be achieved by controlling the refractive index and thickness of each individual layer in the multilayer structure. The major challenges for this approach are the availability of materials with the right indexes and good optical transparency, as well as the precise control of film thickness. In solar cell applications, a single layer thin film AR coating, e.g. silicon nitride (SiNx) thin film for silicon [6] solar cells, is often used as a cost effective approach. Such a single layer AR coating reduces reflectivity only in a limited spectral range under surface normal incident conditions. The second group is the graded index (GRIN) AR structures,[7] where the refractive index of the structure changes gradually from the top to the bottom.[8, 9] The index profile can follow different mathematical functions, such as linear, cubic or quintic. With a GRIN AR structure, extremely low reflection can be achieved over a broad spectral range for a wide range of incident angles, especially with the quintic index profile.[7] The difficulty associated with the choice of materials for practical control of index profiles has prevented this structure from practical applications. Sol-gel based approaches with either porosity control and/or high index dopant introduction were reported.[1-12] Recently a SiO2/TiO2 GRIN AR coating was reported by Xi et al.,[13] by oblique-angle physical vapor deposition, where the refractive index can vary from 1. to 2.. The third group is the textured surface AR structures. The most successful example is the anisotropic etching of single crystal Si(1) surface in a solution containing potassium hydroxide (KOH).[9, 14-17] It has led to record solar cell efficiencies in the lab and has been the standard AR structure on all commercial single crystal Si solar cells.[9, 14- Optical Modeling and Measurements for Solar Energy Systems II, edited by Benjamin K. Tsai, Proc. of SPIE Vol. 746, 7468, (28) X/8/$18 doi: / Proc. of SPIE Vol

2 17] Close to zero reflection over a wide spectral range can be achieved when an additional layer of low index film (e.g. SiNx) is coated on these microscale pyramidal structures on Si surface. However, the microscale surface texture involves anisotropic etching of the Si substrate, which does not apply to poly-crystal Si and non-si solar cells. In this case, anisotropic etching becomes too unreliable and photolithography-defined surface textures too expensive. In this paper, we will introduce a new process for microscale surface texturing for omni-ar coatings. The process is solution based, which is compatible with large scale manufacturing and flexible for integration on various solar cell substrates. It is inherently low-cost and energy efficient, without complicated large vacuum systems. A detailed theoretical investigation has been carried out to understand the optical performance of the microscale surface textures for AR applications. We compared hemispherical structures to pyramidal and conical structures. The impact of refractive index, feature size and density is also reported. Finally experimental results from omni-ar coatings on quartz substrates are compared with simulation results. 2. OMNI-AR COATINGS FROM SPHERICAL PARTICLES The basic structure of the omni-ar coating is shown in Figure 1. The coating comprises an array of, in an ideal example, hemispherical and microscale dielectric particles. The hemispherical particles are formed by partially immersing microscale spherical particles into a dielectric film of the same refractive index. Both the particle array and the dielectric film can be prepared from solutions containing microscale particles and precursors for the dielectric film. The performance of the coating can be controlled by tuning the size and packing density of the dielectric particles and the thickness and refractive index of the dielectric film, as discussed in this paper. Shown in Figure 1 are scanning electron micrographs of processed omni-ar structures on quartz substrates. A closely packed monolayer of 2 µm silica spheres were first deposited on the substrate, followed by coating of a spin-on-glass (SOG) film with a desired thickness, with Figure 1 sowing a.2 µm SOG film. Finally an omni-ar structure is formed after baking to cure the SOG film. Detailed experimental conditions can be found in Ref [18]. (i) Monolayer self assembly of spherical particles Substrate (ii) Spin coating of sol-gel or SOG glass based thin films Substrate (iii) Formation of omni-directional anti-reflection coating Omni-AR Coating Substrate Figure 1 omni-directional anti-reflection (omni-ar) coating based on monolayer of spherical particles and spin-on-glass (SOG) film; Scanning electron micrographs of fabricated omni-ar coatings: (i) top view; (ii) cross-sectional view before SOG film and (iii) cross-sectional view after SOG film. 3.1 Simulation Approach 3. DESIGN AND SIMULATION The geometrical structure under consideration is depicted in Figure 2. A square lattice of hemispheres is constructed on an optional dielectric film, which sits on a substrate. The hemispherical omni-ar structure, optional dielectric film and substrate may have the same or different refractive indices n 1, n 2 and n s, respectively. The structural parameters, as Proc. of SPIE Vol

3 shown in the top view and cross-sectional view of the omni-ar structure in Figure 2, are variables in our simulations to investigate their impact on reflectivity based on rigorous coupled-wave analysis (RCWA).[19] The substrate material is Si in most cases, though the structure proposed here can be applied to other substrate materials with different optical properties. In some cases quartz substrates are used in order to be able to measure the total transmissivity over the visible spectral region. Shown in Figure 3 is the dispersion curves for the refractive index and extinction coefficient for Si used in our simulations.[2] The complex index is expressed as n = n + ik, where n and k are the real and imaginary part of the refractive index, respectively. Note the refractive index of Si changes with the wavelength over the spectral region of interest. For practical designs, the impact of absorption from the Si substrate should be considered, especially when the k value is comparable to the index n value, e.g., in the UV region (for photon energy greater than 3eV or wavelength below 4 nm, as shown in Figure 3). We did not consider absorption in our simulation, as it will not alter significantly the reflectivity results in our simulation, for the wavelength region from 4 nm to 16 nm, where the extinction coefficient for Si substrate is relatively small (k <.4), as compared to the real part of the index (n > 3.5). The primary focus of our work is on light propagation through an omni-ar structure on a Si substrate, where the omni-ar structure has no or little absorption. The refractive index profiles for Si and silicon dioxide (SiO 2 ) used in our simulation in the wavelength region of interest is shown in Figure 3. 2 :b) <i F! OnI-i-\R cos n! 2!L2IFle (CI Figure 2 A hemispherical grating as the basic anti-reflection structure for simulation: Three-dimensional view of the square lattice; top view and (c) cross-sectional view of the basic structure WaYelenqth ( nm S 2 U (-) C (-) C x LU fl(sic) - / 1.46 'fl(8i) c3 S I 44 C r ('3 Energt (ev) Energt (ev) Figure 3 Crystal silicon complex index dispersion curve n = n + ik from ultraviolet to infrared and refractive index dispersion curve of silicon and silicon dioxide used in our simulation. Proc. of SPIE Vol

4 3.2 Multi-Layer Thin Film Structures For comparison, we first considered quarter wavelength multi-layer thin film AR structures. Assuming ideal indices for all the layers and with optical thicknesses targeting 6 nm wavelength, we simulated different AR structures of single and triple layers, as shown in Figure 4. The ideal indices are chosen to achieve close to zero reflection at the target wavelength (e.g. 6 nm in this case). For single layer AR coating (AR), the ideal index for the coating layer n 1 follows the equation of n 12 = n n s, where n and n s are the indices of top (air) and bottom (Si) layers, respectively (inset of Figure 4 ). Similarly, for multi-layer ARC, the idea indices for the double layer and triple layer ARC are (n 2 /n 1 ) 2 = n s /n and (n 1 n 3 / n 2 ) 2 = n n s, respectively (inset of Figure 4 ). As expected, for the single layer AR structure, close to zero reflectivity can be achieved only at the target wavelength with normal incident direction. By increasing the number of layers, it is possible to achieve relatively wider spectral coverage with close to zero reflection in a reasonably wide range of incident angles (up to 6º). Air n=l n1=l.1; d1=ls6 nm n1=l.5; d1=l nm n3=2.72; d1 =55 nm R Silicon TripIe layer e = 75?oo Wavelength nm) Wavelen gth (nm) Figure 4 Simulated quarter wavelength multi-layer thin film AR structures with ideal indices and thicknesses for single and triple layers. 3.3 Hemispherical Surface and omni-ar Structures We then considered hemispherical structures with different structural parameters. In what follows, we assume the substrate material is Si, and the coating material is SiO 2, with a refractive index dispersion curve shown in Figure 3 (n SiO2 ~ 1.45). Starting with a simple case in Figure 5, where a hemispherical structure is coated on a Si substrate, with the hemispherical radius R = 1µm and lattice spacing a = 2.5µm. The reflectivity is reduced by ~5% for incident angles up to 6º over the entire spectral region of simulation, as compared to the reflectivity for a bare Si substrate at surface normal incident conditions. The reflectivity for incident angle of 75º is also reduced in the shorter wavelength regime. The result is encouraging, as it proves the incident angle independence, thus omni-directional, of the hemispherical structure we investigated here. It is worth pointing out here that the hemispherical structure we considered here is not ideally closely-packed, which could lead to slightly under-estimated results as compared to ideally close-packed structure (with a = 2R), especially at surface-normal or small incident angle directions. This will be discussed later on the packing density impact section (Figure 7 and Figure 9). The parameters chosen here seem to have little impact on the reflectivity as compared to the ideal close packed case. The parameters chosen in our simulation are better representation of the actual experimental conditions, where spherical particles may not be closely packed together to form a mono-layer in a large area domain. The low index film between substrate and hemispherical structure, as shown in Figure 5, is inherently present in the structure we proposed in Section II. We investigated the impact of such thin film (h 1 ) on reflectivity, as shown in Figure 5 for different incident angles. Compared to Figure 5, we see insignificant changes in reflectivity. The oscillations in Figure 5 are most likely due to interferences at different interface, which is to be investigated. Proc. of SPIE Vol

5 5 4 3 > U o 2 ' (-ic\ f (\ n3 substrate. "-... 6E 4 >3 > C) Wavelength ( nm) Figure 5 Simulation results for hemispherical structures with index n 1 = 1.5 on silicon substrate: Square lattice hemispherical structure with radius R = 1 µm and lattice constant a = 2.5 µm and omni-ar structure with hemispherical structure on top of a thin film with the same index n1 and thickness h1 = R = 1 µm. eo 2 - e3o n1 Om ni-ar. e6o n2 coating n substrate WavelengTh nm Si absorption window SiNon Si 2Omni-AR > V o 2 Si absorption window e = 75. e=6o SiNon Si /._.f N = 6 %f 8 12 (C) OmnLAR Figure 6 Simulation results for omni-ar structure on Si substrate with a SiNx thin film in between (n 2 = 2. and h 2 = 75 nm); Other simulation parameters are the same as those in Figure 5. The reflectivity for small incident angles (θ = and 3 ) and large incident angles (θ = 6 and 75 ), for two cases: SiNx coated Si and omni-ar on SiNx coated Si. We further considered another scenario where the omni-ar structure is an add-on to current polycrystal Si solar cells, where a single layer of SiNx is coated on top of the solar cells. The results are shown in Figure 6. Significantly reduced reflectivity can be achieved over a wide spectral range for incident angles from º to 6º. A comparison is given in Figure 6 and (c) for SiNx coated Si substrates with and without omni-ar coatings. We see the improvement in reflectivity is relatively small for small incident angles of ºand 3º (Figure 6). However, significant improvement in reflectivity can be achieved for large incident angles of 6º and 75º (Figure 6(c)). This is the most attractive feature of the omni-ar structure, which provides angle independent reflectivity over a wide spectral range. The impact of packing density and particle size was investigated as well. Shown in Figure 7 is the simulated reflectivity with different packing densities. With fixed radius R = 1 µm, the packing density can be varied by changing the lattice constant a. Shown in Figure 7 and are two examples with a = 2 µm, and a = 5 µm,, respectively. The surface normal reflectivity for different packing densities is shown in Figure 7(c). It is worth noting that the simulated reflectivity does not change significantly over a relatively large range of packing densities. The only notable feature is the increased oscillation for smaller packing densities. This could mainly be due to the dominance of the interferences in the layer under the particle (h 1 layer as shown in the inset of Figure 6), as the exposed flat surface area increases with the reduction of packing density. 16 Proc. of SPIE Vol

6 e 3 ii a 2 ) e7s 2i 3 > V aj _ eoo P = WavelengTh nm o 5um ---.-e 6 3 e_ Figure 7 Packing density impact for the proposed hemispherical omni-ar structure similar to the one in with R = 1 µm, n 1 = 1.5 and lattice constant a = 2 µm and a = 5 µm. (c) Surface normal reflectivity for different packing densities. 5 flflfl eo \2 \1 e3o 2um s.3 e7& 2\ (C) 4 > V WavelengTh nm 5, WavelengTh nm e = 7 RMO.4 P O5tm 5km (C) Figure 8 Spherical radius impact for the proposed hemispherical omni-ar structure similar to the one in Fig. 6 with R/a =.4, n 1 = 1.5 and spherical radius R =.5 µm and R = 2 µm. (c) Surface normal reflectivity and (d) large incident angle reflectivity for different spherical radius. Figure 8 is the simulated reflectivity for different particle sizes. Here the packing fraction is fixed, i.e., the ratio between radius R and lattice constant a is fixed at.4. Shown in Figure 8 and are two examples with R =.5 µm, and R = 2 µm, respectively. The surface normal reflectivity and large incident angle reflectivity (θ = 75º) for different particle size is shown in Figure 8(c) and (d), respectively. Again, we do not see significant differences in the simulated reflectivity, especially at small incident angles up to 6. These results suggest large process windows in manufacturing the proposed structure for solar cell applications. However, for larger incident angle (θ = 75º), we see slightly reduced reflectivity with the increase of the particle size, which is due to the thicker transition layer at large incident angles. In all simulations shown in Figure 8, the thickness of h1 layer (1 µm) as shown in the inset of Figure 6, and the packing (d) Proc. of SPIE Vol

7 fraction (proportional to the ratio of R/a =.4), are kept the same. The fixed packing fraction for non-close-packed structure can lead to the actual open flat areas between the hemispheres to be increased with the increase of the particle sizes, which may be the cause of the more profound interference oscillation features observed for larger particle sizes. 3.4 Pyramidal, Conical vs. Hemispherical Structures Surface structures of different shapes were also investigated. Shown in Figure 9 are the structures and simulation results for three different shapes: pyramids, cones and (c) hemispheres. All the structures under simulation have similar structural parameters. The structure material is SiO2 and the substrate is Si. The lattice constant a = 2.5 µm and the film thickness h1 = 1 µm. The pyramid base and height are µm. The cone base radius is R = 1 µm and the height is also 1 µm. The hemisphere radius is R = 1 µm. We also simulated these structures with ideal close-packed case where the base size equals to the lattice constant a (2 µm), and the feature sizes remain the same. Based on the simulated results, the hemispherical structure has slightly better performance overall, especially at large incident angles, while the pyramid structure has better performance at small incident angles and at shorter wavelength regime. This could be due to the enhanced second strike effect for pyramid structure at small incident angles,[16] as compared to the case for hemispherical structures. Pyramid-Shaped Cone-Shaped (c) Hemisphere-Shaped n 1 Omni-AR n s substrate n 1 Omni-AR n s substrate R n 1 Omni-AR h 1 n s substrate a=2.5µm, d=2 µm a=2.5µm, R=1µm a=2.5µm, R=1µm Reflectivity (%) θ = θ=6 θ = θ=6 θ = θ=6 4 θ =3 θ =75 4 θ =3 θ =75 θ =3 θ =75 Reflectivity (%) Reflectivity (%) Wavelength ( nm ) Wavelength ( nm ) Wavelength ( nm ) Figure 9 The structures and simulation results for three differently shaped structures: pyramids, cones and (c) hemispheres. 4. SOME SOLAR CELL PERFORMANCE The solar cell performance was evaluated based on the simulated optical characteristics. From the reflection results, the total absorpted photon numbers and the corresponding solar cell short current can be derived according to the experimental internal quantum efficiency of Si. The total generated daily electricity can thus be determined based on the solar spectral intensity information available from NREL. We used the solar spectral intensity data for Dallas, Texas with AM1.5 normalized conditions. An outline of the simulation procedure is shown in Figure 1, with more detailed description to be presented. The simulated results for solar electricity generation are shown in Figure 11. Compared to the bulk Si solar cells, the total daily electricity generated from omni-ar based Silicon solar cells are 1.5 times higher. Proc. of SPIE Vol

8 Solar Photon Flux:, ) SPECTRAL 2 Data: solar spectra For various times through the day Reflectivity Calculations: ) Transfer matrix method (TMM) and Coupled wave diffraction method Internal Quantum Efficiency Solar Cells Measured: 1QW) L Incident Photon Flux Calculations ) =, ) [1 R(X, )] L Solar iveighted Reflqction SWR JIqE(2);(2)2)dzfiIqE(2);(2)dz J Generation Rate Calculations] G(A) IQE(A)F(A)[l - I Short Cqrrent Density Calculations] J. qig(2)uqfiqe(2)p(2)[l R2)]U Solar Cell Performance: Power Generation over the Day Total Power Generation Over a Day Figure 1 Simulation procedure for solar cell performance evaluation based on the optical characteristics of solar cell. # of absorbed photons per day [/m 2 ] 4 x Case # Total current per day [A/m 2 ] 5.5 x Case # Norm.Absorpted Photons Per Day Case # (c) Norm.Total Current Per Day Case # (d) Figure 11 Simulated solar cell performance in terms of total daily photon absorption and electricity generation for three cases discussed here: (1) Bulk si; (2) Si under omni-ar ; and (c) Si under omni-ar with SiNx. 5. EXPERIMENTAL RESULTS Since the purpose of an anti-reflection coating is to maximize light transmission, total transmissivity of quartz wafers with various coatings has been measured using a JASCO V-57 spectrophotometer. The coating was done on one side of the quartz wafer based on the spin coating processes.19 An integrating sphere was used in the measurement, which collects transmitted light through a sample from all directions. Total transmissivity measurements at different incident angles have also been performed using a home-built monochromator-based spectroscopic setup with an integrating sphere. The white light from a 1-W Oriel quartz tungsten halogen lamp was focused on the sample at different incident angles through a flexible liquid light guide. Care was taken to ensure the focused light can be coupled into the integrating sphere. Due to limitations in the setup, the maximum incident angle is limited to ~3º. Figure 12 shows a normal-incidence total transmissivity measurement of a quartz with an omni-ar coating, which comprises a monolayer of 2 µm, spherical silica particles immersed in a SOG film of.2 µm, thick. For comparison, the total transmissivity of a quartz wafer without any coating, a quartz wafer coated with.2 µm SOG only and a quartz wafer coated with a monolayer of 2 µm spherical silica particles only were also measured. The omni-ar coating improves the transmissivity from ~88% to ~92% at 4 nm and from ~9% to ~92% at 1,1 nm, demonstrating its broad-spectrum effect. Since the bare quartz wafer already has a high transmissivity above 88%, the improvement by the Proc. of SPIE Vol

9 omni-ar coating is tainted by the high background transmissivity. A.2 µm SOG film alone slightly improves the transmissivity at short wavelengths by ~1%, possibly due to its smaller refractive index (~1.39), than that of quartz (~1.55). The reduced surface roughness could be another contributing factor here. A monolayer of 2 µm silica spherical particles alone decreases the transmissivity by ~1% in the entire spectral range of interest. This is likely due to reflection from the multiple surfaces in the monolayer particle coating: the top surface of the particles, the bottom surface of the particles and the surface of the quartz wafer. Light was scattered away on these particles surfaces, which could lead to reduced transmittance. Therefore, the SOG film not only serves as a glue to hold together the coating, but also reduces the number of internal surfaces which cause reflection. Measured Transmittance (%) 96 Ground quartz coated with: 94 Omni-AR 92 9 SOG only Quartz 88 Particles only Wavelength (nm) Figure 12 Total transmissivity under normal incidence of quartz wafers with various surface coatings. 96 Omni-AR MgI d p nd nttotl TrnimIIhnci Cu re me ft S etu p Power detector Quart only 86 4U Wavelength (nm) Figure 13 Angle-dependent transmissivity of a quartz wafer before and after an omni-ar coating; Schematic of experimental setup for angle dependent total transmittance setup. An incident-angle dependent transmissivity measurement for the omni-ar coating on quartz wafer, along with the schematic of experimental setup, is shown in Figure 13. Within the limited range of incident angle (~3 ), the omni-ar coating improves the total transmissivity from ~87% to ~92% at 5 nm and from ~89% to ~92% at 1, nm for an incident angle of 3º. Note under surface-normal incident light condition, the measured transmittances show similar spectral dependences for quartz and quartz with omni-ar coating. However, the absolute transmittance values are different. It is mostly due to the different experimental setup we used and variations in the calibration processes. Figure 14 is simulated transmissivity of quartz wafers with and without an omni-ar coating at different incident angles. To match the experimental conditions, the coating in the simulation consists of a.2 µm, SOG film with 2 µm, hemispherical particles on top (particle radius R= 1 µm). The wavelength-dependent refractive index is assumed to be that of silica, as shown in Figure 3. However, the simulation did not take into account the reflection from the back surface of the quartz wafer, which could leads to slight reduce in the actual transmitted power. The transmissivity increases from ~95% to ~98% with the coating at small incident angles of º and 3º. The results agree reasonably well with experiments in Figure 12 and Figure 13. The simulated results for large incident angle are also shown for Proc. of SPIE Vol

10 completeness. With a large incident angle of 6º, the transmissivity increases from ~9% to ~96%. Work is undertaken to have an experimental setup capable of measuring large incident angle transmissions. 1 With Omni-AR Quartz 98 3 Simulated Transmittance (%) Quartz only 6 Quartz only Wavelength (nm) Figure 14 Simulated transmissivity at different incident angles for quartz wafers with and without an omni-ar coating. 6. CONCLUSIONS A detailed analysis was presented to understand the reflectivity of micro-structured surfaces for solar cell AR coatings. It was found that omni-directionality (incident angle independent) anti-reflection can be achieved in various microstructured surfaces. Coupled with index matching to the substrate, close to zero reflectivity can be achieved on Si substrates with silica omni-ar coatings. Therefore the daily generated current in omni-ar based solar cell can be raised up to 1.5 time of bulk silicon solar cell. Experimental results agree reasonably well with the theory. The results suggest that the proposed omni-ar structure is a promising and cost effective solution for current and future generation solar cells. ACKNOWLEDGEMENTS The authors would like to thank Mr. K. Han, G. Song and Z. Qiang for their help with transmissivity measurements. The work was supported by Air Force Office of Scientific Research and National Science Foundation. REFERENCE [1] Luque, A., and Hegedus, S., [Handbook of Photovoltaic Science and Engineering], Wiley New York, (23). [2] Dobrowolski, J. A., Poitras, D., Ma, P., Vakil, H., and Acree, M., "Toward Perfect Antireflection Coatings: Numerical Investigation," Applied Optics 41, 375 (22) [3] Poitras, D., and Dobrowolski, J. A., "Toward Perfect Antireflection Coatings. 2. Theory," Applied Optics 43, 1286 (24) [4] Dobrowolski, A., Guo, Y., Tiwald, T., Ma, P., and Poitras, D., "Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials," Applied Optics. 45, 1555 (26) [5] Yariv, A., and Yeh, P., [Optical Waves in Crystals: Propagation and Control of Laser Radiation], Wiley-Interscience, (22). [6] Bouhafs, D., Moussi, A., Chikouche, A., and Ruiz, J. M., " Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells - Appl. Phys.," Solar Energy Materials and Solar Cells 52, 79 (1998) [7] Southwell, W. H., "Gradient-index antireflection coatings," Optics Letters 8, 584 (1983) [8] Yablonovitch, E., "Statistical ray optics," Journal of the Optical Society of America 72, 899 (1982) [9] Campbell, P., and Green, M. A., "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243 (1987) [1] Bautista, M. C., and Morales, A., "Silica antireflective films on glass produced by the sol-gel method," Solar Energy Materials and Solar Cells 8, 217 (23) [11] Lee, D., Rubner, M. F., and Cohen, R. E., "All-Nanoparticle Thin-Film Coatings," Nano Letter 6, 235 (26) Proc. of SPIE Vol

11 [12] Chen, D., "Anti-reflection(AR) coatings made by sol-gel processes: A review," Solar Energy Materials and Solar Cells 68, 313 (21) [13] Xi, J.-Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M., Lin, S.-Y., Liu, W., and Smart, J. A., " Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photonics 1, 176 (27) [14] Zhao, J., and Green, M. A., "Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells," IEEE Trans. Electron Devices 38, 1925 (1991) [15] Yablonovitch, E., and Cody, G. D., "Intensity Enhancement in Textured Optical Sheets for Solar Cells," IEEE Trans. on Electron Devices ED-29, 3 (1982) [16] Zhao, J., Wang, A., Campbell, P., and Green, M. A., "22.7% efficient silicon photovoltaic modules with textured frontsurface," IEEE Trans. Electron Dev 46, 1495 (1999) [17] McIntosh, K. R., Cudzinovic, M. J., Smith, D. D., Mulligan, W. P., and Swanson, R. M., "The choice of silicon wafer for the production of low-cost rear-contact solar cells," in 3rd World Conference of Photovoltaic Energy Conversion(Osaka, Japan), (23) [18] Tao, M., Zhou, W., Yang, H., and Chen, L., "Surface texturing by solution deposition for omnidirectional antireflection," Appl. Phy. Lett 91, (27) [19] Zhou, W., Tao, M., Chen, L., and Yang, H., "Microstructured surface design for omnidirectional antireflection coatings on solar cells," J. Appl. Phys. 12, 1315 (27) [2] Weber, M. J., [Handbook of Optical Materials], CRC Press, Cleveland, (23). Proc. of SPIE Vol

Microstructured surface design for omnidirectional antireflection coatings on solar cells

Microstructured surface design for omnidirectional antireflection coatings on solar cells JOURNAL OF APPLIED PHYSICS 102, 103105 2007 Microstructured surface design for omnidirectional antireflection coatings on solar cells Weidong Zhou, a Meng Tao, b Li Chen, and Hongjun Yang Department of

More information

Optimal Design of Graded Refractive Index Profile for Broadband Omnidirectional Antireflection Coatings Using Genetic Programming

Optimal Design of Graded Refractive Index Profile for Broadband Omnidirectional Antireflection Coatings Using Genetic Programming Progress In Electromagnetics Research, Vol. 145, 39 48, 2014 Optimal Design of Graded Refractive Index Profile for Broadband Omnidirectional Antireflection Coatings Using Genetic Programming Yongxiang

More information

Design of wideband graded-index antireflection coatings at oblique light incidence

Design of wideband graded-index antireflection coatings at oblique light incidence Design of wideband graded-index antireflection coatings at oblique light incidence Zhang Jun-Chao( ) a)b), Fang Ming( ) a), Jin Yun-Xia( ) a), and He Hong-Bo( ) a) a) Key Laboratory of Material Science

More information

Broadband and Wide Angle Antireflection Coatings for Solar Cell Applications Dr. Mohammed A. Hussein, Dr. Ali H. Al-Hamdani, Nibras S.

Broadband and Wide Angle Antireflection Coatings for Solar Cell Applications Dr. Mohammed A. Hussein, Dr. Ali H. Al-Hamdani, Nibras S. Broadband and Wide Angle Antireflection Coatings for Solar Cell Applications Dr. Mohammed A. Hussein University of Technology Dr. Ali H. Al-Hamdani Energy and Renewable Energy Technology Center/ University

More information

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Jianming Zhou *, Yongfa Fan, Bruce W. Smith Microelectronics Engineering Department, Rochester Institute of Technology,

More information

Effective Medium Theory, Rough Surfaces, and Moth s Eyes

Effective Medium Theory, Rough Surfaces, and Moth s Eyes Effective Medium Theory, Rough Surfaces, and Moth s Eyes R. Steven Turley, David Allred, Anthony Willey, Joseph Muhlestein, and Zephne Larsen Brigham Young University, Provo, Utah Abstract Optics in the

More information

Diffraction Efficiency

Diffraction Efficiency Diffraction Efficiency Turan Erdogan Gratings are based on diffraction and interference: Diffraction gratings can be understood using the optical principles of diffraction and interference. When light

More information

Holographic Elements in Solar Concentrator and Collection Systems

Holographic Elements in Solar Concentrator and Collection Systems Holographic Elements in Solar Concentrator and Collection Systems Raymond K. Kostuk,2, Jose Castro, Brian Myer 2, Deming Zhang and Glenn Rosenberg 3 Electrical and Computer Engineering, Department University

More information

T-Solar Overview. * Patent-pending

T-Solar Overview. * Patent-pending T-Solar T-Solar Overview The T-Solar system combines our best photovoltaic measurement technology into a system designed specifically for measuring textured samples. Based on the established M-2000 rotating

More information

Length Scale Dependence of Periodic Textures for Photoabsorption Enhancement in Ultra-thin Silicon Foils and Thick Wafers

Length Scale Dependence of Periodic Textures for Photoabsorption Enhancement in Ultra-thin Silicon Foils and Thick Wafers Length Scale Dependence of Periodic Textures for Photoabsorption Enhancement in Ultra-thin Silicon Foils and Thick Wafers K Kumar 1, A Khalatpour 2, G Liu 1, J Nogami 1* and N P Kherani 1, 2 1 Department

More information

Reflectivity Calculation Program

Reflectivity Calculation Program Reflectivity Calculation Program This optional program allows calculation of the reflectivity spectrum at any incidence angle from the wavelength distribution of the sample n and k values. Additionally,

More information

Manual for solar cell optical simulation software: GENPRO4

Manual for solar cell optical simulation software: GENPRO4 Manual for solar cell optical simulation software: GENPRO4 Rudi Santbergen (r.santbergen@tudelft.nl) Photovoltaic Materials and Devices Delft University of Technology Version: February 2016 0. Introduction

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

1 Introduction j3. Thicknesses d j. Layers. Refractive Indices. Layer Stack. Substrates. Propagation Wave Model. r-t-φ-model

1 Introduction j3. Thicknesses d j. Layers. Refractive Indices. Layer Stack. Substrates. Propagation Wave Model. r-t-φ-model j1 1 Introduction Thin films of transparent or semitransparent materials play an important role in our life. A variety of colors in nature are caused by the interference of light reflected at thin transparent

More information

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu Available online at www.sciencedirect.com Physics Procedia 22 (2011) 493 497 2011 International Conference on Physics Science and Technology (ICPST 2011) Optical Tweezers Array System Based on 2D Photonic

More information

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Katsuichi Kitagawa Toray Engineering Co. Ltd., 1-1-45 Oe, Otsu 50-141, Japan Corresponding

More information

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction , pp.41-45 http://dx.doi.org/10.14257/astl.2016.140.08 A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction Seung Dae Lee 1 1* Dept. of Electronic Engineering, Namseoul

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Polarizing properties of embedded symmetric trilayer stacks under conditions of frustrated total internal reflection

Polarizing properties of embedded symmetric trilayer stacks under conditions of frustrated total internal reflection University of New Orleans ScholarWorks@UNO Electrical Engineering Faculty Publications Department of Electrical Engineering 3-1-2006 Polarizing properties of embedded symmetric trilayer stacks under conditions

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 3, 2015 ISSN 1223-7027 NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS Bogdan Stefaniţă CALIN 1, Liliana PREDA 2 We have successfully designed a

More information

Huamao Huang, Jinyong Hu, and Hong Wang. 1. Introduction

Huamao Huang, Jinyong Hu, and Hong Wang. 1. Introduction e Scientific World Journal, Article ID 837586, 6 pages http://dx.doi.org/10.1155/2014/837586 Research Article Light-Output Enhancement of GaN-Based Light-Emitting Diodes with Three-Dimensional Backside

More information

Optical Topography Measurement of Patterned Wafers

Optical Topography Measurement of Patterned Wafers Optical Topography Measurement of Patterned Wafers Xavier Colonna de Lega and Peter de Groot Zygo Corporation, Laurel Brook Road, Middlefield CT 6455, USA xcolonna@zygo.com Abstract. We model the measurement

More information

SILICON PHOTONICS WAVEGUIDE AND ITS FIBER INTERCONNECT TECHNOLOGY. Jeong Hwan Song

SILICON PHOTONICS WAVEGUIDE AND ITS FIBER INTERCONNECT TECHNOLOGY. Jeong Hwan Song SILICON PHOTONICS WAVEGUIDE AND ITS FIBER INTERCONNECT TECHNOLOGY Jeong Hwan Song CONTENTS Introduction of light waveguides Principals Types / materials Si photonics Interface design between optical fiber

More information

Advanced light management techniques for building integrated PV (BIPV)

Advanced light management techniques for building integrated PV (BIPV) Advanced light management techniques for building integrated PV (BIPV) A. Ingenito, J. C. O. Lizcano, O. Isabella, M. Zeman Delft University of Technology Advanced light management Roadmap for decreasing

More information

Understanding and Using Fourier Transform Thin Film Design Without Advanced Calculus

Understanding and Using Fourier Transform Thin Film Design Without Advanced Calculus Understanding and Using Fourier Transform Thin Film Design Without Advanced Calculus R.R. Willey, Opto Mechanik, Inc., Melbourne, FL Keywords: Optical design ABSTRACT A desired reflectance profile versus

More information

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction.

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction. Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z direction. Supplementary Figure 2: The nanorod functions as a half-wave plate. The fast axis of the waveplate is parallel to

More information

ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER

ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER ACCURATE TEXTURE MEASUREMENTS ON THIN FILMS USING A POWDER X-RAY DIFFRACTOMETER MARK D. VAUDIN NIST, Gaithersburg, MD, USA. Abstract A fast and accurate method that uses a conventional powder x-ray diffractometer

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

Global Optical Coatings Market

Global Optical Coatings Market Market Report Global Optical Coatings Market Published: April, 2014 Publisher: Acmite Market Intelligence Language: English Pages: 520 Price: from 1,490 Euro Abstract As an enabling technology, thin film

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms

Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms Supporting Materials Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms Bo Wang,, Fengliang Dong,, Qi-Tong Li, Dong Yang, Chengwei Sun, Jianjun Chen,,

More information

Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection

Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection Supplementary Information for Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection Bokwang Song 1, Villads Egede Johansen 2,3, Ole Sigmund 3 and Jung H. Shin 4,1,* 1

More information

Compact Multilayer Film Structure for Angle Insensitive. Color Filtering

Compact Multilayer Film Structure for Angle Insensitive. Color Filtering 1 Compact Multilayer Film Structure for Angle Insensitive Color Filtering Chenying Yang, Weidong Shen*, Yueguang Zhang, Kan Li, Xu Fang, Xing Zhang, and Xu Liu * E-mail: adongszju@hotmail.com

More information

University of New Orleans. Siva R. Perla. R. M.A. Azzam University of New Orleans,

University of New Orleans. Siva R. Perla. R. M.A. Azzam University of New Orleans, University of New Orleans ScholarWorks@UNO Electrical Engineering Faculty Publications Department of Electrical Engineering 7-6-2007 Wide-angle, high-extinction-ratio, infrared polarizing beam splitters

More information

Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method. Dalton Chaffee, Xufeng Wang, Peter Bermel

Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method. Dalton Chaffee, Xufeng Wang, Peter Bermel ABSTRACT Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method Dalton Chaffee, Xufeng Wang, Peter Bermel In the push to build high-efficiency solar cells with less materials, thin-film

More information

ABSTRACT. Keywords: antireflection coatings, multilayer design, deposition and fabrication, broadband monitoring 1. INTRODUCTION

ABSTRACT. Keywords: antireflection coatings, multilayer design, deposition and fabrication, broadband monitoring 1. INTRODUCTION Design and production of three line antireflection coating for visible far infrared spectral regions Valeriy Zhupanov a, Viktor Fedoseev a, Michael Trubetskov b,c, Tatiana Amotchkina c, Alexander Tikhonravov*,c

More information

Diffraction Gratings as Anti Reflective Coatings Noah Gilbert. University of Arizona ngilbert .arizona.edu Phone: (520)

Diffraction Gratings as Anti Reflective Coatings Noah Gilbert. University of Arizona   ngilbert .arizona.edu Phone: (520) Diffraction Gratings as Anti Reflective Coatings Noah Gilbert University of Arizona Email: ngilbertemail.arizona.edu Phone: (520)304 4864 Abstract: Diffraction gratings with sub wavelength spatial frequencies

More information

Chemistry Instrumental Analysis Lecture 6. Chem 4631

Chemistry Instrumental Analysis Lecture 6. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 6 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

D&S Technical Note 09-2 D&S A Proposed Correction to Reflectance Measurements of Profiled Surfaces. Introduction

D&S Technical Note 09-2 D&S A Proposed Correction to Reflectance Measurements of Profiled Surfaces. Introduction Devices & Services Company 10290 Monroe Drive, Suite 202 - Dallas, Texas 75229 USA - Tel. 214-902-8337 - Fax 214-902-8303 Web: www.devicesandservices.com Email: sales@devicesandservices.com D&S Technical

More information

Spectrophotometric Methods of Refractive Indices Measurement

Spectrophotometric Methods of Refractive Indices Measurement Application Note Glass, ceramics, optics Spectrophotometric Methods of Refractive Indices Measurement Measuring the refractive index of single crystal optical materials using two methods Authors N.S. Kozlova

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Influence of the Optical Multi-Film Thickness on the Saturation of the Structural Color Displayed 1

Influence of the Optical Multi-Film Thickness on the Saturation of the Structural Color Displayed 1 Advances in Natural Science Vol. 3, No. 2,, pp.317-323 www.cscanada.net ISSN 1715-7862 [PRINT] ISSN 1715-787 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Influence

More information

Instruction Manual of Modelling of Trap Detectors Using Matlab

Instruction Manual of Modelling of Trap Detectors Using Matlab Aalto University School of Electrical Engineering Metrology Research Institute Mikko Puranen Tuomas Poikonen Timo Dönsberg Petri Kärhä Instruction Manual of Modelling of Trap Detectors Using Matlab Version

More information

Effect of Substrate Index of Refraction on the Design of Antireflection Coatings

Effect of Substrate Index of Refraction on the Design of Antireflection Coatings Effect of Substrate Index of Refraction on the Design of Antireflection Coatings Ronald R. Willey Willey Optical, Consultants, 13039 Cedar Street, Charlevoix, MI 49720 1. INTRODUCTION Formulae to estimate

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Investigation of the foot-exposure impact in hyper-na immersion lithography when using thin anti-reflective coating

Investigation of the foot-exposure impact in hyper-na immersion lithography when using thin anti-reflective coating Investigation of the foot-exposure impact in hyper-na immersion lithography when using thin anti-reflective coating Darron Jurajda b, Enrico Tenaglia a, Jonathan Jeauneau b, Danilo De Simone a, Zhimin

More information

THz Transmission Properties of Metallic Slit Array

THz Transmission Properties of Metallic Slit Array THz Transmission Properties of Metallic Slit Array Guozhong Zhao * Department of Physics, Capital Normal University, Beijing 100048, China Beijing Key Lab for Terahertz Spectroscopy and Imaging Key Lab

More information

PERFORMANCE OF SILICON SOLAR CELL WITH VARIOUS SURFACE TEXTURES

PERFORMANCE OF SILICON SOLAR CELL WITH VARIOUS SURFACE TEXTURES J.Ilm.Tek.Energi Vol.1 No.7 August 2008: 16-23 PERFORMANCE OF SILICON SOLAR CELL WITH VARIOUS SURFACE TEXTURES F. Jahanshah*, K. Sopian*, I. Ahmad*, M. Y. Othman*, S. H. Zaidi** * Solar Energy Research

More information

Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography

Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography Mark D. Smith, Trey Graves, John Biafore, and Stewart Robertson KLA-Tencor Corp, 8834 N. Capital of Texas Hwy,

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

POLYHEDRAL SPECULAR REFLECTOR

POLYHEDRAL SPECULAR REFLECTOR 32 C h a p t e r 3 POLYHEDRAL SPECULAR REFLECTOR The goal of the Full Spectrum Photovoltaics Project was to design and prototype a 50% module efficiency photovoltaic system. Of the three designs we initially

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

10.4 Interference in Thin Films

10.4 Interference in Thin Films 0. Interference in Thin Films You have probably noticed the swirling colours of the spectrum that result when gasoline or oil is spilled on water. And you have also seen the colours of the spectrum shining

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

The Importance of Refractive Index When using Laser Diffraction

The Importance of Refractive Index When using Laser Diffraction The Importance of Refractive Index When using Laser Diffraction Mark Bumiller mark.bumiller@horiba.com Fraunhofer Approximation Mie Theory RI 1.60 0.0i, in water, RI 1.33 Mie vs. Fraunhofer 1.E+05 1.E+04

More information

Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes

Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes Ming Ma, 1 Frank W. Mont, 2 Xing Yan, 3 Jaehee Cho, 2,* E. Fred Schubert, 2,3 Gi Bum Kim,

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

ARRAYS OF MICRO-PRISMS AND MICRO-MIRRORS FOR INFRARED LIGHT BASED ON As 2 S 3 -As 2 Se 3 PHOTORESISTS

ARRAYS OF MICRO-PRISMS AND MICRO-MIRRORS FOR INFRARED LIGHT BASED ON As 2 S 3 -As 2 Se 3 PHOTORESISTS Journal of Optoelectronics and Advanced Materials Vol. 7, No. 5, October 2005, p. 2275-2280 ARRAYS OF MICRO-PRISMS AND MICRO-MIRRORS FOR INFRARED LIGHT BASED ON As 2 S -As 2 Se PHOTORESISTS N. P. Eisenberg,

More information

Instruction Manual for Modelling of Trap Detectors. Helsinki University of Technology. Metrology Research Institute. Instruction Manual for

Instruction Manual for Modelling of Trap Detectors. Helsinki University of Technology. Metrology Research Institute. Instruction Manual for Page 1 (10) Helsinki University of Technology Metrology Research Institute Instruction Manual for Modelling Version: 2.2 Date of Issue: December 21, 2005 Page 2 (10) Table of Contents 1. INTRODUCTION 3

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Philip E. Plantz. Application Note. SL-AN-08 Revision C. Provided By: Microtrac, Inc. Particle Size Measuring Instrumentation

Philip E. Plantz. Application Note. SL-AN-08 Revision C. Provided By: Microtrac, Inc. Particle Size Measuring Instrumentation A Conceptual, Non-Mathematical Explanation on the Use of Refractive Index in Laser Particle Size Measurement (Understanding the concept of refractive index and Mie Scattering in Microtrac Instruments and

More information

Reduced surface roughness of solid thin films prepared by alternating-bias, radio-frequency magnetron sputtering

Reduced surface roughness of solid thin films prepared by alternating-bias, radio-frequency magnetron sputtering 2174 J. Opt. Soc. Am. B/ Vol. 20, No. 10/ October 2003 R. Rabady and I. Avrutsky Reduced surface roughness of solid thin films prepared by alternating-bias, radio-frequency magnetron sputtering Rabi Rabady

More information

Benefiting from Polarization: Effects at High-NA Imaging

Benefiting from Polarization: Effects at High-NA Imaging Benefiting from Polarization: Effects at High-NA Imaging Bruce W. Smith L. Zavyalova, A. Estroff, Y. Fan, A. Bourov Rochester Institute of Technology P. Zimmerman International SEMACH and Intel J. Cashmore

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired tangential form. (a) The light from the sources and scatterers in the half space (1) passes through the

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Comparison of periodic and random structures for scattering in thinfilm microcrystalline silicon solar cells

Comparison of periodic and random structures for scattering in thinfilm microcrystalline silicon solar cells Comparison of periodic and random structures for scattering in thinfilm microcrystalline silicon solar cells M. Peters a,b, K. Forberich a, C. Battaglia c, A. G. Aberle a, B. Bläsi b a Solar Energy Research

More information

Design optical filters using two different synthesis approaches

Design optical filters using two different synthesis approaches Design optical filters using two different synthesis approaches Baghdad University ا لاء نزار جامعة بغداد /كلية العلوم للبنات Abstract It is difficult to find any modern optical system that does not have

More information

Agilent Cary Universal Measurement Spectrophotometer (UMS)

Agilent Cary Universal Measurement Spectrophotometer (UMS) Agilent Cary Universal Measurement Spectrophotometer (UMS) See what you ve been missing Date: 13 th May 2013 TRAVIS BURT UV-VIS-NIR PRODUCT MANAGER AGILENT TECHNOLOGIES 1 Agenda Introducing the Cary 7000

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Benefiting from polarization effects on high-na imaging

Benefiting from polarization effects on high-na imaging Benefiting from polarization effects on high-na imaging Bruce W. Smith, Lena Zavyalova, Andrew Estroff Rochester Institute of Technology, Microelectronic Engineering Department 82 Lomb Memorial Drive,

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

Design of Hexagonal Micro Lenses Array Solar Concentrator

Design of Hexagonal Micro Lenses Array Solar Concentrator ISSN: 235-328 Design of Hexagonal Micro Lenses Array Solar Concentrator Alaa Bader Hassan, Sabah Ali Hussein Department of Physics, College of Education Ibn Al-Haitham for Pure Sciences, University of

More information

Wavelength scanning interferometry for measuring transparent films of the fusion targets

Wavelength scanning interferometry for measuring transparent films of the fusion targets Wavelength scanning interferometry for measuring transparent films of the fusion targets F. Gao *, X. Jiang, H. Muhamedsalih and H. Martin Centre for precision Technologies, University of Huddersfield,

More information

Session 1B Transparent Materials

Session 1B Transparent Materials Session 1B Transparent Materials Andrew Martin UPenn, February 2014 2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 Overview Transparent substrates & films Cauchy equation Common complexities Evaluating,

More information

Theory and Measuring of Antireflection Coatings

Theory and Measuring of Antireflection Coatings Theory and Measuring of Antireflection Coatings Steffen Lorch The characterization of antireflection (AR) coatings is not trivial. A preferred measurement method is the Hakki-Paoli method. But for broad-area

More information

Theoretical Investigation of Light Trapping in Polycrystalline Silicon Thin-Film Solar Cells

Theoretical Investigation of Light Trapping in Polycrystalline Silicon Thin-Film Solar Cells Available online at www.sciencedirect.com Energy Procedia 25 (2012 ) 43 49 PV Asia Pacific Conference 2011 Theoretical Investigation of Light Trapping in Polycrystalline Silicon Thin-Film Solar Cells Cangming

More information

Chapter 6. Applications of CLC photonic crystals. Traditional liquid crystal displays use color filters to generate colors. However, only ~33% of

Chapter 6. Applications of CLC photonic crystals. Traditional liquid crystal displays use color filters to generate colors. However, only ~33% of Chapter 6. Applications of CLC photonic crystals Yun Ho Kim 1. Flexible reflective display and dynamic reflector Traditional liquid crystal displays use color filters to generate colors. However, only

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

X-ray Optics. How do we form an X-Ray Image?

X-ray Optics. How do we form an X-Ray Image? X-ray Optics X-Ray Astronomy School V 6 August 2007 Dan Schwartz SAO/CXC How do we form an X-Ray Image? B1509-58 1E0658 Cen A This talk is X-rayted. You must be 2 light-nanoseconds tall for admittance

More information

Modeling of Surface Reflectance of Acid Textured Multicrystalline Silicon Wafer for Solar Cell Application

Modeling of Surface Reflectance of Acid Textured Multicrystalline Silicon Wafer for Solar Cell Application International Journal of Electronics and Computer Science Engineering 1065 Available Online at www.ijecse.org ISSN- 2277-1956 Modeling of Surface Reflectance of Acid Textured Multicrystalline Silicon Wafer

More information

Method of determining the optical properties of ceramics and ceramic pigments: measurement of the refractive index

Method of determining the optical properties of ceramics and ceramic pigments: measurement of the refractive index Method of determining the optical properties of ceramics and ceramic pigments: measurement of the refractive index A. Tolosa (1), N. Alcón (1), F. Sanmiguel (2), O. Ruiz (2). (1) AIDO, Instituto tecnológico

More information

Polarizers. Laser Polarizers Broadband Polarizing Beamsplitting Cubes 78 Narrowband Polarizing Beamsplitting Cubes 79

Polarizers. Laser Polarizers Broadband Polarizing Beamsplitting Cubes 78 Narrowband Polarizing Beamsplitting Cubes 79 Prisms Introduction to Right Angle Prisms 72 Quality Right Angle Prisms 73 Laboratory Quality Right Angle Prisms 73 Equilateral Prisms 74 Wedge Prisms 75 Anamorphic Prism Pair 75 Penta Prisms 76 Dove Prisms

More information

Appendix A: Comparison of ray-tracing with Birandy and Sunrays programs

Appendix A: Comparison of ray-tracing with Birandy and Sunrays programs Comparison of ray-tracing with Birandy and Sunrays programs Appendix A: Comparison of ray-tracing with Birandy and Sunrays programs Comparison of ray-tracing programs Birandy and Sunrays In order to check

More information

Reflective Illumination for DMS 803 / 505

Reflective Illumination for DMS 803 / 505 APPLICATION NOTE // Dr. Michael E. Becker Reflective Illumination for DMS 803 / 505 DHS, SDR, VADIS, PID & PLS The instruments of the DMS 803 / 505 series are precision goniometers for directional scanning

More information

10.5 Polarization of Light

10.5 Polarization of Light 10.5 Polarization of Light Electromagnetic waves have electric and magnetic fields that are perpendicular to each other and to the direction of propagation. These fields can take many different directions

More information

Defect Repair for EUVL Mask Blanks

Defect Repair for EUVL Mask Blanks Defect Repair for EUVL Mask Blanks A.Barty, S.Hau-Riege, P.B.Mirkarimi, D.G.Stearns, H.Chapman, D.Sweeney Lawrence Livermore National Laboratory M.Clift Sandia National Laboratory E.Gullikson, M.Yi Lawrence

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

1. Polarization effects in optical spectra of photonic crystals

1. Polarization effects in optical spectra of photonic crystals Speech for JASS 05. April 2005. Samusev A. 1. Polarization effects in optical spectra of photonic crystals Good afternoon. I would like to introduce myself. My name is Anton Samusev. I m a student of Saint

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

9. Polarizers. Index of. Coefficient of Material Wavelength ( ) Brewster angle refraction (n)

9. Polarizers. Index of. Coefficient of Material Wavelength ( ) Brewster angle refraction (n) 9. Polarizers All polarized light is to some degree elliptical in nature. Basic states of polarization like linear and circular are actually special cases of elliptically polarized light which is defined

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Defect Inspection of Liquid-Crystal-Display (LCD) Panels in Repetitive Pattern Images Using 2D Fourier Image Reconstruction

Defect Inspection of Liquid-Crystal-Display (LCD) Panels in Repetitive Pattern Images Using 2D Fourier Image Reconstruction Defect Inspection of Liquid-Crystal-Display (LCD) Panels in Repetitive Pattern Images Using D Fourier Image Reconstruction Du-Ming Tsai, and Yan-Hsin Tseng Department of Industrial Engineering and Management

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information