# Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010

Save this PDF as:

Size: px
Start display at page:

Download "Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010"

## Transcription

1 Computer Graphics 1 Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering 1

2 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization Animation, Interaction Lights 2

3 Local Illumination: Shading Local illumination: light calculations are done locally without the global scene no cast shadows (since those would be from other objects, hence global) object shadows are OK, only depend on the surface normal Loop over all polygons For each polygon: determine the pixels it occupies on the screen and their color draw using e.g., Z-buffer algorithm to get occlusion right Each polygon only considered once Each pixel considered multiple times 3

4 Flat shading Determine one surface normal for each triangle Compute the color for this triangle using e.g., the phong illumination model using the normal, camera and light positions Draw the entire triangle in this color neighboring triangles will have different shades visual crease between triangles cheapest and fastest form of shading can be a wanted effect, e.g. with primitives 4

5 Gouraud shading Determine normals for all mesh vertices i.e., triangle now has 3 normals Compute colors at all vertices using e.g., the phong illumination model using the 3 normals, camera and light positions Interpolate between these colors along the edges neighboring triangles will have smooth transitions if normals at a vertex are the same for all triangles using it simplest form of smooth shading specular highlights only if they fall on a vertex by chance 5

6 Phong Shading Determine normals for all mesh vertices Interpolate between these normals along the edges Compute colors at all vertices using e.g., the phong illumination model using the interpolated normal, camera and light positions neighboring triangles will have smooth transitions if normals at a vertex are the same for all triangles using it has widely substituted gouraud shading specular highlights in arbitrary positions have to compute phong illumination model for every pixel 6

7 Scan-line algorithms Sort all polygons by their top Y position in the image Scan through the image line by line load polygons which start there into memory discard polygons that have ended on the scan line before Draw all polygons currently loaded sort from left to right by intersecting edges with scan line using appropriate depth calculation (e.g., Z-Buffer) using appropriate lighting (e.g., phong illumination model) Only a small number of polygons considered in each line good for optimizing memory access and caching Each polygon only considered once Each pixel considered only once 7

8 Global illumination: Ray tracing Global illumination: light calculations are done globally considering the entire scene i.e. cast shadows are OK if properly calculated object shadows are OK anyway Ray casting: from the eye, cast a ray through every screen pixel find the first polygon it intersects with determine its color at intersection and use for the pixel also solves occlusion (makes Z-Buffer unnecessary) Ray tracing: recursive ray casting from intersection, follow reflected and refracted beams up to a maximum recursion depth (probably not original) 8

9 9

10 source: LMU München Blender Medieninformatik Gallery Andreas Butz Computergraphik 1 SS

11 source: Blender Gallery 11

12 Brainstorming: what makes Ray Tracing hard? 12

13 Recent development: Real Time Ray Tracing Various optimizations presented over the last few years Real time ray tracing has become feasible Follow (images from there) 13

14 Global illumination: Radiosity source: Blender Gallery Simulation of energy flow in scene Can show color bleeding blueish and reddish sides of boxes Naturally deals with area light sources Creates soft shadows Only uses diffuse reflection does not produce specular highlights 14

15 Radiosity algorithm Divide all surfaces into small patches For each patch determine its initial energy Loop until close to energy equilibrium loop over all patches determine energy exchange with every other patch radiosity solution : energy for all patches Recompute if changes (probably not original) 15

16 source: Blender Gallery 16

17 Non-Photorealistic Rendering (NPR) Create graphics that look like drawings or paintings One method: stroke-based NPR instead of grey shades, determine a stroke density and pattern imitates pencil drawings or etchings (Kupferstich) Other methods: using image manipulation on rendered images can in principle often be done in photoshop Active field of research many others 17

### Interpolation using scanline algorithm

Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle top-down using scanline. Compute start and end color value of each pixel

### 03 RENDERING PART TWO

03 RENDERING PART TWO WHAT WE HAVE SO FAR: GEOMETRY AFTER TRANSFORMATION AND SOME BASIC CLIPPING / CULLING TEXTURES AND MAPPING MATERIAL VISUALLY DISTINGUISHES 2 OBJECTS WITH IDENTICAL GEOMETRY FOR NOW,

### CS5620 Intro to Computer Graphics

So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

### Global Illumination. COMP 575/770 Spring 2013

Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:

### Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

### Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

Illumination and Shading Illumination (Lighting)! Model the interaction of light with surface points to determine their final color and brightness! The illumination can be computed either at vertices or

### Computer Graphics. Lecture 13. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura

Computer Graphics Lecture 13 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local

### Photorealistic 3D Rendering for VW in Mobile Devices

Abstract University of Arkansas CSCE Department Advanced Virtual Worlds Spring 2013 Photorealistic 3D Rendering for VW in Mobile Devices Rafael Aroxa In the past few years, the demand for high performance

### Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

### Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce

### Computer Graphics. Lecture 10. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura 12/03/15

Computer Graphics Lecture 10 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local

### Photorealism: Ray Tracing

Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any

### 6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm

6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm In this assignment, you will add an interactive preview of the scene and solid

### SEOUL NATIONAL UNIVERSITY

Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

### Rasterization Overview

Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

### 6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm

6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm In this assignment, you will add an interactive preview of the scene and solid

### COMP environment mapping Mar. 12, r = 2n(n v) v

Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

### Deferred Rendering Due: Wednesday November 15 at 10pm

CMSC 23700 Autumn 2017 Introduction to Computer Graphics Project 4 November 2, 2017 Deferred Rendering Due: Wednesday November 15 at 10pm 1 Summary This assignment uses the same application architecture

### Shadow Algorithms. CSE 781 Winter Han-Wei Shen

Shadow Algorithms CSE 781 Winter 2010 Han-Wei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:

### Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

### graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

### So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

### - Rasterization. Geometry. Scan Conversion. Rasterization

Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

### Announcements. Written Assignment 2 out (due March 8) Computer Graphics

Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading

### Raycast Rendering Maya 2013

2000 2012 Michael O'Rourke Raycast Rendering Maya 2013 (See also the Intro to Lights and Rendering tutorial for an introduction to the basics of rendering an image) Concept There are several algorithms

### HomeWork 2 Rasterization

HomeWork 2 Rasterization Fall 2012 Submitted By - Nitin Agrahara Ravikumar 73714398 The First Part: Rasterization As required by the homework, the display function of the smooth program is hijacked and

Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω

### Render methods, Compositing, Post-process and NPR in NX Render

Render methods, Compositing, Post-process and NPR in NX Render Overview What makes a good rendered image Render methods in NX Render Foregrounds and backgrounds Post-processing effects Compositing models

### CS GAME PROGRAMMING Question bank

CS6006 - GAME PROGRAMMING Question bank Part A Unit I 1. List the different types of coordinate systems. 2. What is ray tracing? Mention some applications of ray tracing. 3. Discuss the stages involved

### Computer Graphics. Lecture 9 Hidden Surface Removal. Taku Komura

Computer Graphics Lecture 9 Hidden Surface Removal Taku Komura 1 Why Hidden Surface Removal? A correct rendering requires correct visibility calculations When multiple opaque polygons cover the same screen

### CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400

### Comp 410/510 Computer Graphics. Spring Shading

Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather

### CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

### A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University

A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global

### Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

### A Temporal Image-Based Approach to Motion Reconstruction for Globally Illuminated Animated Environments

University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science June 1996 A Temporal Image-Based Approach to Motion Reconstruction for

### CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

### COMPUTER GRAPHICS COURSE. Rendering Pipelines

COMPUTER GRAPHICS COURSE Rendering Pipelines Georgios Papaioannou - 2014 A Rendering Pipeline Rendering or Graphics Pipeline is the sequence of steps that we use to create the final image Many graphics/rendering

### Chapter 23- UV Texture Mapping

Chapter 23- UV Texture Mapping Since games need to be able to process operations as fast as possible, traditional rendering techniques (specular, ray tracing reflections and refractions) cannot typically

### Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

### Graphics and Games. Penny Rheingans University of Maryland Baltimore County

Graphics and Games IS 101Y/CMSC 104Y First Year IT Penny Rheingans University of Maryland Baltimore County Announcements Quizzes Project Questions Other questions Questions about Reading Asst Games with

### CS Computer Graphics: Hidden Surface Removal

CS 543 - Computer Graphics: Hidden Surface Removal by Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Hidden Surface Removal Drawing polygonal faces on screen consumes CPU cycles We cannot

Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall

### Review for Ray-tracing Algorithm and Hardware

Review for Ray-tracing Algorithm and Hardware Reporter: 邱敬捷博士候選人 Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Summer, 2017 1 2017/7/26 Outline

Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

### Welcome to COMP 770 (236) Introduction. Prerequisites. Prerequisites

Welcome to COMP 770 (236) Introduction Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd Instructor: Brandon Lloyd Email: blloyd@cs.unc.edu Office: SN349 Office hours: MW 1:00 2:00

### CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

### Classic Rendering Pipeline

CS580: Classic Rendering Pipeline Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Course Objectives Understand classic rendering pipeline Just high-level concepts, not all the

### Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

### Hidden Surface Removal

Outline Introduction Hidden Surface Removal Hidden Surface Removal Simone Gasparini gasparini@elet.polimi.it Back face culling Depth sort Z-buffer Introduction Graphics pipeline Introduction Modeling Geom

### COM337 COMPUTER GRAPHICS Other Topics

COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that

Helsinki University of Technology Telecommunications Software and Multimedia Laboratory T-111.500 Seminar on Computer Graphics Spring 2002 Rendering of High Quality 3D-Graphics Stencil Shadow Volumes Matti

### Wednesday, 26 January 2005, 14:OO - 17:OO h.

Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 1-3D Computer Graphics and Virtual Reality Please

### 3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

### Computer Graphics I. Assignment 3

UNIVERSITÄT DES SAARLANDES Dr.-Ing. Hendrik P.A. Lensch Max Planck Institut Informatik Art Tevs (tevs@mpi-inf.mpg.de) Boris Ajdin (bajdin@mpi-inf.mpg.de) Matthias Hullin (hullin@mpi-inf.mpg.de) 12. November

### Werner Purgathofer

Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

### CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

### Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

### CEng 477 Introduction to Computer Graphics Fall

Illumination Models and Surface-Rendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated

### - Location: Annenberg Text: Mostly Self-Contained on course Web pages. - Al Barr

CS171 Computer Graphics Time: 3pm-3:55pm MW(F) - Location: Annenberg 105 - Text: Mostly Self-Contained on course Web pages Instructor: - Al Barr barradmin@cs.caltech.edu, TAs: - Kevin (Kevli) Li - kevli@caltech.edu

### CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

Last Time? Programmable GPUS Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes frame buffer depth buffer stencil buffer Stencil Buffer Homework 4 Reading for Create some geometry "Rendering

### SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.

SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from

### CSE Intro to Computer Graphics. ANSWER KEY: Midterm Examination. November 18, Instructor: Sam Buss, UC San Diego

CSE 167 - Intro to Computer Graphics ANSWER KEY: Midterm Examination November 18, 2003 Instructor: Sam Buss, UC San Diego Write your name or initials on every page before beginning the exam. You have 75

Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination

### Graphics Hardware and OpenGL

Graphics Hardware and OpenGL Ubi Soft, Prince of Persia: The Sands of Time What does graphics hardware have to do fast? Camera Views Different views of an object in the world 1 Camera Views Lines from

### Computer Graphics. Lecture 9 Environment mapping, Mirroring

Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer

Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

### How-To Guide SAP 3D Visual Enterprise Author 8.0 Document Version: How To Work with Textures

How-To Guide SAP 3D Visual Enterprise Author 8.0 Document Version: 1.0-2014-07-04 Document History Document Version Description 1.0 First version Document History 2014 SAP AG or an SAP affiliate company.

### Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

### Computer Graphics Lecture 11

1 / 14 Computer Graphics Lecture 11 Dr. Marc Eduard Frîncu West University of Timisoara May 15th 2012 2 / 14 Outline 1 Introduction 2 Transparency 3 Reflection 4 Recap 3 / 14 Introduction light = local

### Non-Photo Realistic Rendering. Jian Huang

Non-Photo Realistic Rendering Jian Huang P and NP Photo realistic has been stated as the goal of graphics during the course of the semester However, there are cases where certain types of non-photo realistic

### Computer Science 175. Introduction to Computer Graphics lib175 time: m/w 2:30-4:00 pm place:md g125 section times: tba

Computer Science 175 Introduction to Computer Graphics www.fas.harvard.edu/ lib175 time: m/w 2:30-4:00 pm place:md g125 section times: tba Instructor: Steven shlomo Gortler www.cs.harvard.edu/ sjg sjg@cs.harvard.edu

### Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design:

Software Engineering ò Look up Design Patterns ò Code Refactoring ò Code Documentation? ò One of the lessons to learn for good design: ò Coupling: the amount of interconnectedness between classes ò Cohesion:

### Computer Graphics and Visualization. What is computer graphics?

CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading

### Ray Casting. Outline. Similar to glulookat derivation. Foundations of Computer Graphics

Foundations of omputer Graphics Online Lecture 10: Ray Tracing 2 Nuts and olts amera Ray asting Outline amera Ray asting (choose ray directions) Ravi Ramamoorthi Outline in ode Image Raytrace (amera cam,

### Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

### I expect to interact in class with the students, so I expect students to be engaged. (no laptops, smartphones,...) (fig)

Computer Science 175 Introduction to Computer Graphics www.fas.harvard.edu/ lib175 time: m/w 2:30-4:00 pm place:md g125 section times: tba Instructor: Steven shlomo Gortler www.cs.harvard.edu/ sjg sjg@cs.harvard.edu

### Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008

Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light

### 521493S Computer Graphics. Exercise 3

521493S Computer Graphics Exercise 3 Question 3.1 Most graphics systems and APIs use the simple lighting and reflection models that we introduced for polygon rendering. Describe the ways in which each

### Choosing the right course

Choosing the right course CS 148 Winter, Hanrahan, not SCPD undergraduates only requires 107 terminal course broad and conceptual CS 248 lite + 2D image processing media technologies video technologies

### Non-photorealistic Rendering

Non-photorealistic Rendering Art Rendering 1 From: ATI Radeon 9700 Real-Time Demos A Brief History of (Western) Painting Prehistoric Egyptian Medieval Renaissance A peak in realism Impressionism Modernism

### Visualization Toolkit(VTK) Atul Kumar MD MMST PhD IRCAD-Taiwan

Visualization Toolkit(VTK) Atul Kumar MD MMST PhD IRCAD-Taiwan Visualization What is visualization?: Informally, it is the transformation of data or information into pictures.(scientific, Data, Information)

### Rendering Light Reflection Models

Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 3, 2017 Lecture #13 Program of Computer Graphics, Cornell University General Electric - 167 Cornell in

### Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics?

EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L0101, W 12-2pm

Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

### Chapter 6- Lighting and Cameras

Lighting Types and Settings When you create a scene in Blender, you start with a few basic elements that will include a camera, but may or may not include a light. Remember that what the camera sees is

### Computer Graphics and Image Processing Ray Tracing I

Computer Graphics and Image Processing Ray Tracing I Part 1 Lecture 9 1 Today s Outline Introduction to Ray Tracing Ray Casting Intersecting Rays with Primitives Intersecting Rays with Transformed Primitives

### Illumination and Reflection in OpenGL CS 460/560. Computer Graphics. Shadows. Photo-Realism: Ray Tracing. Binghamton University.

Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

### Enabling immersive gaming experiences Intro to Ray Tracing

Enabling immersive gaming experiences Intro to Ray Tracing Overview What is Ray Tracing? Why Ray Tracing? PowerVR Wizard Architecture Example Content Unity Hybrid Rendering Demonstration 3 What is Ray

### Ray Casting on Programmable Graphics Hardware. Martin Kraus PURPL group, Purdue University

Ray Casting on Programmable Graphics Hardware Martin Kraus PURPL group, Purdue University Overview Parallel volume rendering with a single GPU Implementing ray casting for a GPU Basics Optimizations Published

Fall 2017 CSCI 420: Computer Graphics 5.2 Shading in OpenGL Hao Li http://cs420.hao-li.com 1 Outline Normal Vectors in OpenGL Polygonal Shading Light Sources in OpenGL Material Properties in OpenGL Example:

### Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line