Announcements. Introduction to Cameras. The Key to Axis Angle Rotation. Axis-Angle Form (review) Axis Angle (4 steps) Mechanics of Axis Angle

Size: px
Start display at page:

Download "Announcements. Introduction to Cameras. The Key to Axis Angle Rotation. Axis-Angle Form (review) Axis Angle (4 steps) Mechanics of Axis Angle"

Transcription

1 Ross Beerige Bruce Draper Introuction to Cameras September th 25 Announcements PA ue eek from Tuesa Q: hat i I mean b robust I/O? Hanle arious numbers of erte/face features Check for count matches Goo error messages Other Questions? 2 Ross Beerige Bruce Draper Ais-Angle Form (reie θ W R = θw = θ r r 2 r 3 r R = 2 r 22 r 23 r 3 r 32 r 33 Pros Cons an going from ais angle to 44 matri form. Ross Beerige Bruce Draper The Ke to Ais Angle Rotation Rotating b θ aroun the Z ais is no problem: cos( θ sin( θ sin( θ cos( θ So to rotate aroun ais W first rotate the coorinate sstems so that W = Z 3 4 Ross Beerige Bruce Draper Mechanics of Ais Angle Ho o e rotate the ata to make the angle of rotation Z? Multiplication is projection onto the ros of M If M is orthonormal it is a rotation matri Magnitue of eer ro is Dot prouct of eer pair of ros is If the thir ro is the ais of rotation Z becomes the ais of rotation Ross Beerige Bruce Draper Ais Angle (4 steps Step : normalie the ais of rotation Write the normalie ais as = ( Step 2: pick an ais M not parallel to W Heuristic: pick the smallest term in set it to an renormalie to create m Step 3: create U = W M Step 4: pick an ais perpenicular to u V = W U (or U W 5 6

2 Ross Beerige Bruce Draper Ais Angle R ω Matri No put those together in a rotation matri: u u u R ω = Ais of Rotation Ross Beerige Bruce Draper Ais Angle (Putting the Pieces Together To rotate b θ aroun ω: P = ( R ω R Zθ R ω P = ( R T ω R Zθ R ω P = MP 7 8 Ross Beerige Bruce Draper 3D Vieing as Virtual Camera To take a picture ith a camera or to rener an image ith computer graphics e nee to: Perspectie Ross Beerige Bruce Draper Position the camera/iepoint in 3D space Orient the camera/iepoint in 3D space Focus camera -- e on t o this step Crop image to the aperture/ino 9 Ross Beerige Bruce Draper Orthographic Projection If not for the fog ou coul see foreer an nothing eer oul look smaller. Ross Beerige Bruce Draper Orthographic / Perspectie Think About Ras 2

3 Ross Beerige Bruce Draper Is Perspectie Alas Better? Ross Beerige Bruce Draper CSU 24 Math: Orthographic Projection Simpl rop a imension. No Technical programs incluing for eample Maple often faor orthographic projection. Think of a bug hitting a inshiel. No more ais (no more bug Photo b Brian Jeff Booth site.jeffbooth.net (creatie common License 3 4 Ross Beerige Bruce Draper Perspectie Projection Light ras pass through the focal point. a.k.a. principal reference point PRP. The image plane is an infinite plane in front of (or behin the focal point. Images are forme b ras of light passing through the image plane Common conention: Image points are (u Worl points are ( Ross Beerige Bruce Draper Wh Pinhole Camera? Because ou can buil a camera that eactl fits this escription: Create a full-enclose black bo So that no light enters Put a piece of film insie it facing front Punch a pin-hole in the front face of the bo What oesn t this camera hae? What is this camera s epth-of-fiel? Wh on t e buil cameras this a? 5 6 Ross Beerige Bruce Draper Histor The Camera Obscura - see Wikipeia Pre-ates photographic cameras. Theor: Mo-Ti (China BC Practice: Abu Ali Al-Hasan Ibn al-haitham (~ AD Western Painting: Johannes Vermeer (~66 AD Ross Beerige Bruce Draper Perspectie Projection: 3 Formulations Where e place the origin matters Ho e hanle alues matters Form : Origin at focal point alues constant Form 2: Origin at image center alues are ero Form 3: Origin at focal point proportional to epth 7 8

4 Perspectie Projection Form The ke to perspectie projection is that all light ras meet at the PRP (focal point. Notice that e are looking on the Z ais ith the origin at the focal point an the image plane at =. P( Ross Beerige Bruce Draper P P P b similar triangles: P u P u = P u = P horiontal = P P P P P Ross Beerige Bruce Draper P P = er+cal = P = P P P P P P 9 2 Ross Beerige Bruce Draper Perspectie Projection Matri Problem: iision of one ariable b another is a non-linear operation. Solution: homogeneous coorinates / Ross Beerige Bruce Draper Perspectie Matri (II = = = u Normalie Projection Matri times a Point Point in Point in (u Non-normalie coorinates Homogeneous coorinates 2 22 Ross Beerige Bruce Draper What happens to Z? What happens to the Z imension? u = = = The Z imension projects to Wh? Because (u is a 3D point on the image ( = plane Perspectie Projection Form 2 P = Ross Beerige Bruce Draper O P P P = P + P + P 23 24

5 Leaing to the folloing * + = + ( ( + Ross Beerige Bruce Draper + * = + ( + No look at hat happens to epth. Contrast this ith preious ersion. * * = + ( + ( * + Ross Beerige Bruce Draper Let istance go to infinit. Formulation Formulation 2 X Y Recall formulation 2 hen consiering ho projection changes ith increase focal length Ross Beerige Bruce Draper Moing to Formulation 3 Reie origin at PRP. Reie 2 origin at image center. Reie an 2 No useful information on the -ais We no hae a ne goal Project into a cannonical ie olumne A rectangular alue ith bouns: U: - to V: - to D: to Ross Beerige Bruce Draper Remember When We Starte What happens if ou multipl a point in homogeneous coorinates b a scalar? Nothing = s s s s = s Ross Beerige Bruce Draper Scalar Multiplication Continue What happens if ou multipl a homogeneous matri b a scalar? Nothing a + b + c + a b c e + f + g +h e f g h i + j + k +l = i j k l m + n + o + p m n o p a + b + c + s a+b+c+ ( a b c e + f + g +h s( e+ f+ g+h i + j + k +l = e f g h = s s( i+ j+ k+l i j k l m + n + o + p s( m + n + o + p m n o p Ross Beerige Bruce Draper Form Tetbook Deriation equialent to Lecture Form p. 52 (er top D 29 3

6 Ross Beerige Bruce Draper No introuce clipping planes Tet introuces n the near clipping plane. Also introuces f the far clipping plane. Sets hat first calle to n. The hanling of no carries information? Ross Beerige Bruce Draper Visualie Vie Volume (Vie n n n + f fn n n n n + f fn = n n + f fn 3 32 Ross Beerige Bruce Draper Visualie Vie Volume (Vie 2 33

Viewing Transformations I Comp 535

Viewing Transformations I Comp 535 Viewing Transformations I Comp 535 Motivation Want to see our virtual 3-D worl on a 2-D screen 2 Graphics Pipeline Moel Space Moel Transformations Worl Space Viewing Transformation Ee/Camera Space Projection

More information

Computer Graphics Chapter 7 Three-Dimensional Viewing Viewing

Computer Graphics Chapter 7 Three-Dimensional Viewing Viewing Computer Graphics Chapter 7 Three-Dimensional Viewing Outline Overview of Three-Dimensional Viewing Concepts The Three-Dimensional Viewing Pipeline Three-Dimensional Viewing-Coorinate Parameters Transformation

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

Computer Graphics Inf4/MSc. Computer Graphics. Lecture 6 View Projection Taku Komura

Computer Graphics Inf4/MSc. Computer Graphics. Lecture 6 View Projection Taku Komura Computer Graphics Lecture 6 View Projection Taku Komura 1 Overview 1. View transformation 2. Rasterisation Implementation of viewing. Transform into camera coorinates. Perform projection into view volume

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

Graphics Pipeline : Geometric Operations

Graphics Pipeline : Geometric Operations Graphics Pipeline : Geometric Operations Uniersit of Calgar GraphicsJungle Project CPSC 587 25 page Vieing transformation Tools for creating an manipulating a camera that prouces pictures of a 3D scene

More information

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker)

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker) Viewing in 3D (Chapt. 6 in FVD, Chapt. 2 in Hearn & Baker) Viewing in 3D s. 2D 2D 2D world Camera world 2D 3D Transformation Pipe-Line Modeling transformation world Bod Sstem Viewing transformation Front-

More information

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects 3D Vieing and Projec5on Taking Pictures ith a Real Camera Steps: Iden5 interes5ng objects Rotate and translate the camera to desired viepoint Adjust camera seings such as ocal length Choose desired resolu5on

More information

1-2 Geometric vectors

1-2 Geometric vectors 1-2 Geometric ectors We are going to start simple, by defining 2-dimensional ectors, the simplest ectors there are. Are these the ectors that can be defined by to numbers only? Yes, and here is a formal

More information

CS 548: COMPUTER GRAPHICS REVIEW: OVERVIEW OF POLYGONS SPRING 2015 DR. MICHAEL J. REALE

CS 548: COMPUTER GRAPHICS REVIEW: OVERVIEW OF POLYGONS SPRING 2015 DR. MICHAEL J. REALE CS 548: COMPUTER GRPHICS REVIEW: OVERVIEW OF POLYGONS SPRING 05 DR. MICHEL J. RELE NOTE: COUNTERCLOCKWISE ORDER ssuming: Right-handed sstem Vertices in counterclockwise order looking at front of polgon

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Rotate. A bicycle wheel can rotate clockwise or counterclockwise. ACTIVITY: Three Basic Ways to Move Things

Rotate. A bicycle wheel can rotate clockwise or counterclockwise. ACTIVITY: Three Basic Ways to Move Things . Rotations object in a plane? What are the three basic was to move an Rotate A biccle wheel can rotate clockwise or counterclockwise. 0 0 0 9 9 9 8 8 8 7 6 7 6 7 6 ACTIVITY: Three Basic Was to Move Things

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL Animação e Visualização Triimensional Collision Detection Collision Hanling Collision Detection Collision Determination Collision Response Collision Hanling Collision Detection Collision Determination

More information

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions?

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions? Toda The Graphics Pipeline: Projectie Reiew & Schedule Ra Casting / Tracing s. The Graphics Pipeline Projectie Last Week: Animation & Quaternions Finite Element Simulations collisions, fracture, & deformation

More information

Projections. Let us start with projections in 2D, because there are easier to visualize.

Projections. Let us start with projections in 2D, because there are easier to visualize. Projetions Let us start ith projetions in D, beause there are easier to visualie. Projetion parallel to the -ais: Ever point in the -plane ith oordinates (, ) ill be transformed into the point ith oordinates

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

Announcements. The equation of projection. Image Formation and Cameras

Announcements. The equation of projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 5-4 HW will be on web site tomorrow or Saturda. Irfanview: http://www.irfanview.com/ is

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection. Emmanuel Agu

CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection. Emmanuel Agu CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection Emmanuel Agu 3D Viewing and View Volume Recall: 3D viewing set up Projection Transformation View volume can have different shapes (different

More information

Ray Polygon Intersection.

Ray Polygon Intersection. Ray Polygon Intersection. Lecture #17 Thursday, October 28th, 2014 Review - Ray Casting! Goal: throw rays through pixels, intersect them with surfaces! Compute surface reflectance at points of intersection

More information

Geometric Transformations

Geometric Transformations CS INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and D Andries an Dam 9/9/7 /46 CS INTRODUCTION TO COMPUTER GRAPHICS How do we use Geometric Transformations? (/) Objects in a scene at the

More information

Computational Photography

Computational Photography Computational Photography Photography and Imaging Michael S. Brown Brown - 1 Part 1 Overview Photography Preliminaries Traditional Film Imaging (Camera) Part 2 General Imaging 5D Plenoptic Function (McMillan)

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

Multi-camera tracking algorithm study based on information fusion

Multi-camera tracking algorithm study based on information fusion International Conference on Avance Electronic Science an Technolog (AEST 016) Multi-camera tracking algorithm stu base on information fusion a Guoqiang Wang, Shangfu Li an Xue Wen School of Electronic

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Geometric Transformations Hearn & Baker Chapter 5. Some slides are taken from Robert Thomsons notes.

Geometric Transformations Hearn & Baker Chapter 5. Some slides are taken from Robert Thomsons notes. Geometric Tranformation Hearn & Baker Chapter 5 Some lie are taken from Robert Thomon note. OVERVIEW Two imenional tranformation Matri repreentation Invere tranformation Three imenional tranformation OpenGL

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

p =(x,y,d) y (0,0) d z Projection plane, z=d

p =(x,y,d) y (0,0) d z Projection plane, z=d Projections ffl Mapping from d dimensional space to d 1 dimensional subspace ffl Range of an projection P : R! R called a projection plane ffl P maps lines to points ffl The image of an point p under P

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka, Rowan Universit Computer Science Department Januar 25. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that:

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that: Flu Integrals The pictures for problems # - #4 are on the last page.. Let s orient each of the three pictured surfaces so that the light side is considered to be the positie side. Decide whether each of

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Lecture 8: Camera Models

Lecture 8: Camera Models Lecture 8: Camera Models Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab 1 14- Oct- 15 What we will learn today? Pinhole cameras Cameras & lenses The geometry of pinhole

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

Geometry of image formation

Geometry of image formation Geometr of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.c ech Technical Universit in Prague, enter for Machine Perception http://cmp.felk.cvut.c Last update: November 0, 2008 Talk Outline Pinhole

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts Remember to read the tetbook before attempting to do our homework. Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing b Plotting Points and Finding Intercepts Rectangular

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Fall 2016 Lecture 6/7 September 26-28 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Lecture #22 Tuesday, ovember 19, 2013 (Major Updates 12/06/13) How about Interreflections ote reflections Granite tabletop Visible on base Also on handle This is a featured picture

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Comuter Grahics Virtual Realit Viewing an rojection Classical an General Viewing Transformation Pieline CPU CPU Pol. Pol. DL DL Piel Piel Per Per Verte Verte Teture Teture Raster Raster Frag

More information

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics CS 106 Winter 2016 Craig S. Kaplan Moule 01 Processing Recap Topics The basic parts of speech in a Processing program Scope Review of syntax for classes an objects Reaings Your CS 105 notes Learning Processing,

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Lecture 19: All Together with Refraction

Lecture 19: All Together with Refraction Lecture 19: All Together with Refraction December 1, 2016 12/1/16 CSU CS410 Fall 2016, Ross Beveridge & Bruce Draper 1 How about Interreflections? Note reflections Granite tabletop Visible on base Also

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-45/65 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s9/ Barb Cutler cutler@cs.rpi.edu MRC 9A Piar Animation Studios, 986 Topics for the Semester Mesh Simplification

More information

Camera Placement for Ray Tracing

Camera Placement for Ray Tracing Camera Placement for Ray Tracing Lecture #3 Tuesday 0/4/4 st Review Camera Placement! The following slides review last Thursday s Lecture on world to camera transforms.! To see shift to raytracing context,

More information

Viewing and Projection

Viewing and Projection Viewing and Projection Sheelagh Carpendale Camera metaphor. choose camera position 2. set up and organie objects 3. choose a lens 4. take the picture View Volumes what gets into the scene perspective view

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

TEST-05(Solution) TOPIC: OPTICS COMPLETE

TEST-05(Solution) TOPIC: OPTICS COMPLETE Q. boy is walking uner an incline mirror at a constant velocity V m/s along the x-axis as shown in figure. If the mirror is incline at an angle with the horizontal then what is the velocity of the image?

More information

Affine Transformations Computer Graphics Scott D. Anderson

Affine Transformations Computer Graphics Scott D. Anderson Affine Transformations Computer Graphics Scott D. Anderson 1 Linear Combinations To understand the poer of an affine transformation, it s helpful to understand the idea of a linear combination. If e have

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S 3D Viewing: the Synthetic Camera Programmer s reference model for specifying 3D view projection parameters to the computer General synthetic camera (e.g., PHIGS Camera, Computer Graphics: Principles and

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Exercises of PIV. incomplete draft, version 0.0. October 2009

Exercises of PIV. incomplete draft, version 0.0. October 2009 Exercises of PIV incomplete raft, version 0.0 October 2009 1 Images Images are signals efine in 2D or 3D omains. They can be vector value (e.g., color images), real (monocromatic images), complex or binary

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Lecture #21 Tuesday, ovember 18, 2014 How about Interreflections! ote reflections! Granite tabletop! Visible on base! Also on handle This is a featured picture on the English

More information

Editing and Transformation

Editing and Transformation Lecture 5 Editing and Transformation Modeling Model can be produced b the combination of entities that have been edited. D: circle, arc, line, ellipse 3D: primitive bodies, etrusion and revolved of a profile

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

Reading for This Module. Viewing. Using Transformations. Viewing. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013

Reading for This Module. Viewing. Using Transformations. Viewing. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 23 Tamara Munner Reaing for This Moule FCG Chapter 7 Viewing FCG Section 6.3. Winowing Transforms Viewing http://www.ugra.cs.ubc.ca/~cs34/vjan23

More information

Must first specify the type of projection desired. When use parallel projections? For technical drawings, etc. Specify the viewing parameters

Must first specify the type of projection desired. When use parallel projections? For technical drawings, etc. Specify the viewing parameters walters@buffalo.edu CSE 480/580 Lecture 4 Slide 3-D Viewing Continued Eamples of 3-D Viewing Must first specif the tpe of projection desired When use parallel projections? For technical drawings, etc.

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities 6.5 SKILL BUILDER An equation that is true for all alues of the ariable in it is called an identit. For instance, the epression 4( 3) 8 is an eample of an algebraic identit because

More information

3D Coordinates & Transformations

3D Coordinates & Transformations 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technolog 3D graphics rendering pipeline

More information

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31 Viewing Part II (The Synthetic Camera) Brownie camera courtesy of http://www.geh.org/fm/brownie2/htmlsrc/me13000034_ful.html 1/31 The Camera and the Scene } What does a camera do? } Takes in a 3D scene

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 305) Hours Lecture: Tuesda 5:30-8:00pm, TTLMAN 403B Office hour: Tuesda 3:00-5:00pm, or b appointment Tetbook Computer Vision: Models,

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

CS 475 / CS 675 Computer Graphics. Lecture 7 : The Modeling-Viewing Pipeline

CS 475 / CS 675 Computer Graphics. Lecture 7 : The Modeling-Viewing Pipeline CS 475 / CS 675 Computer Graphics Lecture 7 : The Modeling-Viewing Pipeline Taonom Planar Projections Parallel Perspectie Orthographic Aonometric Oblique Front Top Side Trimetric Dimetric Isometric Caalier

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

Fair Game Review. Chapter 11. Name Date. Reflect the point in (a) the x-axis and (b) the y-axis. 2. ( 2, 4) 1. ( 1, 1 ) 3. ( 3, 3) 4.

Fair Game Review. Chapter 11. Name Date. Reflect the point in (a) the x-axis and (b) the y-axis. 2. ( 2, 4) 1. ( 1, 1 ) 3. ( 3, 3) 4. Name Date Chapter Fair Game Review Reflect the point in (a) the -ais and (b) the -ais.. (, ). (, ). (, ). (, ) 5. (, ) 6. (, ) Copright Big Ideas Learning, LLC Name Date Chapter Fair Game Review (continued)

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

ACTIVITY: Graphing a Linear Equation. 2 x x + 1?

ACTIVITY: Graphing a Linear Equation. 2 x x + 1? . Graphing Linear Equations How can ou draw its graph? How can ou recognize a linear equation? ACTIVITY: Graphing a Linear Equation Work with a partner. a. Use the equation = + to complete the table. (Choose

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information