Multigrid Method using OpenMP/MPI Hybrid Parallel Programming Model on Fujitsu FX10

Size: px
Start display at page:

Download "Multigrid Method using OpenMP/MPI Hybrid Parallel Programming Model on Fujitsu FX10"

Transcription

1 Multigrid Method using OpenMP/MPI Hybrid Parallel Programming Model on Fujitsu FX0 Kengo Nakajima Information Technology enter, The University of Tokyo, Japan November 4 th, 0 Fujitsu Booth S Salt Lake ity, Utah, USA

2 Motivation of This Study Parallel Multigrid Solvers for FVM-type appl. on Fujitsu PRIMEHP FX0 at University of Tokyo (Oakleaf-FX) Flat MPI vs. Hybrid (OpenMP+MPI) Expectations for Hybrid Parallel Programming Model Number of MPI processes (and sub-domains) to be reduced O( )-way MPI might not scale in Exascale Systems Easily extended to Heterogeneous Architectures PU+GPU, PU+Manys (e.g. Intel MI/Xeon Phi) MPI+X: OpenMP, OpenA, UDA, OpenL

3 3 Multigrid Scalable Multi-Level Method using Multilevel Grid for Solving Linear Eqn s omputation Time ~ O(N) (N: # unknowns) Good for large-scale problems Preconditioner for Krylov Iterative Linear Solvers MGG

4 4 Flat MPI vs. Hybrid Flat-MPI:Each PE -> Independent memory memory memory Hybrid:Hierarchal Structure memory memory memory

5 5 urrent Supercomputer Systems University of Tokyo Total number of users ~,000 Earth Science, Material Science, Engineering etc. Hitachi HA8000 luster System (TK/Tokyo) (008.6-) luster based on AMD Quad-ore Opteron (Barcelona) Peak: 40. TFLOPS Hitachi SR6000/M (Yayoi) (0.0-) Power 7 based SMP with 00 GB/node Peak: 54.9 TFLOPS Fujitsu PRIMEHP FX0 (Oakleaf-FX) (0.04-) SPAR64 IXfx ommercial version of K computer Peak:.3 PFLOPS (.043 PF, st, 40 th TOP 500 in 0 Nov.)

6 Oakleaf-FX 6 Aggregate memory bandwidth: 398 TB/sec. Local file system for staging with. PB of capacity and 3 GB/sec of aggregate I/O performance (for staging) Shared file system for storing data with. PB and 36 GB/sec. External file system: 3.6 PB

7 7 Target Application 3D Groundwater Flow via. Heterogeneous Porous Media Poisson s equation Randomly distributed water conductivity Distribution of water conductivity is defined through methods in geostatistics Deutsch & Journel, 998 Finite-Volume Method on ubic Voxel Mesh Distribution of Water onductivity , ondition Number ~ 0 +0 Average:.0 yclic Distribution: 8 3 Movie

8 8 Linear Solvers Preconditioned G Method Multigrid Preconditioning (MGG) I(0) for Smoothing Operator (Smoother): good for illconditioned problems Parallel Geometric Multigrid Method 8 fine meshes (children) form coarse mesh (parent) in isotropic manner (octree) V-cycle Domain-Decomposition-based: Localized Block-Jacobi, Overlapped Additive Schwartz Domain Decomposition (ASDD) Operations using a single at the coarsest level (redundant)

9 9 Overlapped Additive Schwartz Domain Decomposition Method ASDD: Localized Block-Jacobi Precond. is stabilized Global Operation Local Operation Global Nesting orrection r Mz, r M z r M z ) ( n n n n z M z M r M z z ) ( n n n n z M z M r M z z i :Internal (i N) i :External(i>N)

10 omputations on Fujitsu FX0 Fujitsu PRIMEHP FX0 at U.Tokyo (Oakleaf-FX) 6 s/node, flat/uniform access to memory Up to 4,096 nodes (65,536 s) (Large-Scale HP hallenge) Max 7,79,869,84 unknowns Flat MPI, HB 4x4, HB 8x, HB 6x HB MxN: M-threads x N-MPI-processes on each node Memory Weak Scaling 64 3 L L L L L L L L L L L L L cells/ Strong Scaling 8 3 8= 6,777,6 unknowns, from 8 to 4,096 nodes Network Topology is not specified D L L L L

11 Memory L L L L L L L L L L L L L L L L L HB M x N Number of OpenMP threads per a single MPI process Number of MPI process per a single node

12 oarse Grid Solver on a Single ore PE#0 Original Approach PE# PE# PE#3 Size of the oarsest Grid= Number of MPI Processes Redundant Process lev= lev= lev=3 lev=4 In Flat-MPI, this size is larger

13 3 Weak Scaling: up to 4,096 nodes up to 7,79,869,84 meshes (64 3 meshes/) Although ASDD is applied, convergence is getting worse for larger number of nodes/domains, DOWN is GOOD sec Flat MPI HB 4x4: org. HB 8x: org. HB 6x: org. Iterations sec Iterations 50 Flat MPI HB 4x4: org. HB 8x: org. HB 6x: org ORE# Down is good ORE#

14 4 Strategy: oarse Grid Aggregation Decreasing number of MPI processes at coarser level. Switching to redundant processes for coarse grid solvers earlier (i.e. at finer level). Node-to-node communications at coarser levels are reduced. oarse grid solver on a single MPI proc., not a single HB 4x4: 4 s HB 8x: 8 s HB 6x: 6 s, Single Node Info. gathered to a single MPI process OpenMP is needed In post-peta/exa-scale systems, each node will consists O(0 ) of s, therefore utilization of these many s on each node should be considered. Parallel Serial/Redundant Fine oarse

15 oarse Grid Aggregation: at lev= 5 PE#0 PE# PE# PE#3 lev= lev= lev=3 lev=4

16 oarse Grid Aggregation: at lev= 6 PE#0 PE# PE# PE#3 Apply multigrid procedure on a single MPI process lev= lev= Trade-off: oarse grid solver is more expensive than original approach.

17 Results at 4,096 nodes lev: switching level to coarse grid solver Opt. Level= 7 DOWN is GOOD HB 8x HB 6x Parallel Serial/Redundant Fine oarse Rest oarse Grid Solver MPI_Allgather MPI_Isend/Irecv/Allreduce Rest oarse Grid Solver MPI_Allgather MPI_Isend/Irecv/Allreduce sec. 0.0 sec level=5 level=6 level=7 level=8: org. Switching Level for oarse Grid Solver Down is good level=5 level=6 level=7 level=8 level=9: org. Switching Level for oarse Grid Solver

18 8 Weak Scaling: up to 4,096 nodes up to 7,79,869,84 meshes (64 3 meshes/) onvergence has been much improved by coarse grid aggregation, DOWN is GOOD sec. Iterations sec Flat MPI HB 4x4: org. HB 8x: org. HB 6x: org. HB 4x4: new HB 8x: new HB 6x: new ORE# Iterations Down is good Flat MPI HB 8x: org. HB 4x4: new HB 6x: new ORE# HB 4x4: org. HB 6x: org. HB 8x: new

19 9 Strong Scaling: up to 4,096 nodes 68,435,456 meshes, only 6 3 meshes/ at 4,096 nodes UP is GOOD HB 8x 000 UP is good HB 6x 000 Parallel Performance % 00 0 Flat MPI HB 8x: original HB 8x: optimized Parallel Performance % 00 0 Flat MPI HB 6x: original HB 6x: optimized ORE# ORE#

20 0 Strong Scaling at 4,096 nodes 68,435,456 meshes, only 6 3 meshes/ at 4,096 nodes Rest oarse Grid Solver MPI_Allgather MPI_Isend/Irecv/Allreduce sec HB 4x4 Org. HB 4x4 Opt. HB 8x Org. HB 8x Opt. HB 6x Org. HB 6x Opt. Iterations Parallel performance (%)

21 Summary oarse Grid Aggregation is effective for stabilization of convergence at O(0 4 ) s for MGG Not so effective on communications HB 8x is the best at 4,096 nodes HB programming model with smaller number of MPI processes (e.g. HB 8x, HB 6x) are better, if the number of nodes are larger. Smaller problem size for coarse grid solver If the number of nodes are larger, performance is better Further Optimization/Tuning Single node/ performance for FX0 current code is optimized for TK/Tokyo (cc-numa) Overlapping of computation & communication more difficult than SpMV Automatic selection of the optimum switching level lev Gradual reduction of MPI process number (e.g )

22 Reference: Kengo Nakajima OpenMP/MPI Hybrid Parallel Multigrid Method on Fujitsu FX0 Supercomputer System IEEE Proceedings of 0 IEEE International onference on luster omputing Workshops (0 International Workshop on Parallel Algorithm and Parallel Software (IWPAPS)), p.99-06, Beijing, hina (IEEE Digital Library, Print ISBN: , Digital Object Identifier : 0.09/lusterW.0.35) 0.

23 3 Please visit the booth of Oakleaf/Kashiwa Alliance The University of Tokyo #943

Iterative Linear Solvers for Sparse Matrices

Iterative Linear Solvers for Sparse Matrices Iterative Linear Solvers for Sparse Matrices Kengo Nakajima Information Technology Center, The University of Tokyo, Japan 2013 International Summer School on HPC Challenges in Computational Sciences New

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-3: Parallel FVM using MPI

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-3: Parallel FVM using MPI Introduction to Parallel Programming for Multi/Many Clusters Part II-3: Parallel FVM using MPI Kengo Nakajima Information Technology Center The University of Tokyo 2 Overview Introduction Local Data Structure

More information

Kengo Nakajima Information Technology Center, The University of Tokyo. SC15, November 16-20, 2015 Austin, Texas, USA

Kengo Nakajima Information Technology Center, The University of Tokyo. SC15, November 16-20, 2015 Austin, Texas, USA ppopen-hpc Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta Scale Supercomputers with Automatic Tuning (AT) Kengo Nakajima Information Technology

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Kengo Nakajima, Toshihiro Hanawa Information Technology Center,

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Experiences in Optimizations of Preconditioned Iterative Solvers for FEM/FVM Applications & Matrix Assembly of FEM using Intel Xeon Phi

Experiences in Optimizations of Preconditioned Iterative Solvers for FEM/FVM Applications & Matrix Assembly of FEM using Intel Xeon Phi Experiences in Optimizations of Preconditioned Iterative Solvers for FEM/FVM Applications & Matrix Assembly of FEM using Intel Xeon Phi Kengo Nakajima Supercomputing Research Division Information Technology

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Overview of Reedbush-U How to Login

Overview of Reedbush-U How to Login Overview of Reedbush-U How to Login Information Technology Center The University of Tokyo http://www.cc.u-tokyo.ac.jp/ Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle FY 08 09 10 11 12 13 14 15

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators

Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Generation of Multigrid-based Numerical Solvers for FPGA Accelerators Christian Schmitt, Moritz Schmid, Frank Hannig, Jürgen Teich, Sebastian Kuckuk, Harald Köstler Hardware/Software Co-Design, System

More information

Extreme Simulations on ppopen-hpc

Extreme Simulations on ppopen-hpc Extreme Simulations on ppopen-hpc Kengo Nakajima Information Technology Center The University of Tokyo Challenges in Extreme Engineering Algorithms ISC 16, June 20, 2016 Frankfurt am Main, Germany Summary

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters Introduction

Introduction to Parallel Programming for Multicore/Manycore Clusters Introduction duction to Parallel Programming for Multicore/Manycore Clusters Introduction Kengo Nakajima Information Technology Center The University of Tokyo 2 Motivation for Parallel Computing (and this class) Large-scale

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters

Introduction to Parallel Programming for Multicore/Manycore Clusters duction to Parallel Programming for Multi/Many Clusters General duction Invitation to Supercomputing Kengo Nakajima Information Technology Center The University of Tokyo Takahiro Katagiri Information Technology

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling

Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Iterative Solvers Numerical Results Conclusion and outlook 1/22 Efficient multigrid solvers for strongly anisotropic PDEs in atmospheric modelling Part II: GPU Implementation and Scaling on Titan Eike

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

A Parallel Solver for Laplacian Matrices. Tristan Konolige (me) and Jed Brown

A Parallel Solver for Laplacian Matrices. Tristan Konolige (me) and Jed Brown A Parallel Solver for Laplacian Matrices Tristan Konolige (me) and Jed Brown Graph Laplacian Matrices Covered by other speakers (hopefully) Useful in a variety of areas Graphs are getting very big Facebook

More information

Reconstruction of Trees from Laser Scan Data and further Simulation Topics

Reconstruction of Trees from Laser Scan Data and further Simulation Topics Reconstruction of Trees from Laser Scan Data and further Simulation Topics Helmholtz-Research Center, Munich Daniel Ritter http://www10.informatik.uni-erlangen.de Overview 1. Introduction of the Chair

More information

Multilevel Methods for Forward and Inverse Ice Sheet Modeling

Multilevel Methods for Forward and Inverse Ice Sheet Modeling Multilevel Methods for Forward and Inverse Ice Sheet Modeling Tobin Isaac Institute for Computational Engineering & Sciences The University of Texas at Austin SIAM CSE 2015 Salt Lake City, Utah τ 2 T.

More information

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Fourth Workshop on Accelerator Programming Using Directives (WACCPD), Nov. 13, 2017 Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Takuma

More information

OpenMP/MPI Hybrid vs. Flat MPI on the Earth Simulator: Parallel Iterative Solvers for Finite Element Method. RIST/TOKYO GeoFEM Report.

OpenMP/MPI Hybrid vs. Flat MPI on the Earth Simulator: Parallel Iterative Solvers for Finite Element Method. RIST/TOKYO GeoFEM Report. GeoFEM 2003-007 RIST/TOKYO GeoFEM Report Research Organization for Information Science & Technology Kengo Nakajima OpenMP/MPI Hybrid vs. Flat MPI on the Earth Simulator: Parallel Iterative Solvers for

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs

Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Iterative Solvers Numerical Results Conclusion and outlook 1/18 Matrix-free multi-gpu Implementation of Elliptic Solvers for strongly anisotropic PDEs Eike Hermann Müller, Robert Scheichl, Eero Vainikko

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction

ICON for HD(CP) 2. High Definition Clouds and Precipitation for Advancing Climate Prediction ICON for HD(CP) 2 High Definition Clouds and Precipitation for Advancing Climate Prediction High Definition Clouds and Precipitation for Advancing Climate Prediction ICON 2 years ago Parameterize shallow

More information

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA GPU-Accelerated Algebraic Multigrid for Commercial Applications Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA ANSYS Fluent 2 Fluent control flow Accelerate this first Non-linear iterations Assemble

More information

τ-extrapolation on 3D semi-structured finite element meshes

τ-extrapolation on 3D semi-structured finite element meshes τ-extrapolation on 3D semi-structured finite element meshes European Multi-Grid Conference EMG 2010 Björn Gmeiner Joint work with: Tobias Gradl, Ulrich Rüde September, 2010 Contents The HHG Framework τ-extrapolation

More information

Computing on GPU Clusters

Computing on GPU Clusters Computing on GPU Clusters Robert Strzodka (MPII), Dominik Göddeke G (TUDo( TUDo), Dominik Behr (AMD) Conference on Parallel Processing and Applied Mathematics Wroclaw, Poland, September 13-16, 16, 2009

More information

Flat MPI and Hybrid Parallel Programming Models for FEM Applications on SMP Cluster Architectures

Flat MPI and Hybrid Parallel Programming Models for FEM Applications on SMP Cluster Architectures Flat MPI and Hybrid Parallel Programming Models for FEM Applications on SMP Cluster Architectures Kengo Nakajima The 21st Century Earth Science COE Program Department of Earth & Planetary Science The University

More information

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems Smoothers Partial Differential Equations Disappointing convergence rates observed for stationary iterative methods are asymptotic Much better progress may be made initially before eventually settling into

More information

Hybrid programming with MPI and OpenMP On the way to exascale

Hybrid programming with MPI and OpenMP On the way to exascale Institut du Développement et des Ressources en Informatique Scientifique www.idris.fr Hybrid programming with MPI and OpenMP On the way to exascale 1 Trends of hardware evolution Main problematic : how

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Distributed NVAMG Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Istvan Reguly (istvan.reguly at oerc.ox.ac.uk) Oxford e-research Centre NVIDIA Summer Internship

More information

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 Agenda Introduction to AmgX Current Capabilities Scaling V2.0 Roadmap for the future 2 AmgX Fast, scalable linear solvers, emphasis on iterative

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins Scientific Computing and Imaging Institute & University of Utah I. Uintah Overview

More information

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI

Efficient AMG on Hybrid GPU Clusters. ScicomP Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann. Fraunhofer SCAI Efficient AMG on Hybrid GPU Clusters ScicomP 2012 Jiri Kraus, Malte Förster, Thomas Brandes, Thomas Soddemann Fraunhofer SCAI Illustration: Darin McInnis Motivation Sparse iterative solvers benefit from

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency The next generation supercomputer and NWP system of JMA Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency Contents JMA supercomputer systems Current system (Mar

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Parallel Computations

Parallel Computations Parallel Computations Timo Heister, Clemson University heister@clemson.edu 2015-08-05 deal.ii workshop 2015 2 Introduction Parallel computations with deal.ii: Introduction Applications Parallel, adaptive,

More information

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST

Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Integrating GPUs as fast co-processors into the existing parallel FE package FEAST Dipl.-Inform. Dominik Göddeke (dominik.goeddeke@math.uni-dortmund.de) Mathematics III: Applied Mathematics and Numerics

More information

High Performance Computing for PDE Towards Petascale Computing

High Performance Computing for PDE Towards Petascale Computing High Performance Computing for PDE Towards Petascale Computing S. Turek, D. Göddeke with support by: Chr. Becker, S. Buijssen, M. Grajewski, H. Wobker Institut für Angewandte Mathematik, Univ. Dortmund

More information

PROGRAMMING OF MULTIGRID METHODS

PROGRAMMING OF MULTIGRID METHODS PROGRAMMING OF MULTIGRID METHODS LONG CHEN In this note, we explain the implementation detail of multigrid methods. We will use the approach by space decomposition and subspace correction method; see Chapter:

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters

Introduction to Parallel Programming for Multicore/Manycore Clusters Introduction to Parallel Programming for Multicore/Manycore Clusters General Introduction Invitation to Supercomputing Kengo Nakajima Information Technology Center The University of Tokyo Takahiro Katagiri

More information

Distributed Schur Complement Solvers for Real and Complex Block-Structured CFD Problems

Distributed Schur Complement Solvers for Real and Complex Block-Structured CFD Problems Distributed Schur Complement Solvers for Real and Complex Block-Structured CFD Problems Dr.-Ing. Achim Basermann, Dr. Hans-Peter Kersken German Aerospace Center (DLR) Simulation- and Software Technology

More information

Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System

Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System Radiation Modeling Using the Uintah Heterogeneous CPU/GPU Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins, Todd Harman Scientific Computing and Imaging Institute & University of Utah I. Uintah

More information

GPU Cluster Computing for FEM

GPU Cluster Computing for FEM GPU Cluster Computing for FEM Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de GPU Computing

More information

An algebraic multi-grid implementation in FEniCS for solving 3d fracture problems using XFEM

An algebraic multi-grid implementation in FEniCS for solving 3d fracture problems using XFEM An algebraic multi-grid implementation in FEniCS for solving 3d fracture problems using XFEM Axel Gerstenberger, Garth N. Wells, Chris Richardson, David Bernstein, and Ray Tuminaro FEniCS 14, Paris, France

More information

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean 5 Kragujevac J. Math. 25 (2003) 5 18. PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS Ioana Chiorean Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania (Received May 28,

More information

Achieving Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation

Achieving Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation Achieving Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation Michael Lange 1 Gerard Gorman 1 Michele Weiland 2 Lawrence Mitchell 2 Xiaohu Guo 3 James Southern 4 1 AMCG, Imperial College

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis

3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis 3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis Kengo Nakajima Technical & Scientific Computing I (4820-1027) Seminar on Computer Science I (4810-1204) Parallel FEM ppopen-hpc Open Source

More information

Hybrid MPI + OpenMP Approach to Improve the Scalability of a Phase-Field-Crystal Code

Hybrid MPI + OpenMP Approach to Improve the Scalability of a Phase-Field-Crystal Code Hybrid MPI + OpenMP Approach to Improve the Scalability of a Phase-Field-Crystal Code Reuben D. Budiardja reubendb@utk.edu ECSS Symposium March 19 th, 2013 Project Background Project Team (University of

More information

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar CRAY XK6 REDEFINING SUPERCOMPUTING - Sanjana Rakhecha - Nishad Nerurkar CONTENTS Introduction History Specifications Cray XK6 Architecture Performance Industry acceptance and applications Summary INTRODUCTION

More information

CHAO YANG. Early Experience on Optimizations of Application Codes on the Sunway TaihuLight Supercomputer

CHAO YANG. Early Experience on Optimizations of Application Codes on the Sunway TaihuLight Supercomputer CHAO YANG Dr. Chao Yang is a full professor at the Laboratory of Parallel Software and Computational Sciences, Institute of Software, Chinese Academy Sciences. His research interests include numerical

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

High performance computing and numerical modeling

High performance computing and numerical modeling High performance computing and numerical modeling Volker Springel Plan for my lectures Lecture 1: Collisional and collisionless N-body dynamics Lecture 2: Gravitational force calculation Lecture 3: Basic

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction

Scalability of Elliptic Solvers in NWP. Weather and Climate- Prediction Background Scaling results Tensor product geometric multigrid Summary and Outlook 1/21 Scalability of Elliptic Solvers in Numerical Weather and Climate- Prediction Eike Hermann Müller, Robert Scheichl

More information

3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis

3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis 3D Parallel FEM (III) Parallel Visualization using ppopen-math/vis Kengo Nakajima Programming for Parallel Computing (616-2057) Seminar on Advanced Computing (616-4009) ppopen HPC Open Source Infrastructure

More information

GPU Acceleration of Unmodified CSM and CFD Solvers

GPU Acceleration of Unmodified CSM and CFD Solvers GPU Acceleration of Unmodified CSM and CFD Solvers Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de

More information

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008 Parallel Computing Using OpenMP/MPI Presented by - Jyotsna 29/01/2008 Serial Computing Serially solving a problem Parallel Computing Parallelly solving a problem Parallel Computer Memory Architecture Shared

More information

Optimising the Mantevo benchmark suite for multi- and many-core architectures

Optimising the Mantevo benchmark suite for multi- and many-core architectures Optimising the Mantevo benchmark suite for multi- and many-core architectures Simon McIntosh-Smith Department of Computer Science University of Bristol 1 Bristol's rich heritage in HPC The University of

More information

Transaction of JSCES, Paper No Parallel Finite Element Analysis in Large Scale Shell Structures using CGCG Solver

Transaction of JSCES, Paper No Parallel Finite Element Analysis in Large Scale Shell Structures using CGCG Solver Transaction of JSCES, Paper No. 257 * Parallel Finite Element Analysis in Large Scale Shell Structures using Solver 1 2 3 Shohei HORIUCHI, Hirohisa NOGUCHI and Hiroshi KAWAI 1 24-62 22-4 2 22 3-14-1 3

More information

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM

Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Efficient Multi-GPU CUDA Linear Solvers for OpenFOAM Alexander Monakov, amonakov@ispras.ru Institute for System Programming of Russian Academy of Sciences March 20, 2013 1 / 17 Problem Statement In OpenFOAM,

More information

Parallel resolution of sparse linear systems by mixing direct and iterative methods

Parallel resolution of sparse linear systems by mixing direct and iterative methods Parallel resolution of sparse linear systems by mixing direct and iterative methods Phyleas Meeting, Bordeaux J. Gaidamour, P. Hénon, J. Roman, Y. Saad LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix

More information

Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees

Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees Rahul S. Sampath, Santi S. Adavani, Hari Sundar, Ilya Lashuk, and George Biros University of Pennsylvania Abstract In this

More information

Update of Post-K Development Yutaka Ishikawa RIKEN AICS

Update of Post-K Development Yutaka Ishikawa RIKEN AICS Update of Post-K Development Yutaka Ishikawa RIKEN AICS 11:20AM 11:40AM, 2 nd of November, 2017 FLAGSHIP2020 Project Missions Building the Japanese national flagship supercomputer, post K, and Developing

More information

Case study: GPU acceleration of parallel multigrid solvers

Case study: GPU acceleration of parallel multigrid solvers Case study: GPU acceleration of parallel multigrid solvers Dominik Göddeke Architecture of Computing Systems GPGPU and CUDA Tutorials Dresden, Germany, February 25 2008 2 Acknowledgements Hilmar Wobker,

More information

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Juan J. Alonso Department of Aeronautics & Astronautics Stanford University CME342 Lecture 14 May 26, 2014 Outline Non-linear

More information

Scheduling Strategies for Parallel Sparse Backward/Forward Substitution

Scheduling Strategies for Parallel Sparse Backward/Forward Substitution Scheduling Strategies for Parallel Sparse Backward/Forward Substitution J.I. Aliaga M. Bollhöfer A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ. Jaume I (Spain) {aliaga,martina,quintana}@icc.uji.es

More information

ESPRESO ExaScale PaRallel FETI Solver. Hybrid FETI Solver Report

ESPRESO ExaScale PaRallel FETI Solver. Hybrid FETI Solver Report ESPRESO ExaScale PaRallel FETI Solver Hybrid FETI Solver Report Lubomir Riha, Tomas Brzobohaty IT4Innovations Outline HFETI theory from FETI to HFETI communication hiding and avoiding techniques our new

More information

Elmer 8/16/2012. Parallel computing concepts. Parallel Computing. Parallel programming models. Parallel computers. Execution model

Elmer 8/16/2012. Parallel computing concepts. Parallel Computing. Parallel programming models. Parallel computers. Execution model Parallel computing concepts Elmer Parallel Computing ElmerTeam Parallel computation means executing tasks concurrently A task encapsulates a sequential program and local data, and its interface to its

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

A parallel direct/iterative solver based on a Schur complement approach

A parallel direct/iterative solver based on a Schur complement approach A parallel direct/iterative solver based on a Schur complement approach Gene around the world at CERFACS Jérémie Gaidamour LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix project) February 29th, 2008

More information

An Exascale Programming, Multi objective Optimisation and Resilience Management Environment Based on Nested Recursive Parallelism.

An Exascale Programming, Multi objective Optimisation and Resilience Management Environment Based on Nested Recursive Parallelism. This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No. 671603 An Exascale Programming, ulti objective Optimisation and Resilience

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-5: Communication-Computation Overlapping and Some Other Issues

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-5: Communication-Computation Overlapping and Some Other Issues Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-5: Communication-Computation Overlapping and Some Other Issues Kengo Nakajima Information Technology Center The University of

More information

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU Robert Strzodka NVAMG Project Lead A Parallel Success Story in Five Steps 2 Step 1: Understand Application ANSYS Fluent Computational Fluid Dynamics

More information

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Highly Parallel Multigrid Solvers for Multicore and Manycore Processors Oleg Bessonov (B) Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, Vernadsky Avenue, 119526 Moscow, Russia

More information

Auto-tuning Multigrid with PetaBricks

Auto-tuning Multigrid with PetaBricks Auto-tuning with PetaBricks Cy Chan Joint Work with: Jason Ansel Yee Lok Wong Saman Amarasinghe Alan Edelman Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

More information

OpenFOAM + GPGPU. İbrahim Özküçük

OpenFOAM + GPGPU. İbrahim Özküçük OpenFOAM + GPGPU İbrahim Özküçük Outline GPGPU vs CPU GPGPU plugins for OpenFOAM Overview of Discretization CUDA for FOAM Link (cufflink) Cusp & Thrust Libraries How Cufflink Works Performance data of

More information

Workshop on Efficient Solvers in Biomedical Applications, Graz, July 2-5, 2012

Workshop on Efficient Solvers in Biomedical Applications, Graz, July 2-5, 2012 Workshop on Efficient Solvers in Biomedical Applications, Graz, July 2-5, 2012 This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence

More information

Improving Uintah s Scalability Through the Use of Portable

Improving Uintah s Scalability Through the Use of Portable Improving Uintah s Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks John Holmen1, Alan Humphrey1, Daniel Sunderland2, Martin Berzins1 University of Utah1 Sandia National Laboratories2

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

INTERCONNECTION TECHNOLOGIES. Non-Uniform Memory Access Seminar Elina Zarisheva

INTERCONNECTION TECHNOLOGIES. Non-Uniform Memory Access Seminar Elina Zarisheva INTERCONNECTION TECHNOLOGIES Non-Uniform Memory Access Seminar Elina Zarisheva 26.11.2014 26.11.2014 NUMA Seminar Elina Zarisheva 2 Agenda Network topology Logical vs. physical topology Logical topologies

More information

Electronic structure calculations on Thousands of CPU's and GPU's

Electronic structure calculations on Thousands of CPU's and GPU's Electronic structure calculations on Thousands of CPU's and GPU's Emil Briggs, North Carolina State University 1. Outline of real-space Multigrid (RMG) 2. Trends in high performance computing 3. Scalability

More information