Segmentation of 3D Materials Image Data

Size: px
Start display at page:

Download "Segmentation of 3D Materials Image Data"

Transcription

1 Enhanced Image Modeling for EM/MPM Segmentation of 3D Materials Image Data Dae Woo Kim, Mary L. Comer School of Electrical and Computer Engineering Purdue University

2 Presentation Outline - Motivation - SEM Imaging Modes - 2D and 3D Blurring Models - Expectation-Maximization/Maximization of the Posterior Marginals (EM/MPM) Segmentation - 2D and 3D Joint Deconvolution/Segmentation (JDS) - New prior model: Minimum Area Increment (MAI) - 3D EM/MPM - Results & Conclusions

3 Motivation Scanning electron microscope (SEM) images have blurring due in part to complex electron interactions during acquisition One particular problem that arises during segmentation is necking: the merging of particles thatt do not appear to touch in the original i image data We incorporate model for blurring degradation into the original EM/MPM method in order to reduce necking We also introduce a new prior model called minimum area increment to reduce necking Current model in EM/MPM has smoothing parameter β (a) Original image (b) Ground truth (c) Original (d) Original EM/MPM (β=3.0) EM/MPM (β=.2) 3

4 SEM Imaging Modes Secondary Electrons (SE): Due to SE s low energy, they can escape only from a thin surface layer of a few nanometers. In this mode, blurring degradation can be modeled with a 2D blurring filter. X BSE PE SE AE BSE Backscattered Electrons (BSE) : Information depth in BSE mode is deeper than in SE mode. If we capture electrons with small energies below kev, we can make the exit depth of BSE have the same order as of SE. Therefore, we can conclude that the interactions for low-energy electrons can be modeled with a 2D filter while the interactions for high-energy electrons can be modeled with 3D blurring filter. R ctron range Ele Diffusion cloud of electron range R for normal incidence of the primary electron (PE). L. Reimer. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 2 nd Edition. Springer-Verlag, Berlin, 998 4

5 2D and 3D Blurring Filter Coefficients 2D filter coefficients : The lateral number of generated SE can be modeled as an exponential. ated SE D filter coefficients : We propose 3D filter which has coefficients as below: Number of gener Lateral distance from impact point [nm] The lateral distribution of generated SE (Monte Carlo simulation, silicon, 5kV) 2 2 Günter Wilkening, Ludger Koenders. Nanoscale Calibration Standards And Methods: dimensional and related measurements in the micro and nanometer range, st Edition, WILEY-VCH, Weinheim,

6 Original Image Models for EM/MPM Use the Markov Random Field as the prior model Use the Gaussian distribution Use Bayes rule to combine the these two models into the posterior distribution function data term regularization term 6

7 EM/MPM Segmentation Use the Maximizer of the Posterior Marginal (MPM) criterion as the optimization objective. Minimizes the expected number of misclassified pixels. Use the Expectation/Maximization (EM) algorithm to estimate model parameters. - The unknown parameter vector contains means and variances for the Gaussian image model. 7

8 2D JDS(Joint Deconvolution/Segmentation) Method : Definition We define label field x, observed image y and blurring vector h. - Let the set of all lattice point S be [,,M] 2 and the order of the pixel of the label field x and the observed image y be raster scan order as below: - We can make the blurring matrix H having window size (2W + ) (2W + ) be a vector h using raster scan order, so that 8

9 2D JDS Method : Image Model & Posterior Model 3 Image Model : Posterior Model: 3 D.W. Kim and M.L. Comer, Joint deconvolution/segmentation of microscope image of materials, in IEEE Statistical Signal Processing Workshop, Ann Arbor, MI, USA, August

10 2D JDS Method : EM algorithm In EM iteration we can get closed form solution of variance. But for the mean, we get L linear equations from which we can obtain estimates of the means 0

11 3D JDS Method : Definition We define label field x n and observed image y n of the n-th slice in a stack of image. And we define 3D blurring vector h 3D. y T y n x n : label field of the n-th image y n : observed n-th image. h 3D : blurring vector having coefficient h 3D (s,s 2,m) y

12 3D JDS Method : Image Model & Posterior Model New Image Model : New Posterior Model: 2

13 Results : Test Sequence Slice66(Bottom) Slice67 Slice68 Slice69 Slice70(Top) Series of five René 88 DT images. The light-colored phase is γ' the gray matrix is γ. We applied our method from the bottom image to the top. 3

14 Results : 3D Blurring Image Model (a) Original image (b) Ground Truth (c) Original EM/MPM (β=3.0) Slice 70 PMP = 5.35% (d) blurring 3D JDS image EM/MPM model (β=3.0, ω=0.52, ω=0.0, ω=0.5, ω=0.20, ω=0.25, ω=0.30, ω=0.35, ω=0.40, ω=0.45, ω=0.50, ω=0.55, ω=0.60, ω=0.65, ω=0.70, ω=0.75, ω=0.80, ω=0.85, ω=0.90, ω=0.95, ω=.00, ω=.05, ω=.0, δ δ =0.5) PMP = 4.08% (e) Preprocessed Image (f) Preprocessed EM/MPM MATLAB deconvlucy (β=3.0) (ω=2 2.0) PMP = 4.76% PMP (percentage of misclassified pixels) 4

15 MAI(Minimum Area Increment) To further reduce object necking, we propose a minimum area increment constraint. This assigns a penalty for the merging of two or more large objects Connecting point: A point where two or more disconnected areas of the same class exist in a pre-defined neighborhood around the point 4-neighbor neighborhood 2-neighbor neighborhood Consider a 4-neighbor configuration: The center pixel in the lftfi left figure is not a connecting point; the center pixel in the right figure is a connecting point 2 class example 0 0 : class 0 : class Minimum area increment window size w s = x r Not connecting point when either x r = 0 or x r Connecting point when either x r = 0 or 5

16 Area Increment Measuring Function Area increment measuring function g ws w s,r(x r) : The increase in area of the largest-area region in a window of size w s w s around pixel location r if the class label assigned to pixel r is x r, - If one class is a background class (assume this is class 0), then we let g ws,r(0)=0 for all r -Ifpixelris not a connecting point then g ws,r(x r )=0 Consider the following 3-class example, with class 0 a background class 3 class example blank : class 0 : class 2 : class 2 Minimum area increment window size w s = 5 x r g 2,r () = 0 g 2,r (2) = x r 2 2 g 2,r () = 4 g 2,r (2) = x r 2 2 g 2,r () = 0 g 2,r (2) = x r g 2,r () = 9 g 2,r (2) = 0 6

17 New prior model: MRF and MAI We propose new prior model by incorporating MAI constraint into existing MRF prior model as below: To make proposed prior model more effective, we applied SA(simulated annealing) scheme. We gradually increase the β value of the classes which have no necking problem. 7

18 Results : MAI (a) Original image Slice 07 (b) Ground Truth (c) Original EM/MPM (β=3.0) 30) PMP = 637% 6.37% (d) 2D JDS method with no MAI MAI τ =.5 w s = 7 2-neighbor 23th 24th 25th 26th 27th 28th 29th 30th EM iteration β(0) = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, β() = 3.0 PMP =2.97% 23th 24th 25th 26th 27th 28th 29th 30th EM iteration β(0) = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, β() = 3.0 PMP=2.75% 8

19 Results : MAI (a) Original image (b) Ground Truth (c) Original EM/MPM Slice 70 (β=3.0) 30) PMP = 535% 5.35% (d) 2D JDS method with no MAI MAI τ =.5 w s = 7 2-neighbor 23th 24th 25th 26th 27th 28th 29th 30th EM iteration β(0) = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, β() = 3.0 PMP=4.35% 23th 24th 25th 26th 27th 28th 29th 30th EM iteration β(0) = 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, β() = 3.0 PMP=3.70% 9

20 3D EM/MPM with JDS Image Model : Posterior Model: 20

21 2D EM/MPM VS 3D EM/MPM 2D EM/MPM 3D EM/MPM y T y n Image Model y pixel of next frame Prior Model pixel of previous frame 3D EM/MPM needs a large amount of memory. So we apply 3D EM/MPM method for 3 frames and save the result of the middle frame and then move to the next 3 frames which are one frame shifted from the previous 3 frames. 2

22 Results : 3D JDS with 3D EM/MPM NiAlCr slice 027 ground truth 3D JDS with 2D EM/MPM ( =.5, ω =03 0.3, δ =0 0., PMP = 6.3%) 3D JDS with 3D EM/MPM ( =.5, =0.75, ω =03 0.3, δ = 0., PMP = 6.03%) Rene88 slice70 ground truth 3D JDS with 2D EM/MPM ( =.5, ω = 0.5, δ = 0.5, PMP = 4.38%) 3D JDS with 3D EM/MPM ( =.5, = 0.75, ω = 0.5, δ = 0.5, PMP = 4.24%) 22

23 Results : 3D EM/MPM with JDS and MAI NiAlCr slice number to 59 (59slices, Image Size 94 X 49 pixels) EM/MPM (β=.5) Running time 4 : 8sec 4 Intel i7 CPU 2.4GHz, Memory 8GB 3D JDS &MAI2DEM/MPM (β=.5, ω = 0.3, δ = 0., τ =.5) Running time : 2260sec (28x) 3D JDS & MAI with 3D EM/MPM (β=.5, ω = 0.3, δ = 0., τ =.5) Running time : 6638sec (82x) 23

24 Results : 3D EM/MPM with JDS and MAI Rene88 slice number 43 to 88 (46slices, Image Size 94 X 49 pixels) EM/MPM (β=.5) Running time : 63sec 3D JDS &MAI2DEM/MPM (β=.5, ω = 0.5, δ = 0.5, τ =.0) Running time : 762sec 3D JDS & MAI with 3D EM/MPM (β=.5, ω = 0.5, δ = 0.5, τ =.0) Running time : 575sec 24

25 Conclusions In this research, we propose a blurring model to improve pixel mis- classification originating from blurring in SEM images. The proposed method incorporates physical modeling of electron interactions into a blurring image model We also propose a new prior model including minimum area increment constraint tand apply it with SA scheme. In addition, we apply JDS and MAI in the 3D EM/MPM. Experimental results demonstrate that the proposed methods can be used to reduce necking in the segmentation of microscopeimages of materials 25

26 Thank you

27 Appendix B: EM estimation for the new image model (/4) The EM algorithm is an iterative procedure. At each iteration expectation step and maximization step are performed. In the expectation step the following function is computed. In the maximization step, we can estimate θ(p) which maximize Q(θ(p), θ(p-))

28 Appendix B: EM estimation for the new image model (2/4) Similarly, by differentiating with parameter σ k we can get

29 Appendix B: EM estimation for the new image model (3/4) Therefore,

30 Let Appendix B: EM estimation for the new image model (4/4) then we can get

Applications of New Stochastic Image Models to Materials Engineering

Applications of New Stochastic Image Models to Materials Engineering Applications of New Stochastic Image Models to Materials Engineering Mary Comer, Huixi Zhao, Dae Woo Kim, Shruthi Kubatur, Marc De Graef, and Jeff Simmons School of Electrical and Computer Engineering

More information

BAYESIAN SEGMENTATION OF THREE DIMENSIONAL IMAGES USING THE EM/MPM ALGORITHM. A Thesis. Submitted to the Faculty.

BAYESIAN SEGMENTATION OF THREE DIMENSIONAL IMAGES USING THE EM/MPM ALGORITHM. A Thesis. Submitted to the Faculty. BAYESIAN SEGMENTATION OF THREE DIMENSIONAL IMAGES USING THE EM/MPM ALGORITHM A Thesis Submitted to the Faculty of Purdue University by Lauren Christopher In Partial Fulfillment of the Requirements for

More information

Unsupervised Texture Image Segmentation Using MRF- EM Framework

Unsupervised Texture Image Segmentation Using MRF- EM Framework Journal of Advances in Computer Research Quarterly ISSN: 2008-6148 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 4, No. 2, May 2013), Pages: 1-13 www.jacr.iausari.ac.ir Unsupervised Texture

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY

ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY 1 ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY SUHAS SREEHARI S. V. VENKATAKRISHNAN (VENKAT) CHARLES A. BOUMAN PURDUE UNIVERSITY AUGUST 15, 2014 2 OUTLINE 1. Overview of MBIR 2. Previous work 3. Leading

More information

Huixi Zhao, Mary Comer School of Electrical and Computer Engineering Purdue University

Huixi Zhao, Mary Comer School of Electrical and Computer Engineering Purdue University A JOINT MARKOV RANDOM FIELD/MARKED POINT PROCESS IMAGE MODEL UNDER THE BAYESIAN FRAMEWORK Huixi Zhao, Mary Comer School of Electrical and Computer Engineering Purdue University This research is supported

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

Digital Image Processing Laboratory: MAP Image Restoration

Digital Image Processing Laboratory: MAP Image Restoration Purdue University: Digital Image Processing Laboratories 1 Digital Image Processing Laboratory: MAP Image Restoration October, 015 1 Introduction This laboratory explores the use of maximum a posteriori

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

A spatio-temporal model for extreme precipitation simulated by a climate model.

A spatio-temporal model for extreme precipitation simulated by a climate model. A spatio-temporal model for extreme precipitation simulated by a climate model. Jonathan Jalbert Joint work with Anne-Catherine Favre, Claude Bélisle and Jean-François Angers STATMOS Workshop: Climate

More information

Combining Local and Global Features for Image Segmentation Using Iterative Classification and Region Merging

Combining Local and Global Features for Image Segmentation Using Iterative Classification and Region Merging Combining Local and Global Features for Image Segmentation Using Iterative Classification and Region Merging Qiyao Yu, David A. Clausi Systems Design Engineering, University of Waterloo Waterloo, ON, Canada

More information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Subrahmanyam Gorthi 1, Alireza Akhondi-Asl 1, Jean-Philippe Thiran 2, and Simon K.

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Application of MRF s to Segmentation

Application of MRF s to Segmentation EE641 Digital Image Processing II: Purdue University VISE - November 14, 2012 1 Application of MRF s to Segmentation Topics to be covered: The Model Bayesian Estimation MAP Optimization Parameter Estimation

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation Purdue University: Digital Image Processing Laboratories Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation December, 205 Introduction This laboratory explores the use

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification

Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification Gazi. Ali, Pei-Ju Chiang Aravind K. Mikkilineni, George T. Chiu Edward J. Delp, and Jan P. Allebach School

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

Unsupervised Change Detection in Remote-Sensing Images using Modified Self-Organizing Feature Map Neural Network

Unsupervised Change Detection in Remote-Sensing Images using Modified Self-Organizing Feature Map Neural Network Unsupervised Change Detection in Remote-Sensing Images using Modified Self-Organizing Feature Map Neural Network Swarnajyoti Patra, Susmita Ghosh Department of Computer Science and Engineering Jadavpur

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Part I: HumanEva-I dataset and evaluation metrics

Part I: HumanEva-I dataset and evaluation metrics Part I: HumanEva-I dataset and evaluation metrics Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ http://vision.cs.brown.edu/humaneva/ Motivation

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA. By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr.

CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA. By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr. CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr. Michael Nechyba 1. Abstract The objective of this project is to apply well known

More information

Super-resolution on Text Image Sequences

Super-resolution on Text Image Sequences November 4, 2004 Outline Outline Geometric Distortion Optical/Motion Blurring Down-Sampling Total Variation Basic Idea Outline Geometric Distortion Optical/Motion Blurring Down-Sampling No optical/image

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer Wilhelm Burger Mark J. Burge Digital Image Processing An algorithmic introduction using Java Second Edition ERRATA Springer Berlin Heidelberg NewYork Hong Kong London Milano Paris Tokyo 12.1 RGB Color

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Galin L. Jones 1 School of Statistics University of Minnesota March 2015 1 Joint with Martin Bezener and John Hughes Experiment

More information

Markov Face Models. Abstract. 1. Introduction. Department of Statistics & Probability Department of Computer Science & Engineering

Markov Face Models. Abstract. 1. Introduction. Department of Statistics & Probability Department of Computer Science & Engineering Markov Face Models Sarat C. Dass Anil K. Jain Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University Michigan State University E. Lansing, MI E. Lansing,

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Florin C. Ghesu 1, Thomas Köhler 1,2, Sven Haase 1, Joachim Hornegger 1,2 04.09.2014 1 Pattern

More information

Support Vector Machines (a brief introduction) Adrian Bevan.

Support Vector Machines (a brief introduction) Adrian Bevan. Support Vector Machines (a brief introduction) Adrian Bevan email: a.j.bevan@qmul.ac.uk Outline! Overview:! Introduce the problem and review the various aspects that underpin the SVM concept.! Hard margin

More information

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Wei Liu 1, Peihong Zhu 1, Jeffrey S. Anderson 2, Deborah Yurgelun-Todd 3, and P. Thomas Fletcher 1 1 Scientific

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement

Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement Daegeon Kim Sung Chun Lee Institute for Robotics and Intelligent Systems University of Southern

More information

CRFs for Image Classification

CRFs for Image Classification CRFs for Image Classification Devi Parikh and Dhruv Batra Carnegie Mellon University Pittsburgh, PA 15213 {dparikh,dbatra}@ece.cmu.edu Abstract We use Conditional Random Fields (CRFs) to classify regions

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Phil Gregory Physics and Astronomy Univ. of British Columbia Introduction Martin Weinberg reported

More information

An Efficient Method for Parameter Estimation on the Multi-Level Logistic MRF Image Model using Maximum Pseudo-Likelihood Approach

An Efficient Method for Parameter Estimation on the Multi-Level Logistic MRF Image Model using Maximum Pseudo-Likelihood Approach An Efficient Method for Parameter Estimation on the Multi-Level Logistic MRF Image Model using Maximum Pseudo-Lielihood Approach Alexandre L. M. Levada Nelson D. A. Mascarenhas Instituto de Física de São

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Visual Motion Analysis and Tracking Part II

Visual Motion Analysis and Tracking Part II Visual Motion Analysis and Tracking Part II David J Fleet and Allan D Jepson CIAR NCAP Summer School July 12-16, 16, 2005 Outline Optical Flow and Tracking: Optical flow estimation (robust, iterative refinement,

More information

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences A Sample of Monte Carlo Methods in Robotics and Vision Frank Dellaert College of Computing Georgia Institute of Technology Credits Zia Khan Tucker Balch Michael Kaess Rafal Zboinski Ananth Ranganathan

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Adaptive Learning of an Accurate Skin-Color Model

Adaptive Learning of an Accurate Skin-Color Model Adaptive Learning of an Accurate Skin-Color Model Q. Zhu K.T. Cheng C. T. Wu Y. L. Wu Electrical & Computer Engineering University of California, Santa Barbara Presented by: H.T Wang Outline Generic Skin

More information

Continuous and Discrete Image Reconstruction

Continuous and Discrete Image Reconstruction 25 th SSIP Summer School on Image Processing 17 July 2017, Novi Sad, Serbia Continuous and Discrete Image Reconstruction Péter Balázs Department of Image Processing and Computer Graphics University of

More information

Iterative MAP and ML Estimations for Image Segmentation

Iterative MAP and ML Estimations for Image Segmentation Iterative MAP and ML Estimations for Image Segmentation Shifeng Chen 1, Liangliang Cao 2, Jianzhuang Liu 1, and Xiaoou Tang 1,3 1 Dept. of IE, The Chinese University of Hong Kong {sfchen5, jzliu}@ie.cuhk.edu.hk

More information

Amortized Supersampling

Amortized Supersampling Amortized Supersampling LEI YANG H, DIEGO NEHAB M, PEDRO V. SANDER H, PITCHAYA SITTHI-AMORN V, JASON LAWRENCE V, HUGUES HOPPE M H M V Dec. 18, 2009, Pacifico Yokohama, Japan Outline 3/27 Problem Amortized

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Defect Repair for EUVL Mask Blanks

Defect Repair for EUVL Mask Blanks Defect Repair for EUVL Mask Blanks A.Barty, S.Hau-Riege, P.B.Mirkarimi, D.G.Stearns, H.Chapman, D.Sweeney Lawrence Livermore National Laboratory M.Clift Sandia National Laboratory E.Gullikson, M.Yi Lawrence

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors 2005 IEEE Nuclear Science Symposium Conference Record M11-354 PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors Sangeetha Somayajula, Evren Asma, and Richard

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc.

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc. Expectation-Maximization Methods in Population Analysis Robert J. Bauer, Ph.D. ICON plc. 1 Objective The objective of this tutorial is to briefly describe the statistical basis of Expectation-Maximization

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

A Study on Clustering Method by Self-Organizing Map and Information Criteria

A Study on Clustering Method by Self-Organizing Map and Information Criteria A Study on Clustering Method by Self-Organizing Map and Information Criteria Satoru Kato, Tadashi Horiuchi,andYoshioItoh Matsue College of Technology, 4-4 Nishi-ikuma, Matsue, Shimane 90-88, JAPAN, kato@matsue-ct.ac.jp

More information

Algorithms for Markov Random Fields in Computer Vision

Algorithms for Markov Random Fields in Computer Vision Algorithms for Markov Random Fields in Computer Vision Dan Huttenlocher November, 2003 (Joint work with Pedro Felzenszwalb) Random Field Broadly applicable stochastic model Collection of n sites S Hidden

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking D. Merhof 1, M. Buchfelder 2, C. Nimsky 3 1 Visual Computing, University of Konstanz, Konstanz 2 Department of Neurosurgery,

More information

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS ARIFA SULTANA 1 & KANDARPA KUMAR SARMA 2 1,2 Department of Electronics and Communication Engineering, Gauhati

More information

Mine Boundary Detection Using Markov Random Field Models

Mine Boundary Detection Using Markov Random Field Models Mine Boundary Detection Using Markov Random Field Models Xia Hua and Jennifer Davidson Department of Electrical & Computer Engineering Iowa State University Noel Cressie Department of Statistics Iowa State

More information

Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis

Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis Comparison of Variational Bayes and Gibbs Sampling in Reconstruction of Missing Values with Probabilistic Principal Component Analysis Luis Gabriel De Alba Rivera Aalto University School of Science and

More information

CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION

CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION 6.1 INTRODUCTION Fuzzy logic based computational techniques are becoming increasingly important in the medical image analysis arena. The significant

More information

Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S

Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S Sampling PCA, enhancing recovered missing values in large scale matrices. Luis Gabriel De Alba Rivera 80555S May 2, 2009 Introduction Human preferences (the quality tags we put on things) are language

More information

Smooth Simultaneous Structural Graph Matching and Point-Set Registration

Smooth Simultaneous Structural Graph Matching and Point-Set Registration 8th IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition Smooth Simultaneous Structural Graph Matching and Point-Set Registration Gerard Sanromà¹, René Alquézar² and Francesc Serratosa¹

More information

Object of interest discovery in video sequences

Object of interest discovery in video sequences Object of interest discovery in video sequences A Design Project Report Presented to Engineering Division of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the

More information

MRF Based LSB Steganalysis: A New Measure of Steganography Capacity

MRF Based LSB Steganalysis: A New Measure of Steganography Capacity MRF Based LSB Steganalysis: A New Measure of Steganography Capacity Debasis Mazumdar 1, Apurba Das 1, and Sankar K. Pal 2 1 CDAC, Kolkata, Salt Lake Electronics Complex, Kolkata, India {debasis.mazumdar,apurba.das}@cdackolkata.in

More information

Fast 3D Mean Shift Filter for CT Images

Fast 3D Mean Shift Filter for CT Images Fast 3D Mean Shift Filter for CT Images Gustavo Fernández Domínguez, Horst Bischof, and Reinhard Beichel Institute for Computer Graphics and Vision, Graz University of Technology Inffeldgasse 16/2, A-8010,

More information

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES Nader Moayeri and Konstantinos Konstantinides Hewlett-Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94304-1120 moayeri,konstant@hpl.hp.com

More information

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 What I have in mind for our last programming project is to do something with either graphical models or random sampling. A few ideas

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS

CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS This chapter presents a computational model for perceptual organization. A figure-ground segregation network is proposed based on a novel boundary

More information

Image processing of coarse and fine aggregate images

Image processing of coarse and fine aggregate images AMAS Workshop on Analysis in Investigation of Concrete SIAIC 02 (pp.231 238) Warsaw, October 21-23, 2002. processing of coarse and fine aggregate images X. QIAO 1), F. MURTAGH 1), P. WALSH 2), P.A.M. BASHEER

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation 1. Introduction Motivation: Beijing Jiaotong University 1 Lotus Hill Research Institute University of California, Los Angeles 3 CO 3 for Ultra-fast and Accurate Interactive Image Segmentation This paper

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Trademark Matching and Retrieval in Sport Video Databases

Trademark Matching and Retrieval in Sport Video Databases Trademark Matching and Retrieval in Sport Video Databases Andrew D. Bagdanov, Lamberto Ballan, Marco Bertini and Alberto Del Bimbo {bagdanov, ballan, bertini, delbimbo}@dsi.unifi.it 9th ACM SIGMM International

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Developing a Data Driven System for Computational Neuroscience

Developing a Data Driven System for Computational Neuroscience Developing a Data Driven System for Computational Neuroscience Ross Snider and Yongming Zhu Montana State University, Bozeman MT 59717, USA Abstract. A data driven system implies the need to integrate

More information

Image Alignment and Application of 2D Fast Rotational Matching in Single Particle cryo-electron Microscopy. Yao Cong. Baylor College of Medicine

Image Alignment and Application of 2D Fast Rotational Matching in Single Particle cryo-electron Microscopy. Yao Cong. Baylor College of Medicine Image Alignment and Application of 2D Fast Rotational Matching in Single Particle cryo-electron Microscopy Yao Cong Baylor College of Medicine cryo-em & single particle analysis Single-particle electron

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Classifying Online Social Network Users Through the Social Graph

Classifying Online Social Network Users Through the Social Graph Classifying Online Social Network Users Through the Social Graph Cristina Pe rez Sola and Jordi Herrera Joancomartı Departament d Enginyeria de la Informacio i les Comunicacions Universitat Auto noma de

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information