Origin and Minimization of Residual Motion-Related Artifacts in Navigator-Corrected Segmented Diffusion-Weighted EPI of the Human Brain

Size: px
Start display at page:

Download "Origin and Minimization of Residual Motion-Related Artifacts in Navigator-Corrected Segmented Diffusion-Weighted EPI of the Human Brain"

Transcription

1 Magnetic Resonance in Medicine 47: (2002) DOI /mrm Origin and Minimization of Residual Motion-Related Artifacts in Navigator-Corrected Segmented Diffusion-Weighted EPI of the Human Brain Hangyi Jiang, 1,2 Xavier Golay, 1,2 Peter C.M. van Zijl, 1,2 and Susumu Mori 1,2 * Motion sensitivity in diffusion-weighted imaging (DWI) can be effectively suppressed using single-shot echo-planar imaging (EPI). However, segmented (multishot) EPI is often used to increase resolution and reduce spatial distortions, which in turn increases susceptibility to brain motion. The sources of these residual motion artifacts in navigator-echo-corrected segmented EPI images of the brain were investigated. The results indicate that the dominant source of these artifacts is cardiac pulsation with occasional involuntary movement of the subject. The relationship between the cardiac cycle and motion artifacts shows that optimum timing for the data acquisition is possible. In addition it is shown that the effects of involuntary motion can be removed by swapping k-space data between redundant datasets. Magn Reson Med 47: , Wiley-Liss, Inc. Key words: diffusion-weighted imaging; navigator correction; brain motion; cardiac pulsation; artifacts Diffusion-weighted imaging (DWI) is a unique technique that provides images sensitive to molecular motion (diffusion) of water molecules (1,2). The recent advance of diffusion tensor imaging (DTI) (3) offers the exciting possibility of mapping dominant fiber orientations in the brain by using anisotropy-based color coding (4) or actual fiber tracking (5,6). However, the large gradients required for diffusion weighting make this approach very sensitive to motion, which may induce large phase changes in the MR signals and result in serious image ghosting artifacts. Several methods are now available to reduce these problems (7). The advance of these techniques has been stimulated by the availability of single-shot echo-planar imaging (EPI). However, although this approach can generally avoid motion artifacts (2,8), the resulting images have limited resolution and often suffer from severe distortions due to the presence of susceptibility artifacts. The consequent anatomical uncertainties hamper the combination of DTI approaches with conventional image approaches. Navigator-corrected multishot EPI (9 11), on the other hand, can be used to improve image resolution and reduce susceptibility artifacts, but patient motion may lead to residual small, incoherent phase changes between segments, again 1 Department of Radiology, Division of MRI Research, Johns Hopkins University School of Medicine, Baltimore, Maryland. 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland. Grant sponsor: Whitaker Foundation; Grant sponsor: National Institutes of Health; Grant number: RO1 HD37931; Grant sponsor: NCRR; Grant number: P41 RR *Correspondence to: Susumu Mori, Ph.D., Department of Radiology, 217 Traylor Bldg., 720 Rutland Ave., Johns Hopkins University School of Medicine, Baltimore, MD susumu@mri.jhu.edu Received 25 September 2001; revised 14 November 2001; accepted 18 November Wiley-Liss, Inc. 818 resulting in severe image artifacts. Even the use of electrocardiographic (ECG) triggering or cardiac gating to synchronize the data acquisitions in combination with the simple readout (or 1D) navigator-echo approach cannot suppress all motion-related phase errors, and residual artifacts are often found in the corrected images. The overall aim of this study was to understand the dominant source of these residual artifacts in cardiactriggered navigator-corrected diffusion-weighted EPI (DW- EPI), and to design data acquisition and postprocessing schemes that minimize the motion-related artifacts when using segmented EPI readout techniques. METHODS MRI Data Acquisition Experiments were performed using a 1.5 T Philips Gyroscan NT system (Philips Medical Systems, The Netherlands) with standard body-coil excitation and birdcage coil reception. DWI was accomplished using multislice segmented EPI sequences, with cardiac triggering and navigator-echo phase monitoring. Images were acquired coronally (four segmented shots) or axially (three segmented shots) with thicknesses of 3 mm and in-plane resolution of 2 mm for both orientations, respectively. Seventeen echoes were acquired per excitation. A diffusion-encoding gradient pair was applied on both sides of a 180 radiofrequency (RF) pulse, directly followed by the acquisition of a navigator echo to monitor motion-induced phase errors in the segmented EPI readout. Subsequently, a second 180 pulse was applied, followed by the segmented EPI readout. Diffusion encoding (b 600 s/mm 2 ) was applied along six independent axes, including X (readout encoding), Y (phase encoding), Z (slice selection), and XY, XZ, and YZ. Additionally, a reference-image without diffusion weighting was also recorded. This data acquisition was repeated two times (or more if necessary) to produce higher signalto-noise ratios for high-resolution fiber tracking and redundant data sets for k-space data swapping in postprocessing. The imaging sequence was synchronized using cardiac trigging. To study the relationship between the cardiac cycle and phase errors, a series of images was collected with different cardiac delays within the R-R interval of the subject s cardiac cycle. A 1D Fourier transform (FT) was performed on the navigator echoes of all separated shots and all images. The magnitude of the navigator projection was calculated and the area under the magnitude curve was taken as the measurement of the image quality. The studies were performed for two healthy subjects (one 41- year-old male and one 29-year-old female).

2 Residual Motion Artifacts in DW-EPI 819 FIG. 1. Reconstructed diffusion-weighted images and their navigator projections for different cardiac delays ( ms). The diffusion gradient was applied in the phase-encoding (right/left) direction. The navigator curves were normalized using their minimum and maximum values. Image b, acquired at a trigger delay of 100 ms, represents the worst image quality as compared with the other images, and its corresponding navigator projection has the lowest profile integral. The navigator curves were reproducible for all four image segments. MRI Data Correction The phase difference between navigator echos of different shots after 1D-FT (10,11) was calculated and used to correct motion-induced phase error in the multishot imaging echoes. This was done in multiple steps. First, the navigator echo NAV(kx) was masked with a rectangle window around its center kxc so that only those samples that have significant signal remained (9), i.e., 再 NAV共kx兲 NAV共kx兲 0 ifpkx kxc P otherwise [1] FIG. 2. The area under the navigator profile as a function of cardiac delay. The area values are normalized using their maximum. Diffusion gradients were applied in the (a) readout-, (b) phase-, and (c) slice-encoding directions. The combined data of four image segments are shown. Curve d was obtained without diffusion weighting, indicating minimal sensitivity to cardiac pulsations in this case.

3 820 Jiang et al. in which kx is the index number in k-space and the half of the window width. This step leads to a smoother navigator projection after its FT, because masking the signal with a rectangular window in the k-space domain is in fact equivalent to convolution with a low-pass sinc-shaped filter in the spatial domain. The adjustable mask window size was chosen as 10% of the echo length as a default selection in our experiments. Then, the navigator echo with the largest amplitude area after FT was chosen as the reference navigator. Because motion artifacts tend to reduce image intensity and change phase, the navigator profile with the largest area is likely to have less motion effects (12). Subsequently, the phase difference functions, Diff (x), between the reference and each of the navigator projections were calculated from Diffi x NAVi x NAV0 x i 1..m, where NAVi x indicates the navigator phase response of the ith imaging shot after its 1D-FT, m the total number of shots, and NAV0 x the reference navigator phase response. Subsequently, a point-by-point phase adjustment was made between Fourier-transformed image echoes and corresponding navigator phase difference for every shot: collected at various time points over the cardiac cycle. Figure 1 shows some of the selected images (after navigator correction) obtained at different cardiac delays for the particular coronal slice in which motion artifacts have been observed most frequently in our experience. The heart rate of this particular healthy volunteer was approximately 72 beats per min (833 ms per cycle). The imaging sequences were synchronized using cardiac delays from 50 ms to 650 ms, with 50-ms increments. This yielded a total of 13 images with increasing ECG triggering delays. TR was set to four times the R-R interval, i.e., TR 3333 ms. The diffusion gradient was in the phase-encoding (Y) direction. From these images, it can be seen that images at cardiac delays of ms were corrupted and the corresponding navigator projections had significantly lower intensities and different shapes. The similar relationship between the image quality and the cardiac cycle was also found in different slice locations. S i x S i x e j i x Diffi x i 1..m [2] in which S i (x) S i (x) e j i(x) denotes the image data of the ith imaging shot after 1D-FT. Once all image data were corrected (i.e., all echoes having the same phase shift as the reference navigator), the resultant matrix was Fourier transformed in the phase-encoding direction to get a complex image. Finally, the magnitude image was calculated and displayed. Measurement of Blood Velocity To verify the cardiac-cycle dependency of the navigator projection intensity, velocity profiles were acquired in a plane perpendicular to the right common carotid artery of the same volunteer using a 10-cm circular surface coil. For this purpose a gradient-echo sequence was implemented using the following parameters: TE 9.1 ms, TR 20 ms, flip angle 15, FOV 15 cm, matrix , rectangular FOV 70%, slice thickness 5 mm. Bipolar flow-encoding gradients were set in the slice-selection direction, with a maximum velocity encoding of 90 cm/s in order to avoid any phase wrap. Images were reconstructed using a retrospective cardiac gating scheme, in which the phases are reconstructed on the basis of the RR-intervals recording during a nontriggered scan. It can be regarded as a cardiac-triggered multiphase technique, which will therefore increase the image quality in a short-tr gradientecho sequence, such as the one used in absolute blood velocity imaging (13 15). Twenty phases were recorded 30 ms apart during the 700 ms of the cardiac cycle. RESULTS Relationship Between Corrupted Scans and Cardiac Cycle To investigate the effects of cardiac pulsation on the uncorrectable motions, images and navigator echoes were FIG. 3. a: Time profile of the integrated blood velocity in the right common carotid artery. b: Correlation plots of the blood velocity to the area of navigator projections. The obtained regression lines are given by: y x, r 0.78, gradient X, solid line; y x, r 0.72, gradient Y, dashed line; and y x, r 0.84, gradient Z, dotted line.

4 Residual Motion Artifacts in DW-EPI 821 FIG. 4. Identification of motion-affected scans and their correction by k-space swapping. a: Phase-corrected images (left column) and the associated three navigator echoes of two redundant datasets. b: Images after the k-space swapping. The third segmented scan of the first image (numbered 00:2) was discarded and replaced with a corresponding segment in the second dataset (numbered 01:2). The segment numbered 01:1 was substituted with 00:1. Images were copied from the display of our inhouse-developed software that allows us to choose the desired combination of k-space segments automatically or manually for reconstruction. The normalized total areas (over all four shots) under the navigator profiles are plotted as a function of cardiac delay in Fig. 2. This figure represents three data sets with different orientations of diffusion weighting. The relationship between the cardiac delay and navigator projections is very reproducible in that low intensities of navigator projections were observed for cardiac delays of ms (Fig. 2a, X orientation) in all four image segments. A similar relationship was observed for different gradient orientations (Y (Fig. 2b)) and Z (Fig. 2c)), although there were slight differences in the time length of the low-intensity period, which extended as long as 250 ms for the Z gradient orientation (the anterior-posterior direction). For comparison, the navigator area as a function of cardiac delay is also given for the images without diffusion weighting (Fig. 2d), showing almost negligible area fluctuation. Similar results were observed for the other healthy volunteer. Correlation With Blood Pulsatile Flow Through the Right Common Carotid Artery To verify that the time-profile of the navigator projection intensity is caused by brain pulsation, the time-profile of blood flow in the right common carotid artery was mea- sured (Fig. 3a). It can be seen that the time period over which the navigator projection profiles change drastically coincides with the time when blood flows into the brain most rapidly. The linear correlation coefficient between the time-profile of blood velocity and navigator projection was given by 0.78 (X), 0.72 (Y), and 0.84 (Z), respectively (Fig. 3b). Negative value here indicates that blood flow and the navigator projection are inversely correlated, i.e., the area of navigator profile reduces at higher blood velocity. DISCUSSION At present, most DTI studies are performed using singleshot EPI because of its insensitivity to subject motion and subsequent image ghosting. However, single-shot EPI has severe limitations in image quality due to its intrinsic low resolution and related image distortions. This hampers correct anatomical interpretation of color maps and fiber track locations. Therefore, a method to increase the success rate of navigator-corrected segmented EPI for DTI studies is needed. In this study, we tried to understand the dominant source of residual motion artifacts, which could

5 822 Jiang et al. not be corrected using the conventional navigator-echo based phase correction. The results in Fig. 1 show that severe motion effects judged from the navigator projection intensity are highly reproducible and synchronized with the cardiac cycle. The low echo intensity period observed at ms after the triggering coincided with the time of peak blood velocity in the right common carotid artery, suggesting that brain pulsations are the dominant source of these observed motion-related artifacts. The results indicate that it should be possible to minimize the pulsation effects by avoiding acquiring data during the low echo intensity period ( ms). Therefore, the recommended timing for data acquisition with respect to cardiac cycle is within 50 ms, or at times longer than 250 ms, after R-wave detection. In addition to the reproducible motion effects due to brain pulsation, there are also occasional involuntary motions that are too severe to be corrected by the navigator echoes. These are especially a problem when studying young children and more difficult populations, such as individuals with learning disabilities or certain psychiatric disorders. An example of such a case is shown in Fig. 4a, in which only one of three segmented scans was affected. For this type of motion effects, it is very effective to acquire redundant datasets and substitute the corrupted k-space with noncorrupted data from the redundant data sources. We developed software allowing us to inspect each segmented scan for the existence of data corruption and to substitute the k-space. Figure 4b demonstrates that the software effectively suppressed the occasional motion artifacts, allowing successful image analysis in this otherwise useless data set. Recently, phase corrections on various navigator-echobased or non-navigator-echo-based approaches have been proposed to overcome the limitation of the 1D navigatorecho phase correction scheme (7,11,16 19). The present results could be combined with these new types of motion suppression schemes to further improve the quality of diffusion-weighted images. In conclusion, we demonstrated that the dominant source of residual motion artifacts in navigator-corrected segmented DW-EPI is caused by cardiac pulsation of the brain. Based on the relationship between the phase error and the cardiac cycle, it is recommended that data be acquired within 50 ms or more than ms after cardiac triggering to minimize motion-related artifacts. For the suppression of nonreproducible voluntary motions, swapping k-space data between redundant data sets was effective. ACKNOWLEDGMENTS We thank Drs. Carlo Pierpaoli, Alan Barnett, and Peter Basser for stimulating discussions regarding motion artifacts and k-space swapping. This study was supported by the Whitaker Foundation, National Institutes of Health grant RO1 HD37931 (to S.M.), and NCRR resource grant P41 RR15241 (to S.M, P.V.Z). We acknowledge Ms. Terry Brawner (F.M. Kirby Research Center at Kennedy Krieger Institute), and Drs. Paul Folkers, Frank Hoogenraad, and Arianne van Muiswinkel (Philips Medical Systems) for technical assistance. REFERENCES 1. Le Bihan D, Turner R, MacFall JR. Effects of intravoxel incoherent motions (IVIM) in steady-state free precession (SSFP) imaging: application to molecular diffusion imaging. Magn Reson Med 1989;10: Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echoplanar imaging of intravoxel incoherent motion. Radiology 1990;177: Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective selfdiffusion tensor from the NMR spin echo. J Magn Reson B 1994;103: Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999; 42: Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45: Poupon C, Mangin JF, Clart CA, Frouin V, Regis J, Le Bihan D, Bloch I. Towards inference of human brain connectivity from MR diffusion tensor data. Med Image Anal 2001;5: Norris DG. Implications of bulk motion for diffusion-weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imaging 2001;13: Turner R, Le Bihan D. Single-shot diffusion imaging at 2.0 tesla. J Magn Reson 1990;86: Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V. Correction of motional artifacts in diffusion-weighted NMR images using navigator echoes. Magn Reson Imaging 1994;12: Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32: Butts K, Pauly J, de Crespingy A, Moseley M. Isotropic diffusionweighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn Reson Med 1997;38: de Crespigny AJ, Marks MP, Enzmann DR, Moseley ME. Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 1995;33: Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Med 1982;1: Maier SE, Meier D, Boesiger P, Moser UT, Vieli A. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology 1989;171: Lenz GW, Haacke EM, White TD. Retrospective cardiac gating: a review of technical aspects and future directions. Magn Reson Imaging 1989; 7: Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44: Clark CA, Barker GJ, Tofts PS. Improved reduction of motion artifacts in diffusion imaging using navigator echoes and velocity compensation. J Magn Reson 2000;142: Pipe JG. Multishot diffusion weighted FSE with PROPELLER. In: Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, p Bammer R, Keeling SL, Auer M, Pruessmann KP, Roeschmann P, Stollberger R. Hartung HP, Fazekas F. Diffusion tensor imaging using SENSE-single-shot EPI. In: Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, p 160.

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Fiber Selection from Diffusion Tensor Data based on Boolean Operators

Fiber Selection from Diffusion Tensor Data based on Boolean Operators Fiber Selection from Diffusion Tensor Data based on Boolean Operators D. Merhof 1, G. Greiner 2, M. Buchfelder 3, C. Nimsky 4 1 Visual Computing, University of Konstanz, Konstanz, Germany 2 Computer Graphics

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

3D Steady-State Diffusion-Weighted Imaging with Trajectory Using Radially Batched Internal Navigator Echoes (TURBINE)

3D Steady-State Diffusion-Weighted Imaging with Trajectory Using Radially Batched Internal Navigator Echoes (TURBINE) 3D Steady-State Diffusion-Weighted Imaging with Trajectory Using Radially Batched Internal Navigator Echoes (TURBINE) Jennifer A. McNab, Daniel Gallichan, Karla L. Miller Oxford Centre for Functional Magnetic

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking D. Merhof 1, M. Buchfelder 2, C. Nimsky 3 1 Visual Computing, University of Konstanz, Konstanz 2 Department of Neurosurgery,

More information

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI Figure 1. In the brain, the gray matter has substantially more blood vessels and capillaries than white matter. The magnified image on the right displays the rich vasculature in gray matter forming porous,

More information

Multishot Diffusion-Weighted FSE Using PROPELLER MRI

Multishot Diffusion-Weighted FSE Using PROPELLER MRI Multishot Diffusion-Weighted FSE Using PROPELLER MRI James G. Pipe, 1 * Victoria G. Farthing, 1 and Kirsten P. Forbes 2 Magnetic Resonance in Medicine 47:42 52 (2002) A method for obtaining diffusion-weighted

More information

Motion Artifacts and Suppression in MRI At a Glance

Motion Artifacts and Suppression in MRI At a Glance Motion Artifacts and Suppression in MRI At a Glance Xiaodong Zhong, PhD MR R&D Collaborations Siemens Healthcare MRI Motion Artifacts and Suppression At a Glance Outline Background Physics Common Motion

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

Automatic Gradient Preemphasis Adjustment: A 15-Minute Journey to Improved Diffusion-Weighted Echo-Planar Imaging

Automatic Gradient Preemphasis Adjustment: A 15-Minute Journey to Improved Diffusion-Weighted Echo-Planar Imaging Automatic Gradient Preemphasis Adjustment: A 15-Minute Journey to Improved Diffusion-Weighted Echo-Planar Imaging Vincent J. Schmithorst* and Bernard J. Dardzinski Magnetic Resonance in Medicine 47:208

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA)

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Magnetic Resonance in Medicine 53:981 985 (2005) Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Felix A. Breuer, 1 * Peter Kellman, 2 Mark A. Griswold, 1 and Peter M. Jakob 1 Current

More information

Development of fast imaging techniques in MRI From the principle to the recent development

Development of fast imaging techniques in MRI From the principle to the recent development 980-8575 2-1 2012 10 13 Development of fast imaging techniques in MRI From the principle to the recent development Yoshio MACHIDA and Issei MORI Health Sciences, Tohoku University Graduate School of Medicine

More information

Dynamic Contrast enhanced MRA

Dynamic Contrast enhanced MRA Dynamic Contrast enhanced MRA Speaker: Yung-Chieh Chang Date : 106.07.22 Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan 1 Outline Basic and advanced principles of Diffusion

More information

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Nan-kuei Chen 1,5 and Alice M. Wyrwicz 4 * Magnetic Resonance in Medicine 51:147 153 (004) Odd even echo inconsistencies result

More information

High Fidelity Brain Connectivity Imaging

High Fidelity Brain Connectivity Imaging CNI Inauguration Workshop Stanford, March 22 nd, 2012 High Fidelity Brain Connectivity Imaging -Recent Progress on Diffusion Weighted MRI for High Resolution and Low Distortion Allen W. Song, PhD Brain

More information

Referenceless Interleaved Echo-Planar Imaging

Referenceless Interleaved Echo-Planar Imaging Referenceless Interleaved Echo-Planar Imaging Magnetic Resonance in Medicine 41:87 94 (1999) Scott B. Reeder, 1 Ergin Atalar, * Anthony Z. Faranesh, 1 and Elliot R. McVeigh 1, Interleaved echo-planar imaging

More information

Generating Fiber Crossing Phantoms Out of Experimental DWIs

Generating Fiber Crossing Phantoms Out of Experimental DWIs Generating Fiber Crossing Phantoms Out of Experimental DWIs Matthan Caan 1,2, Anne Willem de Vries 2, Ganesh Khedoe 2,ErikAkkerman 1, Lucas van Vliet 2, Kees Grimbergen 1, and Frans Vos 1,2 1 Department

More information

C. Leon Partain JOURNAL OF MAGNETIC RESONANCE IMAGING EDITOR-IN-CHIEF

C. Leon Partain JOURNAL OF MAGNETIC RESONANCE IMAGING EDITOR-IN-CHIEF JOURNAL OF MAGNETIC RESONANCE IMAGING ri m j / m o c. E ning M C ear l lth a he li ey w w. w w VOLUME 37 NUMBER 6 JUNE 2013 VOLUME 37 NUMBER 6 JUNE 2013 PAGES 1257 1504 CORRECTION OF EDDY CURRENT DISTORTIONS

More information

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Nan-kuei Chen and Alice M. Wyrwicz* Magnetic Resonance in Medicine 41:1206 1213 (1999) A novel and effective technique is described

More information

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD MRI When to use What sequences Govind Chavhan, MD Assistant Professor and Staff Radiologist The Hospital For Sick Children, Toronto Planning Acquisition Post processing Interpretation Patient history and

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem Common Areas of Motion Problem Motion Compensation Techniques and Applications Abdominal and cardiac imaging. Uncooperative patient, such as pediatric. Dynamic imaging and time series. Chen Lin, PhD Indiana

More information

Comprehensive Approach for Correction of Motion and Distortion in Diffusion-Weighted MRI

Comprehensive Approach for Correction of Motion and Distortion in Diffusion-Weighted MRI Magnetic Resonance in Medicine 51:103 114 (2004) Comprehensive Approach for Correction of Motion and Distortion in Diffusion-Weighted MRI G.K. Rohde, 1,3 * A.S. Barnett, 2 P.J. Basser, 1 S. Marenco, 2

More information

Fiber Selection from Diffusion Tensor Data based on Boolean Operators

Fiber Selection from Diffusion Tensor Data based on Boolean Operators Fiber Selection from Diffusion Tensor Data based on Boolean Operators D. Merhofl, G. Greiner 2, M. Buchfelder 3, C. Nimsky4 1 Visual Computing, University of Konstanz, Konstanz, Germany 2 Computer Graphics

More information

Automatic Quantification of DTI Parameters along Fiber Bundles

Automatic Quantification of DTI Parameters along Fiber Bundles Automatic Quantification of DTI Parameters along Fiber Bundles Jan Klein 1, Simon Hermann 1, Olaf Konrad 1, Horst K. Hahn 1, and Heinz-Otto Peitgen 1 1 MeVis Research, 28359 Bremen Email: klein@mevis.de

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Automatic Quantification of DTI Parameters along Fiber Bundles

Automatic Quantification of DTI Parameters along Fiber Bundles Automatic Quantification of DTI Parameters along Fiber Bundles Jan Klein, Simon Hermann, Olaf Konrad, Horst K. Hahn, Heinz-Otto Peitgen MeVis Research, 28359 Bremen Email: klein@mevis.de Abstract. We introduce

More information

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison MRI Imaging Options Frank R. Korosec, Ph.D. Departments of Radiolog and Medical Phsics Universit of Wisconsin Madison f.korosec@hosp.wisc.edu As MR imaging becomes more developed, more imaging options

More information

Parallel Imaging. Marcin.

Parallel Imaging. Marcin. Parallel Imaging Marcin m.jankiewicz@gmail.com Parallel Imaging initial thoughts Over the last 15 years, great progress in the development of pmri methods has taken place, thereby producing a multitude

More information

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution.

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution. MRES 7005 - Fast Imaging Techniques Module 5: Dynamic Imaging and Phase Sharing (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review Improving Temporal Resolution True-FISP (I) True-FISP (II) Keyhole

More information

Applications Guide for Interleaved

Applications Guide for Interleaved Applications Guide for Interleaved rephase/dephase MRAV Authors: Yongquan Ye, Ph.D. Dongmei Wu, MS. Tested MAGNETOM Systems : 7TZ, TRIO a Tim System, Verio MR B15A (N4_VB15A_LATEST_20070519) MR B17A (N4_VB17A_LATEST_20090307_P8)

More information

MRI Hot Topics Motion Correction for MR Imaging. medical

MRI Hot Topics Motion Correction for MR Imaging. medical MRI Hot Topics Motion Correction for MR Imaging s medical Motion Correction for MR Imaging Kyle A. Salem, PhD Motion Artifacts in a Clinical Setting Patient motion is probably the most common cause of

More information

Use of Multicoil Arrays for Separation of Signal from Multiple Slices Simultaneously Excited

Use of Multicoil Arrays for Separation of Signal from Multiple Slices Simultaneously Excited JOURNAL OF MAGNETIC RESONANCE IMAGING 13:313 317 (2001) Technical Note Use of Multicoil Arrays for Separation of Signal from Multiple Slices Simultaneously Excited David J. Larkman, PhD, 1 * Joseph V.

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Diffusion model fitting and tractography: A primer

Diffusion model fitting and tractography: A primer Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 03/18/10 Why n how Diffusion model fitting and tractography 0/18 Why

More information

High Spatial Resolution EPI Using an Odd Number of Interleaves

High Spatial Resolution EPI Using an Odd Number of Interleaves Magnetic Resonance in Medicine 41:1199 1205 (1999) High Spatial Resolution EPI Using an Odd Number of Interleaves Michael H. Buonocore* and David C. Zhu Ghost artifacts in echoplanar imaging (EPI) arise

More information

2D spatially selective excitation pulse design and the artifact evaluation

2D spatially selective excitation pulse design and the artifact evaluation EE 591 Project 2D spatially selective excitation pulse design and the artifact evaluation 12/08/2004 Zungho Zun Two-dimensional spatially selective excitation is used to excite a volume such as pencil

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Advanced MRI Techniques (and Applications)

Advanced MRI Techniques (and Applications) Advanced MRI Techniques (and Applications) Jeffry R. Alger, PhD Department of Neurology Ahmanson-Lovelace Brain Mapping Center Brain Research Institute Jonsson Comprehensive Cancer Center University of

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer MITK-DI A new Diffusion Imaging Component for MITK Klaus Fritzsche, Hans-Peter Meinzer Division of Medical and Biological Informatics, DKFZ Heidelberg k.fritzsche@dkfz-heidelberg.de Abstract. Diffusion-MRI

More information

k-space Interpretation of the Rose Model: Noise Limitation on the Detectable Resolution in MRI

k-space Interpretation of the Rose Model: Noise Limitation on the Detectable Resolution in MRI k-space Interpretation of the Rose Model: Noise Limitation on the Detectable Resolution in MRI Richard Watts and Yi Wang* Magnetic Resonance in Medicine 48:550 554 (2002) Noise limitation on the detected

More information

New Technology Allows Multiple Image Contrasts in a Single Scan

New Technology Allows Multiple Image Contrasts in a Single Scan These images were acquired with an investigational device. PD T2 T2 FLAIR T1 MAP T1 FLAIR PSIR T1 New Technology Allows Multiple Image Contrasts in a Single Scan MR exams can be time consuming. A typical

More information

Automatic Correction of Echo-Planar Imaging (EPI) Ghosting Artifacts in Real-Time Interactive Cardiac MRI Using Sensitivity Encoding

Automatic Correction of Echo-Planar Imaging (EPI) Ghosting Artifacts in Real-Time Interactive Cardiac MRI Using Sensitivity Encoding JOURNAL OF MAGNETIC RESONANCE IMAGING 27:239 245 (2008) Technical Note Automatic Correction of Echo-Planar Imaging (EPI) Ghosting Artifacts in Real-Time Interactive Cardiac MRI Using Sensitivity Encoding

More information

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals.

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals. GE Healthcare CLINICAL GALLERY Discovery * MR750w 3.0T This brochure is intended for European healthcare professionals. NEURO PROPELLER delivers high resolution, motion insensitive imaging in all planes.

More information

design as a constrained maximization problem. In principle, CODE seeks to maximize the b-value, defined as, where

design as a constrained maximization problem. In principle, CODE seeks to maximize the b-value, defined as, where Optimal design of motion-compensated diffusion gradient waveforms Óscar Peña-Nogales 1, Rodrigo de Luis-Garcia 1, Santiago Aja-Fernández 1,Yuxin Zhang 2,3, James H. Holmes 2,Diego Hernando 2,3 1 Laboratorio

More information

XI Signal-to-Noise (SNR)

XI Signal-to-Noise (SNR) XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal n(t) t. Noise. Characterizing Noise Noise is a random signal that gets added to all of our measurements. In D it looks like this: while in D

More information

Functional analysis with DTI and diffusion-neurography of cranial nerves

Functional analysis with DTI and diffusion-neurography of cranial nerves Functional analysis with DTI and diffusion-neurography of cranial nerves Poster No.: C-1942 Congress: ECR 2013 Type: Educational Exhibit Authors: J. P. Martínez Barbero, T. Martín Noguerol, A. Luna Alcalá;

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator

A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator A validation of the biexponential model in diffusion MRI signal attenuation using diffusion Monte Carlo simulator Poster No.: C-0331 Congress: ECR 2014 Type: Scientific Exhibit Authors: D. Nishigake, S.

More information

A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging

A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging M. H. A. Bauer 1,3, S. Barbieri 2, J. Klein 2, J. Egger 1,3, D. Kuhnt 1, B. Freisleben 3, H.-K. Hahn

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions.

Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions. Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions. Benoit Scherrer Ali Gholipour Simon K. Warfield Children s Hospital Boston,

More information

Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging

Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging Zijing Dong and Erpeng Dai Fuyixue Wang Harvard-MIT Health Sciences and Technology

More information

MRI Reconstruction using Real-Time Motion Tracking: A Simulation Study

MRI Reconstruction using Real-Time Motion Tracking: A Simulation Study MRI Reconstruction using Real-Time Motion Tracking: A Simulation Study Jeff Orchard David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON Canada, N2L 3G1 e-mail: jorchard@uwaterloo.ca

More information

The cost of parallel imaging in functional MRI of the human brain

The cost of parallel imaging in functional MRI of the human brain Magnetic Resonance Imaging 24 (2006) 1 5 Original contributions The cost of parallel imaging in functional MRI of the human brain Henry Lqtcke4, Klaus-Dietmar Merboldt, Jens Frahm Biomedizinische NMR Forschungs

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

3-D Gradient Shimming

3-D Gradient Shimming 3-D Gradient Shimming 3-D Gradient Shimming on imaging and micro-imaging systems Technical Overview Introduction Advantage statement The GE3DSHIM method is a 3-D gradient shimming procedure developed for

More information

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Doug Dean Final Project Presentation ENGN 2500: Medical Image Analysis May 16, 2011 Outline Review of the

More information

Fast Isotropic Volumetric Coronary MR Angiography Using Free-Breathing 3D Radial Balanced FFE Acquisition

Fast Isotropic Volumetric Coronary MR Angiography Using Free-Breathing 3D Radial Balanced FFE Acquisition Fast Isotropic Volumetric Coronary MR Angiography Using Free-Breathing 3D Radial Balanced FFE Acquisition C. Stehning, 1 * P. Börnert, 2 K. Nehrke, 2 H. Eggers, 2 and O. Dössel 1 Magnetic Resonance in

More information

Unaliasing by Fourier-Encoding the Overlaps Using the Temporal Dimension (UNFOLD), Applied to Cardiac Imaging and fmri

Unaliasing by Fourier-Encoding the Overlaps Using the Temporal Dimension (UNFOLD), Applied to Cardiac Imaging and fmri 1999 ISMRM YOUNG INVESTIGATORS MOORE AWARD PAPERS Magnetic Resonance in Medicine 42:813 828 (1999) Unaliasing by Fourier-Encoding the Overlaps Using the Temporal Dimension (UNFOLD), Applied to Cardiac

More information

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2012 June 04.

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2012 June 04. NIH Public Access Author Manuscript Published in final edited form as: Magn Reson Med. 2011 June ; 65(6): 1532 1556. doi:10.1002/mrm.22924. Diffusion Tensor Imaging and Beyond Jacques-Donald Tournier 1,

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

2.1 Signal Production. RF_Coil. Scanner. Phantom. Image. Image Production

2.1 Signal Production. RF_Coil. Scanner. Phantom. Image. Image Production An Extensible MRI Simulator for Post-Processing Evaluation Remi K.-S. Kwan?, Alan C. Evans, and G. Bruce Pike McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal,

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer MITK-DI A new Diffusion Imaging Component for MITK Klaus Fritzsche, Hans-Peter Meinzer Division of Medical and Biological Informatics, DKFZ Heidelberg k.fritzsche@dkfz-heidelberg.de Abstract. Diffusion-MRI

More information

ACQUIRING AND PROCESSING SUSCEPTIBILITY WEIGHTED IMAGING (SWI) DATA ON GE 3.0T

ACQUIRING AND PROCESSING SUSCEPTIBILITY WEIGHTED IMAGING (SWI) DATA ON GE 3.0T ACQUIRING AND PROCESSING SUSCEPTIBILITY WEIGHTED IMAGING (SWI) DATA ON GE 3.0T Revision date: 12/13/2010 Overview Susceptibility Weighted Imaging (SWI) is a relatively new data acquisition and processing

More information

Susceptibility Distortion Correction for Echo Planar Images with Non-uniform B-Spline Grid Sampling: A Diffusion Tensor Image Study

Susceptibility Distortion Correction for Echo Planar Images with Non-uniform B-Spline Grid Sampling: A Diffusion Tensor Image Study Susceptibility Distortion Correction for Echo Planar Images with Non-uniform B-Spline Grid Sampling: A Diffusion Tensor Image Study M.O. Irfanoglu 1,L.Walker 3,S.Sammet 2, C. Pierpaoli 3,andR.Machiraju

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

Pre-processing of ASL data T CT

Pre-processing of ASL data T CT Wed October 2, 2013 Image Processing Pre-processing: motion correction, denoising, outlier detection Alessandra Bertoldo Pre-processing of ASL data T CT C T C Single TI ASL T T T T C CCC average Pre-processing

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

High-field diffusion tensor imaging of mouse brain in vivo using single-shot STEAM MRI

High-field diffusion tensor imaging of mouse brain in vivo using single-shot STEAM MRI Journal of Neuroscience Methods 161 (2007) 112 117 High-field diffusion tensor imaging of mouse brain in vivo using single-shot STEAM MRI Susann Boretius a,, Jens Würfel b, Frauke Zipp b,c, Jens Frahm

More information

Complex Fiber Visualization

Complex Fiber Visualization Annales Mathematicae et Informaticae 34 (2007) pp. 103 109 http://www.ektf.hu/tanszek/matematika/ami Complex Fiber Visualization Henrietta Tomán a, Róbert Tornai b, Marianna Zichar c a Department of Computer

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA)

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) JOURNAL OF MAGNETIC RESONANCE IMAGING 26:432 436 (2007) Technical Note TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) Ed X. Wu, PhD, 1,2 * Edward S. Hui, BEng, 1,2 and Jerry S. Cheung, BEng 1,2 Purpose:

More information

Zigzag Sampling for Improved Parallel Imaging

Zigzag Sampling for Improved Parallel Imaging Magnetic Resonance in Medicine 60:474 478 (2008) Zigzag Sampling for Improved Parallel Imaging Felix A. Breuer, 1 * Hisamoto Moriguchi, 2 Nicole Seiberlich, 3 Martin Blaimer, 1 Peter M. Jakob, 1,3 Jeffrey

More information

Partially Parallel Imaging With Localized Sensitivities (PILS)

Partially Parallel Imaging With Localized Sensitivities (PILS) Partially Parallel Imaging With Localized Sensitivities (PILS) Magnetic Resonance in Medicine 44:602 609 (2000) Mark A. Griswold, 1 * Peter M. Jakob, 1 Mathias Nittka, 1 James W. Goldfarb, 2 and Axel Haase

More information

UCLA UCLA Previously Published Works

UCLA UCLA Previously Published Works UCLA UCLA Previously Published Works Title Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times. Permalink https://escholarship.org/uc/item/0dn450j1

More information

Partial k-space Recconstruction

Partial k-space Recconstruction Partial k-space Recconstruction John Pauly September 29, 2005 1 Motivation for Partial k-space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position,

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information